陶瓷体形式的led转换无机发光材料的制作方法

文档序号:3805480
专利名称:陶瓷体形式的led转换无机发光材料的制作方法
专利说明陶瓷体形式的LED转换无机发光材料 本发明涉及陶瓷无机发光元件,涉及其通过湿化学法的制造,并涉及其作为LED转换无机发光材料的用途。
利用LED发射白光的最重要和最有前景的理念在于用转换无机发光材料涂布蓝色或近紫外区发光的In(Al)GaN(或未来也可能基于ZnO)场致发光芯片,该无机发光材料可以被该芯片激发并发射某些波长的光。芯片与无机发光材料的这种组合体被环氧化物、PMMA或其它树脂的浇铸成型或注射成型的封套包裹,以保护该组合体免受环境影响,其中封套材料应在可见光区域中高度透明,并在给定条件(T最高至200℃,以及透过芯片和无机发光材料的高辐射密度和曝光)下稳定不变。
无机发光材料当前以具有生产引发的宽粒度分布和形态的微粉形式使用在无机发光材料已经分散在有机硅或树脂的基质中后,将它们逐滴施用到芯片上或围绕该芯片的反射锥体中,或掺入封套材料中,在这种情况下,用该封套材料进行涂布(包装还包括芯片的电接触)。
由此,无机发光材料不能以可规划、可重现和均匀的方式分布/遍布在芯片上。这产生在如今的LED中可观察到的不均匀的发光锥,即LED以不同角度发射不同光线。如果该行为不可重现地导致一批中LED之间的差异,意味着所有LED要一个一个地测试和分选(昂贵的装仓过程)。
此外,芯片发射的相当大比例的光在主要为高折射率的无机发光材料的常常开裂的表面处散射,且不能被该无机发光材料转换。如果这种光被散射回芯片,就在芯片中发生吸收,因为半导体中吸收与发射波长之间的斯托克斯频移小到可忽略不计。
DE 19938053描述了被有机硅封套或陶瓷部件包围的LED,其中无机发光粉可作为外来组分嵌入该外覆物中。
DE 19963805描述了被有机硅封套或陶瓷部件包围的LED,其中无机发光粉可作为外来组分嵌入该外覆物中。
WO 02/057198描述了透明陶瓷(例如YAGNd)的制造,其在此可以用钕掺杂。这种类型的陶瓷用作固态激光器。
DE 10349038描述了通过固态扩散法制成的、基于包含YAG的多晶陶瓷元件(其与掺杂剂溶液结合)的发光转换元件。由于温度处理,掺杂剂(活化剂)扩散到陶瓷元件中,在此过程中形成无机发光材料。通过复杂的反复浸渍涂布法(CSD),用硝酸铈溶液涂布包含YAG的陶瓷元件。此处微晶的直径为1至100微米,优选10至50微米。通过固态扩散法制成的这种类型的陶瓷发光转换元件的缺点在于,首先,不可能获得在原子级别下均匀的粒子组合物,这特别是因为掺杂离子具有不规则的分布,这在浓度热点的情况下会造成所谓的浓度猝灭(参见Shionoya,PhosphorHandbook,1998,CRC Press)。该无机发光材料的转换效率因此降低。此外,所谓的混合及烧制过程只能制备没有均匀形态并具有宽粒度分布的微米级粉末。与较小的亚微米粒子相比,大粒子具有大大降低的烧结活性。在不均匀形态和/或宽粒度分布的情况下,陶瓷的成形由此变得更难和进一步受限制。
如果该陶瓷发光转换元件不直接位于LED芯片上,而是距其几毫米,就不能再使用成像光学器件。来自该LED芯片的初级辐射和来自无机发光材料的次级辐射因此在彼此远离的位置发生。使用例如汽车前灯所必需的成像光学器件时,其不是均匀的光,而是两个成像的光源。
上述陶瓷发光转换元件的另一缺点在于使用有机粘合剂(例如丙烯酸酯、苯乙烯等)。其被LED芯片的高辐射密度和高温破坏,并因发灰而造成LED的发光功率降低。
因此,本发明的目的在于开发没有一种或多种上述缺点的陶瓷无机发光元件。
出人意料地,通过湿化学法和后续的等静压制备无机发光材料,可以实现上述目的。其然后可以以均匀、薄和无孔片的形式直接施用到芯片表面上。因此无机发光材料的激发与发射不会随位置而变,意味着具有该无机发光材料的LED发射具有恒定色彩的均匀光锥,并具有高的发光功率。
本发明因此涉及一种陶瓷无机发光元件,其可如下获得通过湿化学法将至少两种原材料与至少一种掺杂剂混合,然后热处理,以产生平均直径优选为50纳米至5微米的无机发光材料前体粒子,并等静压。
由于无机发光元件与LED芯片的直接或大致直接的等距接触导致所谓的近场相互作用,本发明的无机发光元件(其优选具有片形)表面的散射效应可忽略不计。这始终在小于相应光波长(蓝色LED=450-470纳米,UVLED=380-420纳米)的间距内发生,并且在该间距小于100纳米时特别显著,且尤其以不存在散射效应为特征(由于为此存在的间距低于该波长,不可能形成元波)。
本发明的无机发光元件的另一优点在于,不必将无机发光粉复杂地分散在环氧化物、有机硅或树脂中。现有技术中已知的这些分散体尤其包含可聚合物质,并由于这些和其它成分而不适于储存。
使用本发明的无机发光元件,LED制造者能够储存片形的立即可用的无机发光材料;此外,该无机发光材料陶瓷的使用与LED制造中的其它工序相容,而在使用传统无机发光粉的情况下不是如此。最终工序因此与高复杂性相联,这在LED制造中造成更高的成本。
但是,如果白色LED的最大效率(即发光效率)不重要的话,本发明的无机发光元件也可以直接施加到制成的蓝色或UV LED上。因此可以通过简单更换无机发光片来影响光温度和光色调。通过更换厚度不同的片形式的化学上相同的无机发光物质,这可以以极其简单的方式进行。
