长余辉荧光体陶瓷及其制造方法

文档序号:3743334阅读:331来源:国知局
专利名称:长余辉荧光体陶瓷及其制造方法
技术领域
本发明涉及用于疏散路线标记等中的长余辉荧光体陶瓷的廉价制造方法和可通过上述制造方法获得的具有浅体色的烧结长余辉荧光体。
背景技术
自MAl2O4:Eu,RE型长余辉荧光体(其中M为碱土元素而RE为除了 Eu之外的稀土元素)于1993被Nemoto&Co.,Ltd.发现以来,对用于疏散路线标记等中的长余辉荧光体的需求一直随着其应用的扩大而增长(参见例如下文所述的专利文献1)。然而,由于昂贵的材料和较高的生产成本,荧光体产品昂贵,从而荧光体的广泛使用还未充分实现。此外, 荧光体还伴随有由于黄色系体色,它不能容易地应用于要求具有白色背景的标记的另一问题。专利文献1 日本专利No. 2543825

发明内容
发明要解决的问题为了生产MAl2O4:Eu,RE型长余辉荧光体,铕(其为昂贵的稀土元素)被用作原料。 此外,昂贵且高纯微粒型氧化铝、碱土碳酸盐、稀土氧化物等对获得具有均勻组成的荧光体是必需的。因此,原料成本高,难以生产廉价的荧光体产品。此外,由于常规产品具有黄色系体色,产品的应用在设计上受到限制。鉴于上述现状,本发明的目的是提供制造白色MA1204:EU,RE型长余辉荧光体陶瓷的方法,所述方法能以降低的原料成本制造所述陶瓷。用于解决问题的方案为了克服上述问题,本发明者利用了已被用作荧光灯、等离子体电视显示器、液晶背光源等的蓝色发光(或绿色发光)荧光体的BAM荧光体的再利用废弃物(如本文中所用的,“再利用废弃物”是指再利用过程中产生的废弃物)包含铝含量高的碱土铝酸盐基材料并包含大量铕的事实的优势。本发明者还发现长余辉荧光体可通过将BAM荧光体的再利用废弃物与碱土化合物、铝化合物和稀土化合物混合以形成混合物,然后将所述混合物燃烧来制备,此外,由此可获得具有白色体色的长余辉荧光体。从而,本发明者实现本发明。所得长余辉荧光体提供白色体色的机理还未得到诠释。尽管这种机理不限制本发明的技术范围,但是假定其与已均勻分散于BAM中的Eu原料的使用能防止该长余辉荧光体中的Eu不均勻地分布于其中相关。仅具有二价Eu的化合物如EuCO3可能提供黄色系体色,从而该Eu 组分的不均勻分布可产生这样的黄色系体色。本发明涉及长余辉荧光体陶瓷的低成本制造方法和可由此方法获得的白色长余辉荧光体陶瓷,所述方法包括以下步骤将BAM荧光体与碱土化合物、铝化合物和稀土化合物混合以形成混合物,和将所得混合物燃烧。发明效果
根据本发明,可通过将包含于荧光体废弃物中的BAM荧光体与碱土化合物、铝化合物和稀土化合物混合并通过将所得混合物燃烧来以非常低的成本而不使用昂贵的铕作为原料来制造长余辉荧光体陶瓷。此外,所获得的长余辉荧光体陶瓷具有白色体色。通过这些优点的协同效果,预期会增加长余辉荧光体陶瓷的应用领域从而此方法具有重大价值。
具体实施例方式下文中,将对本发明进行更具体地描述。〈原料的组成〉本发明中用作原料的碱土铝酸盐(BAM)荧光体由下式表示ρ (MlhEux) 0 · (M&_yMny) 0 · qAl203其中Ml为选自Ba、Sr和Ca组成的组中的至少一种元素,且优选为Ba ;M2为Mg ; 且p、q、x和y为分别满足以下条件的数0. 8彡ρ彡1. 2,4. 5彡q彡8. 5,0. 05彡χ彡0. 3
