发光物质的制作方法

文档序号:3734763阅读:166来源:国知局
专利名称:发光物质的制作方法
技术领域
本发明涉及一类新型的基于普遍可掺杂的基质的发光物质(磷光
体),其由由元素P、 Si、 B、 A1和N组成的,优选组成为Si3B^的无 定形的、至多部分结晶的网络组成。该体系中光的激发和发射能通过 单独或组合地插入任意的阳离子活化剂,但也能通过引入氧作为阴离 子组分而在与实践相关的整个范围内改变。由此开拓了发光物质的全 光语应用,例如用于照明系统或电子显示屏。
背景技术
基于氧化-和/或氮化-硅酸盐、-磷酸盐或-铝酸盐作为主晶格,以 过渡金属或镧系元素掺杂作为活化剂的发光物质,在许多不同的方案 中有描述。对于要提供的发光物质的要求不断增长,这特别是因为已 经通过新的照明和显示屏技术而开发出超过常规应用领域,如电子束 显示屏(阴极射线管)或气体放电发光体的新的用途。自从蓝色LED's (例如GaN或Ga卜xlnj)已可获得以来,已经进行了相当的努力以通过 用一种或多种发光物质涂布来调整其发射用于所期望的应用,如发射 颜色。因为白色LED's与传统发光体相比消耗少得多的电流并具有显 著更长的使用寿命,所以存在着最优化这些体系的特别深入的工作。 除了室内和室外照明外,存在着作为汽车头尾灯,作为液晶显示屏的 光源或作为等离子显示屏中元件的许多有前景的应用领域。
迄今为止提供的发光物质主要是结晶的。其中,所期望的发光性 质通过将存在于物质的晶格中的离子交换成其他离子,即所谓的活化 剂而获得。在这种情况下,各结晶基质必须在规定的晶格位置上包含 特定的阳离子。这些阳离子及其晶格位置必须使得它们满足活化剂离 子的化学和结构要求,由此容许相应的置换。这些前提条件起到了强烈的限制作用,因为对于每个活化剂离子必须找寻到特定的主结构。由于要置换的阴离子和活化剂离子不可避免的不匹配,所以可实现的
掺杂浓度又会被限制。特别是,不等价(aliovalent)掺杂同时迫使产生了电子缺陷,这种缺陷尤其是由于磷光熄灭或衰减而产生负面作用。使用结晶基质的额外的不利结果是,对于要求宽范围发射的情况,例如通过绿、红和蓝光发射组合的白光发射的情况,必须使用两种或更多种不同的发光物质,这显著增加了制造的复杂性和成本。而且,迄今为止描述的所有发光物质的共同特征在于,它们在极端的温度条件下以及某些情况下还有压力条件(温度直到1900。C)下经由固态反应而制备。除了增加的能量消耗杂质外,由原料化合物而来且由于坩埚材料上的腐蚀而带来的杂质起到负面作用,且其不能通过任一种提纯操作而除去。杂质产生非常负面的影响,特别是对于光学材料就发光物质来说,它们损害其效率,因为它们降低了透光度并且同时促进无辐射衰退。

发明内容
本发明的一个目标是克服现有技术的缺点。特别地,要提供一种耐热和化学物质的基质,其中可以普遍任意地掺入活化剂。另外制备路线将容许生产高纯度的产品。
根据本发明,该目标通过基于无定形或部分结晶的网络的发光物质而实现,其中,该网络含有氮(N)和至少两种选自P、 Si、 B和Al的元素,以及将至少一种活化剂引入该网络中。
本发明的发光物质的特征特别在于,它们不是基于结晶结构的物质而更多地是基于无定形或部分结晶的网络的物质。用于根据本发明形成发光物质的基础材料具有尤其是X-射线无定形(r5ntgenamorph )的网络,亦即它们不含直径》300nm的晶体,特别是不含直径> 200nm的晶体,以及甚至更优选直径^100nm的晶体。本发明的发光物质的基础材料因此特别地,无论如何不具有远程点阵对称(Gittersymmetrie)。在本发明的发光物质中,将至少一种活化剂另外引入至该基础材料的网络中。与常规的晶体发光物质不同,在此不进行预先含于基础材料中的离子对活化剂的交换,而是将活化剂另外插入。这带来了显著的优点,即,能将任意活化剂插入至相同的基质中,因此能够提供包含不同活化剂的发光物质。由此,使得在宽范围内协调并混合发射光的波长,尤其是还提供发射白光的发光物质是可能的。