选择用于所述陶瓷无机发光元件的材料特别可以是下列化合物,其中,在下列标记中,主体化合物显示在冒号左边,一种或多种掺杂元素显示在冒号右边。如果化学元素被逗号彼此分开并在括号内,则它们的使用是任选的。根据无机发光元件的所需发光性质,可以使用一种或多种可供选择的化合物 BaAl2O4:Eu2+,BaAl2S4:Eu2+,BaB8O3:Eu2+,BaF2,BaFBr:Eu2+,BaFCl:Eu2+, BaFCl:Eu2+,Pb2+,BaGa2S4:Ce3+,BaGa2S4:Eu2+,Ba2Li2Si2O7:Eu2+, Ba2Li2Si2O7:Sn2+,Ba2Li2Si2O7:Sn2+,Mn2+,BaMgAl,0O17:Ce3+, BaMgAl10O17:Eu2+,BaMgAl10O17:Eu2+,Mn2+,Ba2Mg3F10:Eu2+, BaMg3F8:Eu2+,Mn2+,Ba2MgSi2O7:Eu2+,BaMg2Si2O7:Eu2+, Ba5(PO4)3Cl:Eu2+,Ba5(PO4)3Cl:U,Ba3(PO4)2:Eu2+,BaS:Au,K,BaSO4:Ce3+, BaSO4:Eu2+,Ba2SiO4:Ce3+,Li+,Mn2+,Ba5SiO4Cl6:Eu2+,BaSi2O5:Eu2+, Ba2SiO4:Eu2+,BaSi2O5:Pb2+,BaxSri1-xF2:Eu2+,BaSrMgSi2O7:Eu2+, BaTiP2O7,(Ba,Ti)2P2O7:Ti,Ba3WO6:U,BaY2F8Er3+,Yb+,Be2SiO4:Mn2+, Bi4Ge3O12,CaAl2O4:Ce3+,CaLa4O7:Ce3+,CaAl2O4:Eu2+,CaAl2O4:Mn2+, CaAl4O7:Pb2+,Mn2+,CaAl2O4:Tb3+,Ca3Al2Si3O12:Ce3+, Ca3Al2Si3Oi2:Ce3+,Ca3Al2Si3O,2:Eu2+,Ca2B5O9Br:Eu2+, Ca2B5O9Cl:Eu2+,Ca2B5O9Cl:Pb2+,CaB2O4:Mn2+,Ca2B2O5:Mn2+, CaB2O4:Pb2+,CaB2P2O9:Eu2+,Ca5B2SiO10:Eu3+, Ca0.5Ba0.5Al12O19:Ce3+,Mn2+,Ca2Ba3(PO4)3Cl:Eu2+,CaBr2:Eu2+ in SiO2, CaCl2:Eu2+ in SiO2,CaCl2:Eu2+,Mn2+ in SiO2,CaF2:Ce3+, CaF2:Ce3+,Mn2+,CaF2:Ce3+,Tb3+,CaF2:Eu2+,CaF2:Mn2+,CaF2:U, CaGa2O4:Mn2+,CaGa4O7:Mn2+,CaGa2S4:Ce3+,CaGa2S4:Eu2+, CaGa2S4:Mn2+,CaGa2S4:Pb2+,CaGeO3:Mn2+,Cal2:Eu2+ in SiO2, Cal2:Eu2+,Mn2+ in SiO2,CaLaBO4:Eu3+,CaLaB3O7:Ce3+,Mn2+, Ca2La2BO6.5:Pb2+,Ca2MgSi2O7,Ca2MgSi2O7:Ce3+,CaMgSi2O6:Eu2+, Ca3MgSi2O8:Eu2+,Ca2MgSi2O7:Eu2+,CaMgSi2O6:Eu2+,Mn2+, Ca2MgSi2O7:Eu2+,Mn2+,CaMoO4,CaMoO4:Eu3+,CaO:Bi3+,CaO:Cd2+, CaO:Cu+,CaO:Eu3+,CaO:Eu3+,Na+,CaO:Mn2+,CaO:Pb2+,CaO:Sb3+, CaO:Sm3+,CaO:Tb3+,CaO:Tl,CaO.Zn2+,Ca2P2O7:Ce3+,α-Ca3(PO4)2:Ce3+, β-Ca3(PO4)2:Ce3+,Ca5(PO4)3Cl:Eu2+,Ca5(PO4)3Cl:Mn2+,Ca5(PO4)3Cl:Sb3+, Ca5(PO4)3Cl:Sn2+,β-Ca3(PO4)2:Eu2+,Mn2+,Ca5(PO4)3F:Mn2+, Cas(PO4)3F:Sb3+,Cas(PO4)3F:Sn2+,α-Ca3(PO4)2:Eu2+,β-Ca3(PO4)2:Eu2+, Ca2P2O7:Eu2+,Ca2P2O7:Eu2+,Mn2+,CaP2O6:Mn2+,α-Ca3(PO4)2:Pb2+,α-Ca3(PO4)2:Sn2+,β-Ca3(PO4)2:Sn2+,β-Ca2P2O7:Sn,Mn,α-Ca3(PO4)2:Tr, CaS:Bi3+,CaS:Bi3+,Na,CaS:Ce3+,CaS:Eu2+,CaS:Cu+,Na+,CaS:La3+, CaS:Mn2+,CaSO4:Bi,CaSO4:Ce3+,CaSO4:Ce3+,Mn2+,CaSO4:Eu2+, CaSO4:Eu2+,Mn2+,CaSO4:Pb2+,CaS:Pb2+,CaS:Pb2+,Cl,CaS:Pb2+,Mn2+, CaS:Pr3+,Pb2+,Cl,CaS:Sb3+,CaS:Sb3+,Na,CaS:Sm3+,CaS:Sn2+, CaS:Sn2+,F,CaS:Tb3+,CaS:Tb3+,Cl,CaS:Y3+,CaS:Yb2+,CaS:Yb2+,Cl, CaSiO3:Ce3+,Ca3SiO4Cl2:Eu2+,Ca3SiO4Cl2:Pb2+,CaSiO3:Eu2+, CaSiO3:Mn2+,Pb,CaSiO3:Pb2+,CaSiO3:Pb2+,Mn2+,CaSiO3:Ti4+, CaSr2(PO4)2:Bi3+,β-(Ca,Sr)3(PO4)2:Sn2+Mn2+,CaTi0.9Al0.1O3:Bi3+, CaTiO3:Eu3+,CaTiO3:Pr3+,Ca5(VO4)3Cl,CaWO4,CaWO4:Pb2+,CaWO4:W, Ca3WO6:U,CaYAlO4:Eu3+,CaYBO4:Bi3+,CaYBO4:Eu3+,CaYB0.8O3.7:Eu3+, CaY2ZrO6:Eu3+,(Ca,Zn,Mg)3(PO4)2:Sn,CeF3,(Ce,Mg)BaAl11O18:Ce, (Ce,Mg)SrAl11O18:Ce,CeMgAl11O19:Ce:Tb,Cd2B6O11:Mn2+,CdS:Ag+,Cr, CdS:In,CdS:In,CdS:In,Te,CdS:Te,CdWO4,CsF,Csl,Csl:Na+,Csl:Tl, (ErCl3)0.25(BaCl2)0.75,GaN:Zn,Gd3Ga5O12:Cr3+,Gd3Ga5O12:Cr,Ce, GdNbO4:Bi3+,Gd2O2S:Eu3+,Gd2O2Pr3*,Gd2O2S:Pr,Ce,F,Gd2O2S:Tb3+, Gd2SiO5:Ce3+,KAl11O17:Tl+,KGa11O17:Mn2+,K2La2Ti3O10:Eu,KMgF3:Eu2+, KMgF3:Mn2+,K2SiF6:Mn4+,LaAl3B4O12:Eu3+,LaAlB2O6:Eu3+,LaAlO3:Eu3+, LaAlO3:Sm3+,LaAsO4:Eu3+,LaBr3:Ce3+,LaBO3:Eu3+,(La,Ce,Tb)PO4:Ce:Tb, LaCl3:Ce3+,La2O3:Bi3+,LaOBr:Tb3+,LaOBr:Tm3+,LaOCl:Bi3+,LaOCl:Eu3+, LaOF:Eu3+,La2O3:Eu3+,La2O3:Pr3+,La2O2S:Tb3+,LaPO4:Ce3+,LaPO4:Eu3+, LaSiO3Cl:Ce3+,LaSiO3Cl:Ce3+,Tb3+,LaVO4:Eu3+,La2W3O12:Eu3+, LiAlF4:Mn2+,LiAl5O8:Fe3+,LiAlO2:Fe3+,LiAlO2:Mn2+,LiAl5O8:Mn2+, Li2CaP2O7:Ce3+,Mn2+,LiCeBa4Si4O14:Mn2+,LiCeSrBa3Si4O14:Mn2+, LilnO2:Eu3+,LiInO2:Sm3+,LiLaO2:Eu3+,LuAlO3:Ce3+,(Lu,Gd)2SiO5:Ce3+, Lu2SiO5:Ce3+,Lu2Si2O7:Ce3+,LuTaO4:Nb5+,Lu1-xYxAlO3:Ce3+, MgAl2O4:Mn2+,MgSrAl10O17:Ce,MgB2O4:Mn2+,MgBa2(PO4)2:Sn2+, MgBa2(PO4)2:U,MgBaP2O7:Eu2+,MgBaP2O7:Eu2+,Mn2+,MgBa3Si2O8:Eu2+, MgBa(SO4)2:Eu2+,Mg3Ca3(PO4)4:Eu2+,MgCaP2O7:Mn2+, Mg2Ca(SO4)3:Eu2+,Mg2Ca(SO4)3:Eu2+,Mn2,MgCeAlnO19:Tb3+, Mg4(F)GeO6:Mn2+,Mg4(F)(Ge,Sn)O6:Mn2+,MgF2:Mn2+,MgGa2O4:Mn2+, Mg8Ge2O11F2:Mn4+,MgS:Eu2+,MgSiO3:Mn2+,Mg2SiO4:Mn2+, Mg3SiO3F4:Ti4+,MgSO4:Eu2+,MgSO4:Pb2+,MgSrBa2Si2O7:Eu2+, MgSrP2O7:Eu2+,MgSr5(PO4)4:Sn2+,MgSr3Si2O8:Eu2+,Mn2+, Mg2Sr(SO4)3:Eu2+,Mg2TiO4:Mn4+,MgWO4,MgYBO4:Eu3+, Na3Ce(PO4)2:Tb3+,Nal:Tl,Na1.23K0.42Eu0.12TiSi4O11:Eu3+, Na1.23K0.42Eu0.12TiSi5O13·xH2O:Eu3+,Na1.29K0.46Er0.08TiSi4O11:Eu3+, Na2Mg3Al2Si2O10:Tb,Na(Mg2-xMnx)LiSi4O10F2:Mn,NaYF4:Er3+,Yb3+, NaYO2:Eu3+,P46(70%)+P47(30%),SrAl12O19:Ce3+,Mn2+,SrAl2O4:Eu2+, SrAl4O7:Eu3+,SrAl12O19:Eu2+,SrAl2S4:Eu2+,Sr2B5O9Cl:Eu2+, SrB4O7:Eu2+(F,Cl,Br),SrB4O7:Pb2+,SrB4O7:Pb2+,Mn2+,SrB8O13:Sm2+, SrxBayClzAl2O4-z/2:Mn2+,Ce3+,SrBaSiO4:Eu2+,Sr(Cl,Br,I)2:Eu2+inSiO2, SrCl2:Eu2+ in