和0彡y彡0. 4。碱土铝酸盐荧光体的各元素可通过X射线荧光(XRF)分析确定。本文中所用的术语“碱土化合物”表示具有选自Mg、Ca、Sr和Ba组成的组中的一种或多种元素并在后面描述的燃烧步骤中转化成氧化物的化合物,或表示具有选自其中的一种或多种元素的氧化物本身的化合物。本文中所用的术语“稀土化合物”表示具有选自La、Ce、ft·、Nd、Sm、Gd、Tb、Dy、Ho、 Er、Tm、%、Lu、Y和Sc组成的组中的一种或多种元素并在后面描述的燃烧步骤中转化成氧化物的化合物,或表示具有选自其中的一种或多种元素的氧化物本身的化合物。本文中所用的术语“铝化合物”表示将在后面描述的燃烧步骤中转化成其氧化物的化合物或表示氧化物化合物本身。本文中所用的BAM荧光体优选包括在荧光灯、等离子电视显示器、液晶显示器背光源等中用作蓝色发光或绿色发光荧光体的BAM荧光体的再利用废弃物;BAM荧光体的应用和/或清洗过程中产生的废弃物;或不满足本领域中通常要求的特征和/或规格的BAM 荧光体。在大多数情况下,用于本发明的BAM荧光体可从与一种或多种其它荧光体如 IO3 = Eu (红色)和LaPO4: CeTb (绿色)的废弃物混合物中获得。通过用处理如酸分解将除了 BAM之外的一种或多种荧光体溶解并在已经确立的方法中再利用其中的各元素。尽管 JP2004-262978A提出了用于回收具有非常低的溶解度的BAM荧光体的方法,但该荧光体的亮度在其回收步骤中发生显著恶化。因而,目前此方法还未实施应用,所述BAM荧光体未被再使用,而是作为残渣扔弃。从荧光体的再利用废弃物分离和回收的BAM荧光体残渣可作为无成本的原料。本发明的制造方法包括原料的混合步骤和所得混合物的燃烧步骤。首先,在混合步骤中,可选择在球磨机等中BAM荧光体、碱土化合物、铝化合物和稀土化合物的粉末混合。用于粉末混合的原料粉末优选具有使用采用激光衍射/散射方法作为测定原理的FRA测定仪(Micro-trak Systems)测定的0. 3-50 μ m的平均粒径。当平均粒径低于 0.3μπι时,在混合步骤中粉末可能由于粉末的牢固聚集而不会均勻分散。获得的荧光体可能为长余辉亮度差的荧光体。当平均粒径超过50 μ m时,原料粉末之间的反应可能不会充分进行,所获得的荧光体可能为长余辉亮度差的荧光体。作为碱土化合物或稀土化合物,可使用任何化合物,只要它们可通过下述燃烧步骤变成氧化物就行。实例包括碳酸盐、氧化物、氢氧化物和乙酸盐。作为铝化合物,可使用任何化合物,只要它们可通过下述燃烧步骤变成氧化物就行。实例包括氧化物、氢氧化物和乙酸盐。优选以得到最终组成MAl2O4的量加入碱土化合物和铝化合物,所述量为得到碱土金属元素的总和与铝的摩尔比为1 2的量。然而,即使组成中存在一定程度的差异,也可观察到余辉亮度。加入碱土化合物、铝化合物和稀土化合物,例如分别以每摩尔BAM荧光体(以上组成式表示的)3-35mOl、0-65mOl和0-lmol(按照各元素的摩尔量)的量,以得到组成 MAl2O4:Eu,RE, (Mn)。加入少量(例如,碱土元素总量的IOmol^或更低)的化合物(其通过下述燃烧步骤变成氧化硼),如硼酸或氧化硼,作为原料混合过程中的助熔剂,促进反应的进展并改善长余辉亮度。燃烧步骤在还原气氛(例如,在氮气和氢气的混合气体气氛)或惰性气体气氛 (例如,氮气或氩气气氛)(在1000-1500°C)下进行。这是因为在氧化气氛如空气下的燃烧可能将部分二价Eu (其是发光中心)氧化成三价Eu并使长余辉亮度恶化。本发明的长余辉荧光体陶瓷的制造方法可通过在燃烧步骤后研磨来产生平均粒径为1 μ m-1000 μ m的颗粒,或通过将原料的混合物模塑成所需形状然后燃烧来产生烧结的长余辉荧光体。本发明所获得的长余辉荧光体具有白色外观,但是通过常规方法不使用BAM原料制造的长余辉荧光体具有黄色系体色。