本发明的具有无定形或部分结晶网络的发光物质的基础材料含有
至少两种选自P、 Si, B、 Al的元素以及与其独立地总有N。特别地,该网络由元素P、 Si、 B、 A1和N组成,或由各个子系统P、 Si、 B和N, P、 Si、 A1和N, Si、 B、 Al和N, P、 B、 Al和N, P、 Si和N, P、B和N, P、 A1和N, Si、 B和N, Si、 Al和N或B、 A1和N组成。将合适的活化剂插入或引入该网络。作为活化剂可特别是将任意金属离子插入到无机的无定形或部分结晶的网络中。优选的活化剂元素是Ba、 Zn、 Mn、 Eu、 Ce、 Pr、 Nd、 Sm、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Sn、Sb、 Pb或Bi。活化剂优选是Mn2+、 Zn2+、 Ba2+、 Ce3+、 Nd3+、 Eu2+、 Eu3+、Gd3+、 Tb3+、 Sn2+、 Sb3+、 Pb"或B广。发光物质中活化剂的量优选为> 0. 1重量%,特别是>0. 5重量%以及特别优选最高至14重量°/。,尤其是最
高至5重量y。。该活化剂还可以具有敏化剂功能。
特别优选根据本发明,将合适的活化剂插入到组成为Si/B/N的无
定形三维网络。该主体材料无论如何不具有周期性的点阵对称。由于对活化剂的晶体场强度的有利作用以及为了达到高机械和热
稳定性,基础材料结构优选为氮化物本性的(nitridischer Natur),其可任选被氧化物(oxidisch)掺杂。
本发明进一步涉及一种用于制备如上定义的发光物质的方法,含有如下步骤(i)提供一种或多种分子前体,(ii)将该分子前体处理为陶瓷前驱体(prakeramischen)材料,以及(i i i)热分解该陶瓷前驱体材料,其中形成无定形或部分结晶的网络,其特征在于将活化剂在步骤(i)、 (ii)或(iii)的至少一个中加入。
基础材料可单独地通过被处理为陶瓷前驱体材料,然后通过热分解而转化成最终的陶资状态的分子前体或聚合前体而获得。
就Si3B3N7来说由四面体的Si^单元和三角形平面的BN3单元构成的空间网络显然无论如何不会提供通过常规的活化剂(例如镧系元素)的阳离子置换(Si、 B)的可能性。尽管如此,已经令人惊讶地发现,当采取合适的预备好的化学措施时,掺杂元素可额外地(不通过置换)牢固地结合入刚性网络。
根据本发朋,首先提供了一种或多种分子前体。其中,该分子前体含有基础材料的元素,即特别地是至少两种选自P、 Si、 B和A1的元素。P、 Si、 B、 Al的浓度在此分别调节在0和100原子%之间,优选10和80原子%之间。分子前体特别优选是囟化物、优选氯化物。
可以采用多种分子前体,特别是分子前体的混合物作为起始材料,然后使其经受共氨解作用。分子前体的混合物能通过例如将硅氮烷和硼卣化物和/或磷卣化物混合而获得。
在进一步的实施方案中,使用涉及的是单组分前体的分子前体。这样的单组分前体已经包含产物的所有元素。特别优选用作制备的起点的是分子化合物Cl3Si (NH)BC12(TADB),它已经含有最终产品重所追求的Si-N-B键。
进一步优选的分子单组分前体是Cl4P(N) (BCl2)SiCl3、Cl3PNSiCl3、(Cl3Si)2NBCl2、Cl3SiN(BCl2)2、 (H3Si) 2NBC12、 Cl3Si (NH) (BC1) (NH)SiCl3、Cl3Si (NH) (A1C1) (NH)SiCl3、 [(Cl3Si) (NH)鹏)]3、 (Cl3Si ,A1C12)2或[Cl3PN(PCl2)2N] + [AlCl4r。