SiO2,Sr5Cl(PO4)3:Eu,SrwFxB4O6.5:Eu2+,SrwFxByOz:Eu2+,Sm2+, SrF2:Eu2+,SrGa12O19:Mn2+,SrGa2S4:Ce3+,SrGa2S4:Eu2+,SrGa2S4:Pb2+, Srln2O4:Pr3+,Al3+,(Sr,Mg)3(PO4)2:Sn,SrMgSi2O6:Eu2+,Sr2MgSi2O7:Eu2+, Sr3MgSi2O8:Eu2+,SrMoO4:U,SrO·3B2O3:Eu2+,Cl,β-SrO·3B2O3:Pb2+,β- SrO·3B2O3:Pb2+,Mn2+,α-SrO·3B2O3:Sm2+,Sr6P5BO20:Eu, Sr5(PO4)3Cl:Eu2+,Sr5(PO4)3Cl:Eu2+,Pr3+,Sr5(PO4)3Cl:Mn2+, Sr5(PO4)3Cl:Sb3+,Sr2P2O7:Eu2+,β-Sr3(PO4)2:Eu2+,Sr5(PO4)3F:Mn2+, Sr5(PO4)3F:Sb3+,Sr5(PO4)3F:Sb3+,Mn2+,Sr5(PO4)3F:Sn2+,Sr2P2O7:Sn2+,β- Sr3(PO4)2:Sn2+,β-Sr3(PO4)2:Sn2+,Mn2+(Al),SrS:Ce3+,SrS:Eu2+,SrS:Mn2+, SrS:Cu+,Na,SrSO4:Bi,SrSO4:Ce3+,SrSO4:Eu2+,SrSO4:Eu2+,Mn2+, Sr5Si4O10Cl6:Eu2+,Sr2SiO4:Eu2+,SrTiO3:Pr3+,SrTiO3:Pr3+,Al3+,Sr3WO6:U, SrY2O3:Eu3+,ThO2:Eu3+,ThO2:Pr3+,ThO2:Tb3+,YAl3B4O12:Bi3+, YAl3B4O12:Ce3+,YAl3B4O12:Ce3+,Mn,YAl3B4O12:Ce3+,Tb3+,YAl3B4O12:Eu3+, YAl3B4O12:Eu3+,Cr3+,YAl3B4O12:Th4+,Ce3+,Mn2+,YAlO3:Ce3+,Y3Al5O12:Ce3+, (Y,Gd,Lu,Tb)3(Al,Ga)5O12:(Ce,Pr,Sm),Y3Al5O12:Cr3+,YAlO3:Eu3+, Y3Al5O12:Eu3r,Y4Al2O9:Eu3+,Y3Al5O12:Mn4+,YAlO3:Sm3+,YAlO3:Tb3+, Y3Al5O12:Tb3+,YAsO4:Eu3+,YBO3:Ce3+,YBO3:Eu3+,YF3:Er3+,Yb3+, YF3:Mn2+,YF3:Mn2+,Th4+,YF3:Tm3+,Yb3+,(Y,Gd)BO3:Eu,(Y,Gd)BO3:Tb, (Y,Gd)2O3:Eu3+,Y1.34Gd0.60O3(Eu,Pr),Y2O3:Bi3+,YOBr:Eu3+,Y2O3:Ce, Y2O3:Er3+,Y2O3:Eu3+(YOE),Y2O3:Ce3+,Tb3+,YOCl:Ce3+,YOCl:Eu3+, YOF:Eu3+,YOF:Tb3+,Y2O3:Ho3+,Y2O2S:Eu3+,Y2O2S:Pr3+,Y2O2S:Tb3+, Y2O3:Tb3+,YPO4:Ce3+,YPO4:Ce3+,Tb3+,YPO4:Eu3+,YPO4:Mn2+,Th4+, YPO4:V5+,Y(P,V)O4:Eu,Y2SiO5:Ce3+,YTaO4,YTaO4:Nb5+,YVO4:Dy3+, YVO4:Eu3+,ZnAl2O4:Mn2+,ZnB2O4:Mn2+,ZnBa2S3:Mn2+,(Zn,Be)2SiO4:Mn2+, Zn0.4Cd0.6S:Ag,Zn0.6Cd0.4S:Ag,(Zn,Cd)S:Ag,Cl,(Zn,Cd)S:Cu,ZnF2:Mn2+, ZnGa2O4,ZnGa2O4:Mn2+,ZnGa2S4:Mn2+,Zn2GeO4:Mn2+,(Zn,Mg)F2:Mn2+, ZnMg2(PO4)2:Mn2+,(Zn,Mg)3(PO4)2:Mn2+,ZnO:Al3+,Ga3+,ZnO:Bi3+, ZnO:Ga3+,ZnO:Ga,ZnO-CdO:Ga,ZnO:S,ZnO:Se,ZnO:Zn,ZnS:Ag+,Cl-, ZnS:Ag,Cu,Cl,ZnS:Ag,Ni,ZnS:Au,In,ZnS-CdS(25-75),ZnS-CdS(50-50), ZnS-CdS(75-25),ZnS-CdS:Ag,Br,Ni,ZnS-CdS:Ag+,Cl,ZnS-CdS:Cu,Br, ZnS-CdS:Cu,I,ZnS:Cl-,ZnS:Eu2+,ZnS:Cu,ZnS:Cu+,Al3+,ZnS:Cu+,Cl-, ZnS:Cu,Sn,ZnS:Eu2+,ZnS:Mn2+,ZnS:Mn,Cu,ZnS:Mn2+,Te2+,ZnS:P, ZnS:P3-,Cl-,ZnS:Pb2+,ZnS:Pb2+,Cl-,ZnS:Pb,Cu,Zn3(PO4)2:Mn2+, Zn2SiO4:Mn2+,Zn2SiO4:Mn2+,As5+,Zn2SiO4:Mn,Sb2O2,Zn2SiO4:Mn2+,P, Zn2SiO4:Ti4+,ZnS:Sn2+,ZnS:Sn,Ag,ZnS:Sn2+,Li+,ZnS:Te,Mn,ZnS- ZnTe:Mn2+,ZnSe:Cu+,Cl,ZnWO4 该陶瓷无机发光元件优选由至少一种下列无机发光材料构成(Y,Gd,Lu,Sc,Sm,Tb)3(Al,Ga)5O12:Ce、(Ca,Sr,Ba)2SiO4:Eu、YSiO2N:Ce、Y2Si3O3N4:Ce、Gd2Si3O3N4:Ce、(Y,Gd,Tb,Lu)3Al5-xSixO12-xNx:Ce、BaMgAl10O17:Eu、SrAl2O4:Eu、Sr4Al14O25:Eu、(Ca,Sr,Ba)Si2N2O2:Eu、SrSiAl2O3N2:Eu、(Ca,Sr,Ba)2Si5N8:Eu、CaAlSiN3:Eu、钼酸盐、钨酸盐、钒酸盐、第III族氮化物、氧化物,在每种情况下独立地构成或为其与一种或多种活化剂离子(例如Ce、Eu、Mn、Cr和/或Bi)的混合物。