这种差异在以下荧光体中特别显著具有下式(1) 表示的组成范围的光储存荧光体M(1_r_t)Al204:Eur,REs, Mnt (1)其中M为选自Ba、Sr、Mg和Ca组成的组中的至少一种元素;RE为除了 Eu之外的至少一种稀土元素;r为0. 005-0. 05的数;s为0. 005-0. 05的数;且t为0-0. 08的数;或具有下式( 表示的组成范围的光储存荧光体M(1_r_t)Al204:Eur,Dys,Mnt (2)其中M为选自Ba、Sr、Mg和Ca组成的组中的至少一种元素;r为0. 005-0. 05的数;s为0. 005-0. 05的数;且t为0-0. 08的数。在具有M(H)Al2O4:Eur,Dys (其中 0. 005 ^ r ^ 0. 05 而 0. 005 彡 s 彡 0. 05)表示的
组成范围的光储存荧光体中特别显著。以下面的方式对根据本发明的光储存荧光体的长余辉亮度特征进行评价将其样品暴露于MOOLx的D65标准光10分钟;阻挡激发光60分钟后通过使用亮度计(LS-110, Konica Minolta Sensing, Inc.)测量该样品的长余辉亮度;和用相对设定为1. 0的可商购到的SiS Cu长余辉荧光体粉末(产品号GSS,Nem0t0&C0.,Ltd.)的亮度的值评价长余辉亮度。本文中所用的白色度通过CIE (国际照明委员会)在1976中建立的CIE1976LW颜色体系定义。上述组成的白色度为L*彡80、-10彡a*彡10和-10彡b*彡10。为了通过使用LW颜色体系测定白色度,使用色度计(CR200,Minolta)。通过使用直径为30mm的模具在lOOkg/cm2压强下将5g粉末样品压模后测定长余辉亮度和白色度两者。对通过原料混合粉末的压模然后燃烧而获得的烧结产物以原样进行该测定。实施例下文中将对本发明的实施例进行描述。不应理解为本发明局限于它们或受到它们的限定。(实施例1)向14. 2g(0.02mol)平均粒径为7. 5 μ m且从废弃灯回收的蓝色发光BAM荧光体 (BEia9MgAliciO17 = Euai)(通过XRF X射线荧光分析确定)中加入23.9g(0. 16mol)平均粒径为 2. 2 μ m的碳酸锶、10. 3g(0. Imo 1)平均粒径为3. 5 μ m的氧化铝、0. 94g(0. 0025mol)平均粒径为7.3μπι的氧化镝和Ig通过200目的硼酸,然后在球磨机中混合。在氧化铝坩锅中将所得混合物在1300°C (在97 3氮气-氢气气氛下)燃烧1小时以获得长余辉荧光体。所获得的荧光体的组成为Sr。.,BEtaraciM^1.1(1。A1204 = Euatll。,Dyatl25 并具有高达 18. 5 的良好长余辉亮度。此外,它的白色度为L* = 92. 0、a* = -4. 3且b* = 6. 5,因此具有白色外观。(实施例2-4)除了组成外,以与实施例1中相同的方式获得长余辉荧光体。各实施例中混合原料的详细情况显示于表2中,同时组成和颜色评价结果显示于表2中。(实施例5)以与实施例1中相同的方式制备原料混合粉末。在燃烧之前,通过使用直径为 30mm的模具在lOOkg/cm2压强下将5g所得混合粉末压模,在与实施例1中的条件相同的条件下燃烧以获得长余辉荧光体的烧结产物。所得到的烧结产物具有高达33. 8的良好长余辉亮度。它的白色度为L* = 93. 5、a* = -4. 1和b* = 5. 6,因此具有白色外观。(实施例6)向14. 5g(0. 02mol)平均粒径为8. 