用于热量管理应用的增强压敏粘合剂的制作方法

文档序号:11141379阅读:558来源:国知局

本文提供了一种用于热量管理应用的增强压敏粘合剂膜。



背景技术:

众所周知,热量管理材料可用于耗散设备内电子元件产生的热量。已知常规压敏粘合剂(PSA)如丙烯酸类PSA可提供将散热材料与电子元件连接的手段。然而,由于丙烯酸类基质内部的热传导不佳,通常避免使用丙烯酸类PSA。虽然导热性PSA可商购获得,但其通常具有75μm~150μm的厚度,以便填充任何表面孔隙或胶层之间的间隙。这种导热性PSA并不适合于越来越小的电子设备,所述电子设备具有有限的空间并要求改善的热量管理解决方案。同样,电子设备的热量解决方案已经避免了具有常规PSA的层合散热材料。

尽管一些PSA对于越来越小的电子设备而言是导电性的,但是这些材料对于热量管理而言并非最佳设计。例如,市售可得的导电PSA膜通常未经高度填充,并且填料颗粒跨越了膜的厚度。尽管这种导电PSA被设计为使z方向的导电性最大,但是这种PSA对于热量管理而言并非最佳。

石墨散热材料提供了具有高导热率的薄的、柔性的轻质膜以与PSA一同使用。热量改善的大量关注集中于开发难以制造的、昂贵的且局限于某些散热材料的独特的新型散热膜。其它热量解决方案集中于软件和重新设计设备。

本领域对克服电子设备中用于热量管理的PSA的缺陷和局限存在需求。本发明满足了这一需求。



技术实现要素:

本发明的一个方面涉及压敏粘合剂膜,其包含分散在丙烯酸类聚合物基质中的填料,并且所述填料的平均粒径小于压敏粘合剂膜的厚度。所述填料选自石墨、氮化硼、氧化铝和氧化锌。在PSA膜的一个实施方案中,PSA膜的厚度小于15μm且填料占PSA膜的5~95重量%。在另一实施方案中,PSA膜的厚度小于10μm且填料占该膜的10~80重量%。在另一实施方案中,填料是石墨且PSA膜的热导率为1~3W/mK。

在另一方面中,本发明涉及一种散热层合物,其包含两个以上散热层以及设置在所述散热层之间的PSA膜。PSA膜包含分散在丙烯酸类聚合物基质中的填料。填料的平均粒径小于该膜的厚度,并且填料选自石墨、氮化硼、氧化铝和氧化锌。在层合物的一个实施方案中,PSA膜的厚度小于15μm且填料占PSA层的5~95重量%。在层合物的另一实施方案中,膜的厚度小于10μm且填料占膜的10~80重量%。在层合物的又一实施方案中,填料是石墨且PSA膜的热导率为1~3W/mK。在层合物的另一实施方案中,散热层选自合成石墨、天然石墨、铝和铜箔。在层合物的又一实施方案中,散热层包含厚度为5~25μm的合成石墨。

本发明的另一方面包括一种制造压敏粘合剂膜的方法,该方法包括:提供剥离衬垫(release liner);以及将压敏粘合剂膜设置在所述剥离衬垫上。PSA膜包含分散在丙烯酸类聚合物基质中的填料,所述填料的平均粒径小于膜的厚度,并且其中所述填料选自石墨、氮化硼、氧化铝和氧化锌。在一具体实施方案中,膜的厚度小于15μm且填料占膜的5~95重量%。

本发明的另一方面涉及一种电子制品,其包含散热材料、电子元件和压敏粘合剂(PSA)膜。PSA膜被设置在散热材料和电子元件之间。PSA膜包含分散在丙烯酸类聚合物基质中的填料,并且所述填料的平均粒径小于PSA膜的厚度。填料选自石墨、氮化硼、氧化铝和氧化锌。

在电子制品的又一实施方案中,散热材料选自合成石墨、天然石墨、铝和铜箔。在电子制品的另一实施方案中,散热材料包含厚度为5~25μm的合成石墨。在电子制品的又一实施方案中,电子元件是发热元件,其选自集成微芯片、微处理器、晶体管、二极管、继电器、电阻器、变压器、放大器、EMI屏蔽物(EMI shield)和电容器;并且其中所述电子元件的工作温度为15~100℃。