该陶瓷无机发光元件可以在大工业规模下制造,例如以厚度几百纳米至大约500微米的片形式制造。该片的尺寸(长度×宽度)取决于配置。在直接施加到芯片上的情况下,应根据芯片尺寸选择片的尺寸(从大约100微米×100微米至几平方毫米),在合适的芯片布置(例如倒装芯片布置)的情况下或相应地,在尺寸上超过芯片表面的大约10%至30%。如果将该无机发光片安装在制成的LED上,发射的光锥将完全被该片吸收。
该陶瓷无机发光元件的侧面可以被轻金属或贵金属(优选铝或银)金属化。该金属化的作用在于,光不会从该无机发光元件中侧向射出。侧向射出的光可以减少从LED中耦合输出的光通量。陶瓷无机发光元件的金属化在等静压以获得棒或片之后的工序中进行,如果需要,可以在金属化之前将棒或片切割至必要尺寸。为此,将侧面润湿,例如用硝酸银和葡萄糖的溶液润湿,然后在高温下暴露在氨气氛下。在该操作过程中,在侧面上形成例如银涂层。或者,也可以使用无电流金属化法,参见例如Hollemann-Wiberg,Lehrbuch der Anorganischen Chemie(有机化学教材),Walter de Gruyter Verlag或Ullmanns Enzyklop

die der chemischenTechnologie(Ullmann化学技术百科全书)。
为了改进从LED到陶瓷中的场致发光的蓝光或UV光的耦合,朝向芯片的侧面必须具有尽可能最小的表面积。在此,陶瓷无机发光材料具有优于无机发光粒子的关键优点粒子具有大的表面积,并将大比例的入射到它们上的光散射回去。该光被LED芯片和所存在的部件吸收。来自该LED的可实现的光发射由此减少。陶瓷无机发光元件可以直接施加到芯片或基底上,特别是在倒装芯片布置的情况下。如果陶瓷无机发光元件距光源少于或不多于一个光波长,则近场现象会产生下述效果通过类似于F

rster转移过程的过程,光源输入到陶瓷中的能量可以得到增加。此外,本发明无机发光元件的朝向LED芯片的表面可以带有对LED芯片发射的初级辐射具有减反射作用的涂层。这同样导致初级辐射的反向散射的降低,这能使初级辐射更好地耦合到本发明的无机发光元件中。适于此目的的是例如折射率合适的涂层,其必须具有下列厚度dd=[来自LED芯片的初级辐射的波长/(4×无机发光材料陶瓷的折射率)],参见例如Gerthsen,Physik(物理),Springer Verlag,第18版,1995。该涂层也可以由光子晶体构成。
如果必要,可以用水玻璃溶液将本发明的无机发光元件固定到LED芯片的基底上。
在进一步优选的实施方案中,陶瓷无机发光元件在背对LED芯片的侧面上具有结构化(例如,锥形)表面(参见图2)。这使得尽可能最大量的光能够该无机发光元件中耦合出。否则,以特定角度(临界角)撞击陶瓷/环境界面的光发生全反射,导致光在无机发光元件内的不合意的透射。
无机发光元件上的结构化表面如下制造借助在等静压过程中的具有结构化压板的压模,并然后将结构压印到所述表面中。如果想要制造尽可能薄的无机发光元件或片,结构化表面可能是合意的。压制条件是本领域技术人员已知的(参见J.Kriegsmann,Technische keramische Werkstoffe[工业陶瓷材料],第4章,Deutscher Wirtschaftsdienst,1998)。重要的是,所用压制温度为待压制物质熔点的2/3至5/6。
取决于压模,获得了陶瓷形式的薄片或棒。棒然后必须在进一步步骤中锯成薄盘(参见

图1)。
在进一步优选的实施方案中,本发明的陶瓷无机发光元件在背对LED芯片的侧面上具有粗糙表面(参见图2),该粗糙表面带有SiO2、TiO2、Al2O3、ZnO2、ZrO2和/或Y2O3或这些材料的组合的纳米粒子。粗糙表面在此具有最多达几百纳米的粗糙度。涂布表面具有下述优点可减少或防止全反射,并且可以更好地从本发明的无机发光元件中耦合出光。在进一步优选的实施方案中,本发明的无机发光元件在背向芯片的表面上具有折射率合适的层,其简化了初级辐射或所述无机发光元件发射的辐射的耦合输出。
在进一步优选的实施方案中,陶瓷无机发光元件在朝向LED芯片的侧面上具有符合DIN EN ISO 4287(Rugotest;抛光表面具有粗糙度等级N3-N1)的抛光表面。这具有减少表面积从而使更少的光被散射回去的优点。
此外,该抛光表面也可以带有对初级辐射透明但反射次级辐射的涂层。该次级辐射然后只能仅仅向上发射。
用于制造陶瓷无机发光元件的原材料包括基础材料(例如钇、铝、钆的盐溶液)和至少一种掺杂剂(例如铈)。合适的原材料是无机和/或有机物质,如金属、半金属、过渡金属和/或稀土元素的硝酸盐、碳酸盐、碳酸氢盐、磷酸盐、羧酸盐、醇化物、乙酸盐、草酸盐、卤化物、硫酸盐、有机金属化合物、氢氧化物和/或氧化物,它们溶解和/或悬浮在无机和/或有机液体中。优选以必要的化学计量比使用含有相应元素的混合硝酸盐溶液。
本发明还涉及制造陶瓷无机发光元件的方法,该方法具有下述工序 a)通过湿化学法将至少两种原材料和至少一种掺杂剂混合,制备无机发光材料,并然后热处理所得无机发光材料前体, b)将所述无机发光材料前体等静压,以获得陶瓷无机发光元件。
该湿化学制备法通常具有如下优点在用于制造本发明陶瓷无机发光元件的粒子的化学计量组成、粒度和形态方面,所得材料具有更高的均匀性。