1 μ m且从废弃灯回收的绿色发光BAM荧光体 (BEia85M^7AliciO17 = Euai5Jna3)(通过 XRF X 射线荧光分析确定)中加入 24.0g(0. 16mol)碳酸锶、10. 4g(0. lmol)氧化铝、0. 95g(0. 13mol)氧化镝和Ig硼酸,然后在球磨机中混合。在燃烧之前,通过使用直径为30mm的模具在lOOkg/cm2压强下将5g所得混合物压模。然后在氧化铝坩锅中将压模的混合物在1300°C (在97 3氮气-氢气气氛下)燃烧1小时以获得长余辉荧光体的烧结产物。所获得的长余辉荧光体的组成为Sra8tltlBiiaci85M^ci7ciAl2O4 = Eu 。.。15,M%_,Dyaffi5并具有高达31.0的良好长余辉亮度。此外,它的白色度为L* = 93. Ua* =-4. 5且b* = 6. 4,因此具有白色外观。(实施例7)向14. 2g(0. 02mol)从废弃灯回收的蓝色发光BAM荧光体(BEia9MgAl10O17 = Euai) 中力卩入16. 2g(0. 162mol)平均粒径为2· 8 μ m的碳酸钙、10. 3g(0. lmol)氧化铝、 0. 33g(0. OOlmol)平均粒径为6. 6 μ m的氧化镧、0. 34g(0. OOlmol)平均粒径为7. 4 μ m的氧化钕和Ig硼酸,然后在球磨机中混合。然后在氧化铝坩锅中将所得混合物在1300°C (在 97 3氮气-氢气气氛下)燃烧1小时以获得长余辉荧光体。所获得的荧光体的组成为Ceiq.SciciBaaci9ciM^iciciAl2O4 = Euatlltl,Leiq.Qic^Ndaciltl 并具有高达 5. 6的良好长余辉亮度。此外,它的白色度为L* = 94. Ua* = -3. 0且b* = 2. 4,因此具有白色外观。(实施例8)向 14. 2g(0. 02mol)可商购到的蓝色发光 BAM 荧光体(Nichia Corporation, 平均粒径8. 3 μ m, Ba0-9MgAl10O17IEu0.!,通过XRF X射线荧光分析确定)中加入 23. 9g(0. 16mol)平均粒径为2. 2 μ m的碳酸锶、10. 3g(0. Imo 1)平均粒径为3. 5 μ m的氧化铝、0. 94g(0. 0025mol)平均粒径为7. 3 μ m的氧化镝和Ig通过200目的硼酸,然后在球磨机中混合。然后在氧化铝坩锅中将所得混合物在1300°C (在97 3氮气-氢气气氛下)燃烧1小时以获得长余辉荧光体。所获得的荧光体的组成为Sr。.,BEtaraciM^1.1(1。A1204 = Euatll。,Dyatl25 并具有高达 19. 8 的良好长余辉亮度。此外,它的白色度为L* = 93. 2、a* = -4. 1且b* = 6. 1,因此具有白色外观。(比较例1)分开加入3. 6g平均粒径为2. 4 μ m的碳酸钡、1. 7g平均粒径为3. 2 μ m的碳酸镁、 23. 9g碳酸锶、20. 6g氧化铝、0. 36g平均粒径为6. 7 μ m的氧化铕、0. 94g氧化镝和Ig硼酸, 然后在球磨机中混合。然后在氧化铝坩锅中将所得混合物在1300°C (在97 3氮气-氢气气氛下)燃烧1小时以获得长余辉荧光体。所获得的荧光体的组成为Sra,B^1._Μ^1(Ι(ΙΑ I2O4 = Euatlltl,Dyaffi5并具有高达20. 1的良好长余辉亮度。然而,它的白色度为L* = 88. Ua* =-10. 2和b* = 19. 6,因此具有黄色系体色。(比较例2)除了组成外,以与比较例1中相同的方式获得长余辉荧光体。