在另一方面中,本发明涉及一种电子制品,其包括含有至少一个基材的壳体。该基材邻近(proximal to)至少一个发热电子元件。PSA膜被设置在所述基材上。PSA膜包含分散在丙烯酸类聚合物基质中的填料。该填料的平均粒径小于PSA膜的厚度,并且填料选自石墨、氮化硼、氧化铝和氧化锌。

在电子制品的一个实施方案中,PSA膜的厚度小于15μm且填料占该膜的5~95重量%。在电子制品的另一实施方案中,该膜的厚度小于10μm且填料占该膜的10~80重量%。在又一实施方案中,填料是石墨且该膜的热导率为1~3W/mK。在另一实施方案中,电子制品还包含与该膜接触设置的散热材料,并且所述散热材料选自合成石墨、天然石墨、铝和铜箔。在又一实施方案中,电子制品还包含与PSA膜接触设置的散热材料,并且所述散热材料包含厚度为5~25μm的合成石墨。在另一实施方案中,电子元件选自集成微芯片、微处理器、晶体管、二极管、继电器、电阻器、变压器、放大器、EMI屏蔽物和电容器,并且所述电子元件的工作温度为15~100℃。

具体实施方式

如上所述,本文提供了一种增强压敏粘合剂(PSA)膜。PSA膜包含分散在丙烯酸类聚合物基质中的填料,并且所述填料的平均粒径小于PSA膜的厚度。在一个实施方案中,PSA膜被设置在散热材料和电子元件之间。

本文还提供了一种电子制品,其包括含有至少一个基材的壳体。基材邻近至少一个发热电子元件,并且PSA膜被设置在所述基材上。PSA膜包含分散在丙烯酸类聚合物基质中的填料。填料的平均粒径小于PSA膜的厚度。

在又一方面中,本发明涉及一种散热层合物,其包含两个以上散热层以及设置在所述散热层之间的PSA膜。PSA膜包含分散在丙烯酸类聚合物基质中的填料。填料的平均粒径小于该膜的厚度。

PSA膜组合物包含分散在PSA基质中的填料。填料可以具有导热性和导电性。或者,其可以具有导热性和电绝缘性。导热性填料可以包含金属填料、无机填料或其组合。

金属填料包括金属颗粒、和颗粒表面上具有层的金属颗粒。这些层可以例如是颗粒表面上的金属氮化物层或金属氧化物层。合适的金属颗粒例如可为选自铝、铜、金、镍、锡、银及其组合的金属的颗粒。合适的金属填料例如还可为其表面上具有层的以上所列金属的颗粒,所述层选自氮化铝、氧化铝、氮化硼、氧化锌、氧化镁、氧化铜、氧化镍、氧化银及其组合。例如,金属填料可以包含其表面上具有氧化铝层的铝颗粒。

无机填料例如可为:金属氧化物,如氧化铝、氧化铍、氧化镁和氧化锌;氮化物,如氮化铝和氮化硼;金刚石、天然石墨、合成石墨、石墨烯(graphene)、炭黑、碳纤维、碳纳米管、石墨纤维、金刚石粉末、氮化硼纳米管,以及它们的组合。

导热性填料颗粒的形状不受特别限制;然而,圆形或球形颗粒可以防止在组合物中导热性填料的填充量较高时粘度增大至不想要的水平。导热性填料的平均粒径取决于各种因素,包括:针对PSA选择的导热性填料的类型和添加至可固化组合物中的精确量,以及电子元件和/或散热材料(其中将使用所述组合物的固化产物)之间的PSA的胶层厚度。

填料的平均粒径可以小于压敏粘合剂层的厚度。在一个实施方案中,填料分散在厚度小于15μm的PSA膜中,并且填料的平均粒径小于PSA膜的厚度。在另一实施方案中,填料分散在厚度小于10μm的PSA膜中,并且填料的平均粒径小于PSA膜的厚度。

导热性填料可以是单一导热性填料或至少一种性质(如填料的颗粒形状、平均粒径、粒径分布和类型)不同的两种以上导热性填料的组合。在一个实施方案中,金属颗粒和无机颗粒的组合可以提供较高的热导率。