对于例如由硝酸钇、硝酸铝、硝酸铈和硝酸钆溶液的混合物构成的无机发光材料的含水前体(无机发光材料前体)的湿化学法预处理,下列已知方法是优选的 ·用NH4HCO3溶液共沉淀(参见P.Palermo等人,Joum.of the Europ.Cer.Soc,第25卷,Issue 9,第1565-1573页) ·使用柠檬酸和乙二醇的溶液的Pecchini法(例如A.Rosario等人,J.Sol-Gel Sci.Techn.(2006)38233-240) ·使用脲的燃烧法(参见P.Ravindranathan等人,J.ofMat Sci.Letters,第12卷,第6号(1993)363-371) ·含水或有机盐溶液(原材料)的喷雾干燥 ·含水或有机盐溶液(原材料)的喷雾热解。
在采用上述共沉淀法的情况下,例如,将NH4HCO3溶液添加到上述相应无机发光材料原材料的硝酸盐溶液中,由此形成无机发光材料前体。
在Pecchini法中,例如,将由柠檬酸和乙二醇构成的沉淀试剂在室温下添加到上述相应无机发光材料原材料的硝酸盐溶液中,然后加热该混合物。粘度升高导致形成无机发光材料前体。
在已知的燃烧法中,例如,将上述相应无机发光材料原材料的硝酸盐溶液溶解在水中,然后使该溶液回流,加入脲,由此缓慢形成无机发光材料前体。
喷雾热解是气溶胶法之一,其特征在于将溶液、悬浮液或分散液喷到以各种方式加热的反应空间(反应器)中,并生成和沉积固体粒子。与在<200℃的热气温度下的喷雾干燥不同,作为高温法,喷雾热解除溶剂蒸发外还包括所用原材料(例如盐)的热分解和物质(例如氧化物、混合氧化物)的再生成。
上述5种方法变体详细描述在DE 102006027133.5(Merck)中,其全文经此引用并入本申请文本中。
通过上述方法制成的无机发光材料前体(例如用铈掺杂的无定形或部分结晶或结晶YAG)由亚微米粒子构成,它们因此具有非常高的表面能,并具有非常高的烧结活性。本发明陶瓷无机发光元件的粒度分布中值[Q(x=50%)]为[Q(x=50%)]=50纳米至[Q(x=50%)]=5微米,优选为[Q(x=50%)]=80纳米至[Q(x=50%)]=1微米。粒度是基于SEM显微照片、通过从数字化SEM图片上人工测定粒径而确定的。
然后对无机发光材料前体施以等静压(在1000至10000巴、优选2000巴的压力下,在惰性、还原性或氧化性气氛中或在真空中),以获得相应的片形。无机发光材料前体优选还在等静压前与0.1至1重量%的烧结助剂(例如二氧化硅或氧化镁)纳米粉末混合。然后通过在箱式炉中,如果需要,在还原性或氧化性反应气体气氛(O2、CO、H2、H2/N2等)、在空气或真空中,在其熔点的2/3至3/4下处理该压块,由此进行附加的热处理。
特别为了实现该无机发光片的均匀结构和无孔表面,可能必须通过热等静压代替等静压将粉末粒子转化成无机发光片。在这种情况下,在压力/保护性气体气氛、氧化或还原性反应气体气氛下或暴露在真空下并同时在最高至熔点的2/3至5/6下煅烧,由此制造在一定程度上各向同性的均匀无孔的复合材料。
由于该转化在熔点以下发生,界面处的扩散过程促进了粒子的彼此粘结,而在模塑中形成化学键。
本发明还涉及一种照明装置,其具有至少一个最大发射在240至510纳米范围内的初级光源,其中所述初级辐射被本发明的陶瓷无机发光元件部分或完全转换成较长波长的辐射。该照明装置优选发白光。
在本发明照明装置的优选实施方案中,光源是发光的氮化镓铝铟,特别具有式IniGajAlkN的氮化镓铝铟,其中0≤i,0≤j,0≤k且i+j+k=1。
在本发明照明装置的进一步优选的实施方案中,光源是基于ZnO、TCO(透明导电氧化物)、ZnSe或SiC的发光化合物或有机发光层。
本发明还涉及本发明陶瓷无机发光元件用于将蓝色或近UV发射转换成可见白光的用途。
在优选实施方案中,陶瓷无机发光元件可以用作可见初级辐射的转换无机发光材料,用于生成白光。在这种情况下,如果所述陶瓷无机发光元件吸收一定比例的可见初级辐射(在是不可见初级辐射的情况下,其应该完全被吸收),并在背对初级光源的表面的方向上透射其余初级辐射,则特别有利于高发光功率。此外,在经由与发射初级辐射的材料相反的表面耦合输出方面,如果该陶瓷无机发光元件对其发出的辐射尽可能透明,也有利于高发光功率。所述陶瓷无机发光元件还优选具有80至几乎100%的陶瓷密度。从高于90%的陶瓷密度起,陶瓷无机发光元件的特征在于对次级辐射足够高的透光度。这意味着该辐射能够穿过该陶瓷元件。为此,陶瓷无机发光元件优选对一定波长的次级辐射具有高于60%的透射率。
在进一步优选的实施方案中,陶瓷无机发光元件可以用作UV初级辐射的转换无机发光材料,用于生成白光。在这种情况下,如果陶瓷无机发光元件吸收所有初级辐射,且如果陶瓷无机发光元件对其发出的辐射尽可能透明,则有利于高发光功率。
下列实施例旨在例证本发明。但是,它们无论如何不应被视为限制性的。该组合物中可用的所有化合物或组分是已知且市售的,或可以通过已知方法合成。实施例中所示的温度始终以℃给出。此外,理所当然地,在说明书和在实施例中,组合物中各组分的添加量总是合计为100%。所给出的百分比数据始终应在给定背景下考虑。但是,它们通常总是指所述部分量或总量的重量。
实施例 实施例1通过共沉淀制备细粉状(Y0.98Ce0.02)3Al5O12,然后压制和烧结,以获得无机发光片 将29.4毫升0.5M Y(NO3)3·6H2O溶液、0.6毫升0.5M Ce(NO3)3·6H2O溶液和50毫升0.5M Al(NO3)3·9H2O引入滴液漏斗中。将合并的溶液在搅拌下逐滴缓慢添加到80毫升2M碳酸氢铵溶液中,该碳酸氢铵溶液已预先用少量NH3溶液调节至pH 8至9。在逐滴加入酸性硝酸盐溶液的过程中,必须通过添加氨以使pH值保持在8至9。在大约30至40分钟后,应该已加入全部溶液,使用絮凝剂,生成白色沉淀物。使沉淀物老化大约1小时,然后经过滤器抽吸以将其滤出。然后用去离子水洗涤该产物多次。