混合原料的详细情况显示于表1中,而组成和颜色评价结果显示于表2中。(比较例3)通过如下来获得长余辉荧光体的烧结产物,以与比较例1中相同的方式制备原料混合粉末,在直径为30mm的模具中在lOOkg/cm2压强下将5g所得混合粉末压模,然后在与比较例1中的条件相同的条件下燃烧。所获得的荧光体具有高达33. 3的良好长余辉亮度。 然而,它的白色度为L* = 90. 3, a* = -8. 7且b* = 16. 9,因此具有黄色系体色。(比较例4)分开加入29. 5g碳酸锶、20. 6g氧化铝、0. 36g氧化铕、0. 94g氧化镝和Ig硼酸,然后在球磨机中混合。然后在氧化铝坩锅中将所得混合物在1300°C (在97 3氮气-氢气气氛下)燃烧1小时以获得长余辉荧光体。所获得的荧光体的组成为Sra99ciAl2O4 = Euaciici, Dy0.025且具有高达20. 3的良好长余辉亮度。然而,它的白色度为L* = 87. 9、a* = -9. 3和 b* = 19. 2,因此具有黄色系体色。表1.
权利要求
1.制造MA1204:EU,RE型长余辉荧光体陶瓷的方法,包括以下步骤将碱土铝酸盐荧光体、碱土化合物、铝化合物和稀土化合物混合以形成混合物;和将所述混合物燃烧。
2.根据权利要求1所述的制造长余辉荧光体陶瓷的方法,其中所述碱土铝酸盐荧光体通过从以下物质中分离和回收来获得荧光体的再利用废弃物;荧光体的应用过程和/或清洗过程中产生的废弃物;或不满足特征和/或规格的荧光体。
3.根据权利要求1或2所述的制造长余辉荧光体陶瓷的方法,还包括在混合步骤之后、 但在燃烧步骤之前将所述混合物模塑的步骤。
4.通过权利要求1至3中任一项所述的方法获得的长余辉荧光体陶瓷。
5.根据权利要求4所述的长余辉荧光体陶瓷,其由组成式(1)表示 M(1_r_t)Al204:Eur, REs, Mnt (1)其中M为选自Ba、Sr、Mg和Ca组成的组中的至少一种元素;RE为除了 Eu之外的至少一种稀土元素;r为0. 005-0. 05的数;s为0. 005-0. 05的数;且t为0-0. 08的数;并且在LW颜色体系中所评价的白色度为L*彡80、-10彡f彡10且-10彡b*彡10。
6.根据权利要求4所述的长余辉荧光体陶瓷,其由组成式⑵表示 M(i-r-t)Al204:Eur, Dys, Mnt (2)其中M为选自Ba、Sr、Mg和Ca组成的组中的至少一种元素;r为0. 005-0. 05的数;s 为0. 005-0. 05的数,且t为0-0. 08的数;并且在LW颜色体系中所评价的白色度为L*彡80、-10彡f彡10且-10彡b*彡10。
全文摘要
提供了制造MAl2O4:Eu,RE型长余辉荧光体陶瓷的方法,所述方法能以降低的原料成本制备所述陶瓷。此外,提供了不具有黄色体色的长余辉荧光体的烧结产物。更具体地讲,提供了制造MAl2O4:Eu,RE型长余辉荧光体陶瓷的方法和白色MAl2O4:Eu,RE型长余辉荧光体,其中M为碱土元素,RE为除了铕之外的稀土元素,所述方法包括将BAM(碱土铝酸盐)荧光体、碱土化合物、铝化合物和稀土化合物混合以形成混合物,然后将所述混合物燃烧。
文档编号C09K11/64GK102333842SQ20108000960
公开日2012年1月25日 申请日期2010年2月26日 优先权日2009年2月27日
发明者川添博文, 木村裕司, 高井康 申请人:信越化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1