在一个实施方案中,可以使用具有不同尺寸的导热性填料材料,例如,具有较大平均粒径的石墨与具有较小平均粒径的石墨的组合。或者,合意的是使用具有较大平均粒径的金属填料(如氮化硼)与具有较小平均粒径的石墨的组合。具有较大平均粒径的第一填料与具有比第一填料小的平均粒径的第二填料的使用可以改善充填效率,可以减小粘度,并可以增强热传导。

PSA组合物中导热性填料的量取决于各种因素,包括:针对组合物选择的固化机理、所选择的导热性填料和PSA的所需强度。在一个实施方案中,填料可以选自石墨、氮化硼、氧化铝和氧化锌。

合适的导热性填料的市售代表性实例包括:实施例中引用的石墨、氮化硼和氧化锌。

压敏粘合剂

导热性填料被分散在基质中,所述基质可以是压敏粘合剂。PSA由丙烯酸类聚合物制成,所述丙烯酸类聚合物例如为具有以下组成的那些或可以通过聚合下述单体制得的那些:(i)丙烯酸类单体,其是式CH2=CH(R1)(COOR2)的丙烯酸或甲基丙烯酸衍生物(如甲基丙烯酸酯),其中R1为H或CH3,且R2为C1-20、优选C1-8烷基链;和(ii)具有侧链反应性官能团的单体,其在下文中得以更详细地描述,并且单体(ii)的量为约0.001~约0.015当量/100g丙烯酸类聚合物。

对于聚合过程,成分(i)和(ii)的单体在适当时经自由基聚合被转化为丙烯酸类聚合物。对单体进行选择以使得所得聚合物可以用于根据D.Satas,“压敏粘合剂技术手册(Handbook of Pressure Sensitive Adhesive Technology)”,van Nostrand,NY(1989)制备PSA。

可用作单体混合物的成分(i)的丙烯酸酯和/或甲基丙烯酸酯的实例包括:丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、甲基丙烯酸甲酯、丙烯酸正丁酯、甲基丙烯酸正丁酯、丙烯酸正戊酯、丙烯酸正己酯、丙烯酸正庚酯和丙烯酸正辛酯、丙烯酸正壬酯、甲基丙烯酸月桂酯、丙烯酸环己酯;和支化的(甲基)丙烯酸异构体,如丙烯酸异丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正丁酯、丙烯酸2-乙基己酯、甲基丙烯酸十八烷醇酯和丙烯酸异辛酯。

示例性丙烯酸类单体混合物(i)具有小于0℃的Tg值;且其重均分子量为约10,000~约2,000,000g/mol,如50,000~1,000,000g/mol,有利的是100,000~700,000g/mol。混合物(i)可以是单一单体,只要其均聚物Tg小于0℃即可。

合适单体(ii)的实例为能够为粘合剂膜提供初始强度(green strength)的那些,包括脂环族环氧化物单体M100和A400(Daicel)、氧杂环丁烷单体OXE-10(可商购于Kowa Company)、甲基丙烯酸二环戊二烯酯环氧化物(CD535,可商购于Sartomer Co.,Exton,PA)和4-乙烯基-1-环己烯-1,2-环氧化物(可商购于Dow)。

丙烯酸类聚合物能够进行UV后阳离子活化的反应,由此对粘合剂膜提供高温保持强度(holding strength)。丙烯酸类聚合物是具有以下组成的那些,或可以通过聚合下述单体制得的那些:(i)丙烯酸类单体,其是式CH2=CH(R1)(COOR2)的丙烯酸或甲基丙烯酸衍生物,其中R1为H或CH3,且R2为C1-20烷基链;和(ii)具有侧链反应性官能团的组合的单体,其选自(1)脂环族环氧化物、氧杂环丁烷、二苯甲酮或其混合物,和(2)单取代的环氧乙烷。单体(ii)的量为约0.001~约0.015当量/100g丙烯酸类聚合物。丙烯酸类聚合物基本上不含多(甲基)丙烯酸酯、多元醇或OH官能团,并且该聚合物在聚合后保持基本上线性。在更优选的实施方案中,单体(ii)的量为约0.002~约0.01当量/100g丙烯酸类聚合物。