移除过滤器后,将沉淀物转移到结晶盘中,并在干燥箱中在150℃干燥。最后,将干燥的沉淀物转移到较小刚玉坩埚中,将后者放在装有几克颗粒状活性碳的较大刚玉坩埚中,然后用坩埚盖密封该坩埚。将密封的坩埚放在箱式炉中,然后在1000℃煅烧4小时。
然后将该微细无机发光粉(其由精确化学计量比的必要阳离子以及尽可能最小量杂质(特别地,重金属在每种情况下低于50ppm)构成,并优选由亚微米初级粒子构成)在压机中在1000至10,000巴、优选2000巴预压实,以便在最高为其熔点的5/6的温度获得相应的片形。然后在箱式炉中在合成气体的气氛中在其熔点的2/3至5/6下进行压块的附加处理。
实施例2通过共沉淀制备无机发光材料(Y0.98Ce0.02)3Al5O12的前体(前体粒子) 将2.94升0.5M Y(NO3)3·6H2O溶液、60毫升0.5M Ce(NO3)3·6H2O溶液和5升0.5M Al(NO3)3·9H2O引入计量容器中。将合并的溶液在搅拌下缓慢定量添加到8升2M碳酸氢铵溶液中,该碳酸氢铵溶液已预先用NH3溶液调节至pH 8至9。
在定量加入酸性硝酸盐溶液的过程中,必须通过添加氨以使pH值保持在8至9。在大约30-40分钟后,应该已定量加入全部溶液,使用絮凝剂,生成白色沉淀物。使沉淀物老化大约1小时。
实施例3通过共沉淀制备无机发光材料Y2.541Gd0.450Ce0.009Al5O12的前体 将0.45摩尔Gd(NO3)3·6H2O、2.54摩尔Y(NO3)3·6H2O(M=383.012克/摩尔)、5摩尔Al(NO3)3·9H2O(M=375.113)和0.009摩尔Ce(NO3)3·6H2O溶解在8.2升蒸馏水中。将该溶液在室温下在恒定搅拌下逐滴定量加入16.4升的26.24摩尔NH4HCO3的水溶液中(其中M=79.055克/摩尔,m=2740克)。当沉淀完成时,使沉淀物在搅拌下老化1小时。通过搅拌将沉淀物保持悬浮。过滤后,用水洗涤滤饼,然后在150℃干燥数小时。
实施例4通过Pecchini法制备无机发光材料Y2.88Ce0.12Al5O12的前体(前体粒子) 将2.88摩尔Y(NO3)3·6H2O、5摩尔Al(NO3)3·9H2O(M=375.113)和0.12摩尔Ce(NO3)3·6H2O溶解在3280毫升蒸馏水中。将该溶液在室温下在搅拌下逐滴添加到由246克柠檬酸在820毫升乙二醇中构成的沉淀溶液中,搅拌该分散液直至其变透明。然后小心蒸发该溶液。将残留物置于水中,洗涤并过滤。
实施例5通过Pecchini法制备无机发光材料Y2.541Gd0.450Ce0.009Al5O12的前体(前体粒子) 将0.45摩尔Gd(NO3)3·6H2O、2.541摩尔Y(NO3)3·6H2O(M=383.012克/摩尔)、5摩尔Al(NO3)3·9H2O(M=375.113)和0.009摩尔Ce(NO3)3·6H2O溶解在3280毫升蒸馏水中。将该溶液在室温下在搅拌下逐滴添加到由246克柠檬酸在820毫升乙二醇中构成的沉淀溶液中,搅拌该分散液直至其变透明。然后将该分散液加热至200℃,在此过程中粘度升高,最后发生沉淀或混浊。
实施例6通过使用脲的燃烧法制备无机发光材料Y2.94Al5O12:Ce0.06的前体(前体粒子) 将2.94摩尔Y(NO3)3·6H2O、5摩尔Al(NO3)3·9H2O(M=375.113)和0.06摩尔Ce(NO3)3·6H2O溶解在3280毫升蒸馏水中,将该溶液回流。向该沸腾的溶液中加入8.82摩尔脲。在进一步沸腾并最终部分蒸发后,形成微的、不透明的白色泡沫。将其在100℃干燥,磨细,再分散在水中,并保持悬浮。
实施例7通过使用脲的燃烧法制备无机发光材料Y2.541Gd0.450Ce0.009Al5O12的前体(前体粒子) 将0.45摩尔Gd(NO3)3·6H2O、2.54摩尔Y(NO3)3·6H2O(M=383.012克/摩尔)、5摩尔Al(NO3)3·9H2O(M=375.113)和0.009摩尔Ce(NO3)3·6H2O溶解在3280毫升蒸馏水中并回流。向该沸腾的溶液中加入8.82摩尔脲。在进一步沸腾并最终部分蒸发后,形成微的、不透明的白色泡沫。将其在100℃干燥,磨细,再分散在水中,并保持悬浮。
实施例8压制无机发光材料粒子以获得无机发光材料陶瓷 然后将来自实施例2至7的干燥细无机发光粉(其由精确化学计量比的必要阳离子以及尽可能最小量的杂质(特别地,重金属在每种情况下低于50ppm)构成,并优选由亚微米初级粒子构成)在压机中在1000至10,000巴、优选2000巴预压实,以便在最高为其熔点的5/6的温度获得相应的片形。然后在箱式炉中在合成气体的气氛中在其熔点的2/3至5/6下进行压块的附加处理。
实施例9借助烧结添加剂压制以产生陶瓷,并然后金属化 使用0.1至1%的烧结助剂(MgO、SiO2纳米粒子),首先在空气中、然后在包含合成气体的还原性气氛中,对上述实施例1至7中所述的前体粒子施以热等静压,从而产生片形或棒形的陶瓷,然后用银或铝将其在侧面上金属化,并然后将其用作无机发光材料。
如下进行该金属化 用包含5%AgNO3和10%葡萄糖的溶液在侧面上将由等静压产生的棒形或片形陶瓷无机发光元件润湿。在升高的温度下,将该湿润的材料暴露在氨气氛,在此过程中在所述侧面上形成银涂层。