然后将前体材料在步骤(i i)中处理为陶资前驱体材料。
优选通过氨解作用提供可溶或可熔的或者不可溶和不可熔的无定形中间体。接着将中间体热解,优选在氨或氮气流中。为了制备本发明的发光物质,将活化剂在步骤(i)、 (ii)或(Hi)的至少一个中加入。活化剂优选通过下面所述的两个不同的路线引入。
将例如铕或钡的溶于液氨中的这些金属预置溶解于液氨中,并将分子前体例如TADB滴加入。反过来,也可以将金属在氨中的溶液滴加到预置入的前体例如TADB中。形成的聚合的酰亚胺酰胺(Imidamid)除了基础材料元素例如除了硅和硼之外,还包含均匀分散的活化剂元素。由此通过热解而获得陶资发光体。
式掺入。所用的配体应当优选仅包含体系固有的元素,如卣根(氯根)、氢、硅或硼。所有其他可能的元素不能或者仅能以额外地繁瑣花费从
终产品中去除。特别合适的并体系相容的是具有例如[Cl3Si(N)SiCh]—和氯根作为配体的金属络合物。因为所有作为活化剂而考虑的金属形成二元氯化物,而所期望的络合物能由该氯化物出发通过与Li[Cl3Si(N)SiClJ的反应而制得,所以该路线是普遍的。将活化剂的络合化合物溶于分子前体,例如在TADB中或者如果合适,与分子前体一起,例如与TADB—起溶于合适的溶剂中。为了氨解作用,将该混合物或溶液滴加到液氨中,反之亦可进行。
通常,陶瓷前驱体中间体材料,特别是陶瓷前驱体酰亚胺酰胺通过包含P、 Si、 B和/或Al的分子前体和活化剂的氨解作用而获得。在此氨解作用或者共氨解作用中,活化剂优选以卣化物的形式或者以络合化合物形式或以溶解于氨中的金属的形式存在。活化剂和分子前体可彼此溶入或一起溶于溶剂中。
分子单组分前体优选含有元素P、 Si、 B和Al中的两种或更多种。
总的说来,优选选择起始原料,使得络合的活化剂的配体的元素与分子前体的元素除了陶瓷前驱体聚合物的体系固有的元素外,特别是除氮之外,能在氨解作用和后来的热解作用的过程中完全被去除。
特别优选制备方法的如下变化形式。将分子前体以纯的或溶解的形式滴加入液氨中,其中的氨包含溶解的活化剂如铕或者钡。或者,将分子前体与 一种或多种以卣化物形式、以混合物或以共溶的形式的活化剂元素一起滴加入液氨中用于氨解。在进一步优选的实施方案中,将分子前体与以络合化合物形式、以混合物或以共溶的形式的一种或多种活化剂元素一起滴加到液氨中用于氨解。再进一步优选将分子前体和以在均匀混合物中或共溶形式的活化剂元素的每 一 卣化物与气态氨进行氨解。另外还优选,将分子前体和以在均匀混合物中或共溶形式的活化剂元素的每一络合化合物与气态氨进行氨解。
根据本发明,紧接着形成陶资前驱体材料之后进行热解,该过程中形成无定形或部分结晶的网络。在该热解中,将获得的作为中间体
的陶瓷前驱体酰亚胺酰胺在600'C和1500。C之间,优选IOO(TC和1300。C之间的温度下转化为最终产品。在此,热解优选在含有氮、氩、氨或其混合物的气氛中进行。
配体场以及由此的活化剂元素上的电子跃迁的精细谐调通过部分地由氧化物置换氮化物而实现。这可通过例如十分简单地将陶资前驱体聚合物暴露于载有规定量的水蒸汽的气氛中而实现。
陶瓷前驱体酰亚胺酰胺的控制水解优选在热解后产生包含最高到20重量%,优选最高到10重量%,尤其是最高到6重量%的氧,优选最高到4重量%的氧的终产物。然而,也可以提供氧含量<1重量%,尤其是<0. 1重量°/ 和最优选<0. 01重量%的贫氧或无氧的网络。
因为所有的用料(例如TADB、金属、金属氯化物、氨)能完全有效地通过蒸馏而提纯,或者能以高纯度获得,所以与体系无关的(systemfremden)物质能被排除。优选在整个制备过程中保持惰性条件。热解例如优选在纯的BN-坩埚中进行。由此,可得到的产品不含可检测到的杂质。它们也是单相的。