所制备的丙烯酸类聚合物的重均分子量(Mw)通常为10,000~2,000,000g/mol,例如50,000~1,000,000g/mol,如100,000~700,000g/mol。Mw通过凝胶渗透色谱法或基质辅助激光解吸/离子化质谱法确定。

可用作单体(ii)的单取代的环氧乙烷的实例包括:甲基丙烯酸缩水甘油酯、1,2-环氧-5-己烯、4-羟基丁基丙烯酸酯缩水甘油醚、脂环族环氧化物单体M100和A400、OXE-10、CD535环氧化物和4-乙烯基-1-环己烯-1,2-环氧化物。

PSA可以还包含各种其它添加剂,例如增塑剂、增粘剂和填料,其均常规用于PSA的制备中。作为要添加的增塑剂,可以使用低分子量丙烯酸类聚合物、苯二甲酸酯、苯甲酸酯、己二酸酯或增塑剂树脂,但不限于此。作为要添加的增粘剂或增粘性树脂,可以使用文献中描述的任何已知增粘性树脂。非限制性实例包括:蒎烯树脂、茚树脂,以及其歧化、氢化、聚合和酯化衍生物以及盐;脂肪族和芳香族烃树脂、萜烯树脂、萜烯-酚醛树脂、C5树脂、C9树脂和其它烃树脂。可以使用这些树脂或其它树脂的任何所需组合,以根据所需的最终性质调节所得粘合剂的性质。

PSA可以还掺混有一种或多种添加剂,例如老化抑制剂、抗氧化剂、光稳定剂、配合剂和/或促进剂。

合适PSA的市售代表性实例包括以商品名DUROTAK从Henkel Corporation获得的那些。

通常,常规PSA的热导率为0.1~0.25W/mK。热增强PSA可以将热导率增大0.25~20W/mK,甚至更特别为0.5~10W/mK。

热增强PSA组合物可以被设置在电子元件的至少一部分上的剥离层(release layer)或涂层上、和/或壳体的内表面上。

PSA膜的厚度应足以帮助产生结合来提供通过该膜的热传递,但不能厚至妨碍电子设备的组装和/或操作。

在一个实施方案中,热增强PSA在其液体状态的粘度为15~15,000cps,更优选为300~3000cps。热增强PSA的干膜的厚度可以为2~30μm,更优选为3~15μm,甚至更优选为5~12μm。180°剥离强度时的粘附力可以为8~100lbf/in,甚至更优选为10~70lbf/in。在一具体实施方案中,填料是石墨且PSA层的热导率为1~3%W/mK。

在另一实施方案中,涂层的厚度小于15μm,且PSA中的导热性填料占5重量%~95重量%。在另一实施方案中,涂层的厚度小于10μm,且PSA中的导热性填料占10重量%~80重量%。

在一具体实施方案中,填料被分散在厚度小于15μm的PSA膜中,填料是石墨且其平均粒径小于PSA膜的厚度,填料在PSA溶剂蒸发之前占液体PSA的5重量%~35重量%,并且PSA膜的热导率为1~3W/mK。在甚至更具体的实施方案中,填料被分散在厚度小于10μm的PSA膜中,填料是石墨且其平均粒径小于PSA膜的厚度,填料在PSA溶剂蒸发之前占液体PSA的10重量%~30重量%,并且PSA膜的热导率为1~3W/mK。

散热材料

为了有效管理电子元件所产生的热量,散热体(heat spreader)材料可以将热量传递至被动式热沉(heat sink)或主动式热沉。可应用至低功率设备(例如,移动设备中的半导体和EMI屏蔽物)中的散热体用来将热量直接传导至周围环境、至包围物(enclosure)或至远离热点的另一区域。在高功率设备(例如CPU)上,其将热量散布至主动冷却设备。

各种散热体可以用于不同的应用。散热体可以由固体导热性金属制成。铜和铝由于其高热导率和低成本是最常用的金属。铜的缺点是其高密度和热膨胀系数(TCE),这阻碍了直接安装至硅芯片上。铝提供了高热导率和低密度且便于制造,而且与硅相比还具有高TCE。与铝和铜相比,导热性陶瓷(例如,BeO、AlN和SiC)均具有高热导率和低TCE。散热材料的厚度可以是5~500μm。