附图 下面参照大量实施例更详细解释本发明。附图显示下列内容 图1通过锯割具有金属化表面1的陶瓷棒获得陶瓷薄片。
图2用结构化压板,可以将锥形结构2压印到陶瓷薄片的一个表面上(上图)。在不使用结构化压板(下图)的情况下,可以然后将SiO2、TiO2、ZnO2、ZrO2、Al2O3、Y2O3等或其混合物施用到陶瓷的一面(粗糙面3)上。
图3施加到LED芯片6上的陶瓷转换无机发光元件5。
图4如实施例1中所述制成的YAG:Ce细粉的SEM显微照片。
权利要求
1.陶瓷无机发光元件,其可如下获得通过湿化学法将至少两种原材料与至少一种掺杂剂混合,然后热处理,产生无机发光材料前体粒子,并将该无机发光材料前体粒子等静压。
2.根据权利要求1的陶瓷无机发光元件,其特征在于所述无机发光材料前体粒子的平均直径为50纳米至5微米。
3.根据权利要求1和/或2的陶瓷无机发光元件,其特征在于所述无机发光元件的侧面被轻金属或贵金属金属化。
4.根据权利要求1至3的一项或多项的陶瓷无机发光元件,其特征在于所述无机发光元件的背对LED芯片的侧面具有结构化表面。
5.根据权利要求1至3的一项或多项的陶瓷无机发光元件,其特征在于所述无机发光元件的背对LED芯片的侧面具有粗糙表面,该粗糙表面带有SiO2、TiO2、Al2O3、ZnO2、ZrO2和/或Y2O3或其混合氧化物的纳米粒子。
6.根据权利要求1至5的一项或多项的陶瓷无机发光元件,其特征在于所述无机发光元件的朝向LED芯片的侧面具有符合DIN EN ISO 4287的抛光表面。
7.根据权利要求1至6的一项或多项的陶瓷无机发光元件,其特征在于所述原材料和所述掺杂剂是溶解和/或悬浮在无机和/或有机液体中的无机和/或有机物质,例如金属、半金属、过渡金属和/或稀土元素的硝酸盐、碳酸盐、碳酸氢盐、磷酸盐、羧酸盐、醇化物、乙酸盐、草酸盐、卤化物、硫酸盐、有机金属化合物、氢氧化物和/或氧化物。
8.根据权利要求1至7的一项或多项的陶瓷无机发光元件,其特征在于其由至少一种下述无机发光材料构成
(Y,Gd,Lu,Sc,Sm,Tb)3(Al,Ga)5O12:Ce、(Ca,Sr,Ba)2SiO4:Eu、YSiO2N:Ce、Y2Si3O3N4:Ce、Gd2Si3O3N4:Ce、(Y,Gd,Tb,Lu)3Al5-xSixO12-xNx:Ce、BaMgAl10O17:Eu、SrAl2O4:Eu、Sr4Al14O25:Eu、(Ca,Sr,Ba)Si2N2O2:Eu、SrSiAl2O3N2:Eu、(Ca,Sr,Ba)2Si5N8:Eu、CaAlSiN3:Eu、钼酸盐、钨酸盐、钒酸盐、第III族氮化物、氧化物,在每种情况下独立地构成或为其与一种或多种活化剂离子例如Ce、Eu、Mn、Cr和/或Bi的混合物。
9.制造陶瓷无机发光元件的方法,具有下列工序
a)通过湿化学法将至少两种原材料和至少一种掺杂剂混合,由此制备无机发光材料
b)热处理所得的无机发光材料前体粒子
c)将所述无机发光材料前体粒子等静压,以获得陶瓷无机发光元件。
10.根据权利要求9的方法,其特征在于工序a)中无机发光材料前体的湿化学制备选自下列5种方法之一
·使用NH4HCO3溶液的共沉淀法
·使用柠檬酸和乙二醇的溶液的Pecchini法
·使用脲的燃烧法
·分散的原材料的喷雾干燥
·分散的原材料的喷雾热解。
11.根据权利要求9和/或10的方法,其特征在于在等静压之前,将烧结助剂,例如SiO2或MgO纳米粉末,添加到所述无机发光材料前体中。
12.根据权利要求9至11的一项或多项的方法,其特征在于所述等静压是热等静压。
13.根据权利要求9至12的一项或多项的方法,其特征在于所述陶瓷无机发光元件的侧面被轻金属或贵金属金属化。
14.根据权利要求9至13的一项或多项的方法,其特征在于所述陶瓷无机发光元件的背向LED芯片的表面涂有SiO2、TiO2、Al2O3、ZnO2、ZrO2和/或Y2O3或其混合氧化物的纳米粒子。
15.根据权利要求9至14的一项或多项的方法,其特征在于所述结构化表面是使用结构化压模在陶瓷无机发光元件的背向LED芯片的侧面上制造的。
16.照明装置,其具有至少一个最大发射在240至510纳米范围内的初级光源,其中所述辐射被根据权利要求1至8的一项或多项的陶瓷无机发光元件部分或完全转换成较长波长的辐射。
17.根据权利要求16的照明装置,其特征在于所述光源是发光的氮化镓铝铟,特别具有式IniGajAlkN的氮化镓铝铟,其中0≤i,0≤j,0≤k且i+j+k=1。
18.根据权利要求16和/或17的照明装置,其特征在于所述光源是基于ZnO、TCO(透明导电氧化物)、ZnSe或SiC的发光化合物。
19.根据权利要求16至18的一项或多项的照明装置,其特征在于所述光源是有机发光层。
20.根据权利要求1至8的一项或多项的陶瓷无机发光元件的用途,用于将蓝色或近UV发射转换成可见白光。
全文摘要
本发明涉及陶瓷无机发光元件,其可如下获得通过湿化学法将至少两种原材料与至少一种掺杂剂混合,然后热处理以产生无机发光材料前体,并等静压。该陶瓷无机发光元件可用作LED中的转换无机发光材料。
文档编号C09K11/77GK101501160SQ200780029740
公开日2009年8月5日 申请日期2007年7月5日 优先权日2006年8月11日
发明者H·温克勒 申请人:默克专利有限公司
再多了解一些
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1