同时插入两种或更多种活化剂按照本发明是可能的。在此,可以单独或组合地进行例如上面介绍的两种路线。例如,适合作为活化剂的两种或更多种金属能溶于液氨中,或者能作为在含有TADB的溶液中的络合物形式掺入,或者既以溶解于液氨中的形式也以在含TADB的溶
液中的形式掺入。
发光物质的施加能根据现有技术,例如分散在树脂中而进行。有利地,在此处介绍的新型体系中,能利用聚合的陶瓷前驱体的烧结能力。将陶瓷前驱体聚合物浆化或粉尘化于要涂布的表面上,然后将其烘焙入。
新型发光物质在直至至少120(TC是热稳定的,即比对于LE『s (最大200 。C)中使用所提出的要求高得多。借助于化学分析(分解(Auf schlu P ) , ICP-OES),在0. 5ppm的检出极限下不能检测到杂质。新型发光物质尤其适用于照明系统、LE『s或者电子显示屏。
本发明通过下面的实施例详细地说明。
实施例1到3中所述的所有合成步骤在惰性气氛中,在手套箱或借助于Schlenk-技术进行。陶瓷发光物质是空气不灵敏的。
实施例1: Si3B3N7 : Eu
将0. 51g新鲜蒸馏的铕溶于500ml液体匪3中。将50ml TADB在-78。C下在搅拌下逐滴追加到得到的溶液中。将由盐(主要是匪X1)和部分交联的酰亚胺酰胺组成的所产生的混合物保持在21 (TC在真空下(p 10—3mbar)保持1天,以除去NH,C1副产物。之后将几乎不含盐的聚合物在加热到600。C的BN-坩埚中,首先在NH3气流中加热到900°C,然后在1200。C在&气流中加热(加热速率10°C/min),以及在3h的保持时间之后,以相同的速率冷却。产物是X射线无定形的。化学分析(ICP-OES)给出了 Eu含量为1.2重量%。实施例2: Si3B3N7: Ce
首先将1.69g Ce[N(Si(CH3)3)2]3加入到50ml的TADB中,然后将250ml液体NH3在-78 °C下滴加到该混合物中。从由盐(主要是NH4C1)和
部分交联的酰亚胺酰胺组成的所产生的混合物中,通过真空中加热到210。C并持续一天时间而除去盐。将残留的几乎无盐的聚合物在加热到600。C的BN-坩埚中首先在冊3气流中加热至900°C,然后在^气流中加热直至1200°C (加热速率10°C/min),以及在3h的保持时间后以相同的速率冷却。产物是X射线无定形的,并且根据化学分析(ICP-OES)其包含0. 92重量%的Ce含量。
实施例3: Si3B3N7 : Ce3+/Eu
首先将0. 75g Eu[N(Si(CH3)3)2]3和0. 75g Ce [N (Si (CH3) 3) 2] 3加入到50ml的TADB中,并且将250ml液体NH3在-78。C下滴加到该混合物中。从由盐(主要是NHX1)和部分交联的酰亚胺酰胺组成的所产生的混合物中,通过真空中加热到210。C并持续一天时间而除去盐。将残留的几乎无盐的聚合物在加热到600。C的BN-坩埚中首先在仰3气流中加热至900°C,然后在N2气流中加热直至1200。C(加热速率l(TC/min),以及在3h的保持时间后以相同的速率冷却。产物是X射线无定形的,并且根据化学分析(ICP-OES)其包含0.5重量%的Ce和0. 7重量Q/。的Eu。
权利要求
1.基于无定形或者部分结晶网络的发光物质,该网络包含N和选自P、Si、B和Al的至少两种元素,并且其中至少一种活化剂被引入该网络。
2. 如权利要求1所述的发光物质,其特征在于活化剂选自Ba、 Zn、 Mn、 Eu、 Ce、 Pr、 Nd、 Sm、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Sn、 Sb、 Pb和/ 或Bi。
3. 如权利要求1所述的发光物质,其特征在于该网络经由陶瓷前驱 体聚合物制备。
4. 如权利要求l-3之一所述的、基于组成Si/B/N的网络的发光物质。