可以使用天然石墨和合成石墨作为散热材料,其优点是石墨的密度是铜的五分之一。天然石墨是各向异性材料;其在散热体平面(x-y轴)提供的热导率是约140~500W/mK,在散热体厚度上(垂直于该平面(z轴))具有较低热导率:约3~10W/mK。合成石墨可以在散热体平面提供约600~1750W/mK的热导率。石墨散热体在热通量密度较低的电子应用(例如内存模块和便携式电子设备)中是特别有用的。

在一个实施方案中,散热体是石墨片或金属箔。在一具体实施方案中,散热体由柔性合成石墨、天然石墨及其组合形成。合成石墨或天然石墨的厚度可以是5~45μm。在一具体实施方案中,散热材料是厚度为5~25μm的合成石墨。铜箔散热材料的厚度可以是15~250μm。

合适的散热体的市售代表性实例包括来自Qingdao的合成石墨和来自Panasonic的热解石墨。

电子元件

电子元件可以包含所产生的热量(如果不耗散)足以妨碍电子元件或包含电子元件作为元器件的系统的运行的任何子组件。电子元件可以包括微处理器或计算机芯片、集成电路、用于光学设备如激光器的控制电子件或场效应晶体管(FET)。在一个实施方案中,电子元件是发热元件,其选自集成微芯片、微处理器、晶体管、二极管、继电器、电阻器、变压器、放大器、EMI屏蔽物和电容器。电子元件包括至少一个表面,由该表面辐射出热量并且该表面可用作要从电子元件散出的热量的来源。在一个实施方案中,电子元件的工作温度为15~100℃。

电子元件、增强压敏粘合剂和散热材料可以用于电子制品的组装中。该制品(或“设备”)可以选自笔记本个人计算机、平板个人计算机或手持式设备,例如音乐播放器、视频播放器、静像播放器(still image player)、游戏机、其它媒体播放器、录音机、录像机、摄影机、其它媒体记录机、收音机、医疗器械、家用电器、交通工具仪表、乐器、计算器、蜂窝电话、其它无线通信设备、个人数字助理、遥控装置、寻呼机、监视器、电视、立体声音响设备、机顶盒(set up box或set-top box)、手提录音机、调制解调器、路由器、键盘、鼠标、扬声器、打印机和它们的组合。

所述设备包括具有邻近至少一个发热元件的至少一个表面且/或包封至少一个发热元件的壳体。壳体可以由塑料、金属或任何合适的金属制成。壳体可以由单片材料形成,或由多片材料形成。壳体可以包括子组件,所述子组件包括外部和内部包围物、结构支撑件、紧固件和中间框架(midframe)。在一个实施方案中,将屏蔽性中间框架布置得邻近同一或不同印刷电路板(PCG)上的电子元件。可以对壳体进行改动以促进热量耗散或分布。

制备方法

用增强PSA组装的电子设备可以通过将导热性填料分散在液体PSA树脂体系中而进行。该树脂体系可以包括水性或溶剂型溶液丙烯酸类PSA。然后将液体溶液涂布或涂覆至第一表面(例如,散热材料、电子元件)上、或电子设备的壳体上。然后对溶液进行干燥以除去溶剂,从而留下增强PSA的薄膜。还可以将该溶液涂布在剥离衬垫(例如,经硅酮处理的剥离衬垫)上,然后干燥以除去溶剂,从而产生增强PSA的薄转移带状物。然后,可以将该增强PSA涂覆在第二表面(例如,散热材料、电子元件)上、或电子设备的包围物上。在一个实施方案中,将增强PSA涂覆在散热材料上。在另一实施方案中,将增强PSA涂覆在电子设备中的壳体上。

导热性散热层合物可以通过将导热性填料分散至液体PSA树脂体系中而形成。该树脂体系可以包括水性或溶剂型溶液丙烯酸类PSA。然后将液体溶液涂布或涂覆在第一散热材料上。然后对溶液进行干燥以除去溶剂,从而留下增强压敏粘合剂的薄膜。还可以将该溶液涂布在剥离衬垫上,然后干燥以除去溶剂,从而产生导热性PSA的薄转移带状物。然后,可以将该增强PSA涂覆在第二散热材料上,以形成导热性散热层合物。可以通过在散热材料之间插入导热性PSA的膜来添加散热材料的额外层。该增强PSA可以包封散热材料。有利的是,因为通过插入导热性PSA而施加额外层,所以可以形成强度更大且更为耐久的层合散热体。