5. —种用于制备如权利要求l到4中任一定义的发光物质的方法, 含有如下步骤U)提供一种或多种分子前体,(ii)将该分子前体处理 为陶瓷前驱体材料,以及(iii)热解该陶瓷前驱体材料,该过程中形成 无定形或者部分结晶的网络,其特征在于,将至少一种活化剂在步骤(i)、 (ii)或者(iH)的至少 一个中加入。
6. 如权利要求5所述的方法,其特征在于,作为分子前体,提供单 组分前体。
7. 如权利要求5或6所述的方法,其特征在于分子单组分前体是 Cl3Si (NH)BC1"TABD) 、 Cl3PNSiCl3、 ChP (N) (BCh) SiC"、 (ChSi) 2NBC12、 Cl3SiN(BCl2)2、 (H3Si)2NBCl2、 Cl3Si , (BC1) (NH) SiCh 、 [(Cl3Si) (NH) (BNH)L、 Cl3Si ( NH) (A1C1) ,SiCU (C13S "NH) AlCh) 2 或者[Cl3PN(PCl2)2N] + [AlCl丄。
8. 如权利要求5-7之一的方法,其特征在于在步骤(ii)中实施氨解 作用将所述分子前体转化为陶瓷前驱体材料。
9. 如权利要求5到8之一所述的方法,其特征在于所述活化剂以金 属形式、作为卤化物和/或作为络合物形式使用。
10. 如权利要求9所述的的方法,其特征在于络合的活化剂的配体 只由陶瓷前驱体聚合物的体系固有的元素组成。
11. 如权利要求10所述的方法,其特征在于配体为(Cl3SiNSiCi )、 (Cl3Si赋l2)或(C12BNBC12)。
12. 如权利要求9所述的方法,其特征在于络合的活化剂的配体仅 包含那些能在制备过程的条件下去除的与所述体系无关的元素。
13. 如权利要求12所述的方法,其特征在于配体包含-Si (CH3) 3 基团。
14. 如权利要求12和13之一所述的方法,其特征在于使用含有 [Cl3SiNSi (CH3)r 、 [(CH3)3SiNSi (CH3)3]— 、 [Cl3SiNB (CH3) 2]-、 [(CH3)3SiNBCl2]—、 [C1厕(CH3)2]一、 [ (CH3) 3SiNB(CH3) 2]- 或 [(CH3) 2BNB (CH3) 2]—配体的活化剂络合物。
15. 如权利要求9到14之一所述的方法,其特征在于使用含有含P 配体的活化剂络合物。
16. 如权利要求5到15之一所述的方法,其特征在于分子前体和活 化剂一起经历氨解作用。
17. 如权利要求5到16之一所述的方法,其特征在于氨解作用以气 态的或液态的氨进行。
18. 如权利要求5到17之一所述的方法,其特征在于步骤(Ui)中 的热解作用在600。C和1500。C间的温度下进行。
19. 如权利要求5到18之一所述的方法,其特征在于热解作用在氮、 氩或氨气氛中进行。
20. 如权利要求5到19之一所述的方法,其特征在于陶瓷前驱体材料 在热解前被部分水解。
全文摘要
本发明涉及一类新型基于普遍可掺杂的基质的发光物质(磷光体),其由由元素P、Si、B、Al和N组成的,优选组成为Si<sub>3</sub>B<sub>3</sub>N<sub>7</sub>的无定形的、至多部分结晶的网络组成。该体系中光的激发和发射能通过单独或组合地插入任意的阳离子活化剂,但也能通过引入氧作为阴离子组分而在与实践相关的整个范围内改变。由此开拓了发光物质的全光谱应用,例如用于照明系统或电子显示屏。
文档编号C09K11/08GK101595200SQ200780040318
公开日2009年12月2日 申请日期2007年10月31日 优先权日2006年11月2日
发明者H·卡克马克, M·詹森 申请人:马普科技促进协会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1