实施例

实施例1

将下表1列出的构成成分放入具有高速分散混合的容器中以形成混合物。

表1

1平均粒径0.12μm,表面积9.0m2/g,表观密度0.64g/cm3

2粒径d50 2.2μm,表面积21.0m2/g,振实密度0.30g/cm3

3平均粒径0.9μm,表面积20.0m2/g,振实密度0.12g/cm3

4粒径d50 2.4μm,d90 4.1μm,表面积26.0m2/g,密度0.07g/cm3

5粒径d50 2.6μm,d90 5.0μm,表面积352m2/g,真密度2.16g/cm3

6粒径d50 5.2μm,d90 12μm。

将各混合物搅拌2分钟,以分散导热性填料并形成所编号的样品。然后将各混合物用下拉棒(draw-down bar)涂覆在经硅酮处理的剥离衬垫上,在90℃干燥15分钟以得到约5~10μm的粘性热增强的PSA膜。然后将各增强PSA膜转移层合至合成石墨片(25μm Qingdao,切割至50x 55mm尺寸)上。将5μm PET层合在石墨的未覆盖PSA的一侧上,以得到完整的散热体膜。然后将该膜从载体剥离衬垫上移除,并将暴露的PSA膜粘附至热测试芯片(其模拟电子设备中包封的电子元件)的表面上。

在下表2中,将样品1~8粘附至热测试芯片的表面上,并以最左栏示出的数个时间间隔记录接点温度。随着测试芯片产生热量,其发散通过PSA并进入石墨片。

表2

将这些样品的结果与用对照样品(未经填充的经PSA涂布的石墨片样品)获得的结果相比较。发现与常规PSA相比,增强膜具有高达1.4℃的更佳散热性能。参见例如样品7与对照样品在1800秒间隔时的比较。

实施例2

将下表3列出的构成成分(样品1~15)放入具有高速分散混合的容器中以形成混合物。

表3

1粒径d50 3.68μm,表面积14.49m2/g。

2Panasonic PGS Graphite被描述为具有下述尺寸的热解石墨片:10μm PET,17μm石墨,10μm常规PSA,总厚度37μm。石墨片被描述为具有2.10g/cm3的密度和1750W/mK的沿x-y轴的热导率。

3Dasen DSN5025PM-5被描述为具有以下尺寸的合成石墨膜:5μm PET,25μm石墨,5μm常规PSA,总厚度35μm。该膜被设置在75μm PET剥离衬垫上。为了施加至测试芯片,将75μm PET剥离衬垫移除并丢弃,且将PSA膜施加至测试芯片上。石墨片被描述为具有1.6~1.8g/cm3的密度、1500~1700W/mK的沿x-y轴的热导率和15~20W/mK的z轴热导率。

将各混合物搅拌2分钟,以分散导热性填料并形成所编号的样品。然后将各混合物用下拉棒涂覆在经硅酮处理的剥离衬垫上,在121℃干燥15分钟以得到约5~10μm的粘性热增强的PSA膜。然后将各增强PSA膜转移层合至合成石墨片(25μm Dasen,尺寸与实施例1中的相同),并将5μm PET层合在石墨的未覆盖PSA的一侧上,以得到完整的散热体膜。然后将该膜从其载体剥离衬垫上移除,并将具有PSA膜的表面粘附至热测试芯片的表面上,以进行评估。

使用两种市售可得石墨散热体膜——Panasonic PGS石墨(“PGS”)和Dasen DSN5000石墨(“DSN”)——作为对照样品来与增强PSA相比较。对照样品的性质描述于表1中,并将其类似地切割成50x 55mm的尺寸。除去剥离层。

在下表4中,将样品1~15和两个对照样品粘附至热测试芯片的表面,并在30分钟测试时间后记录最终的接点温度。

表4

将具有常规PSA/石墨散热体的两种对照样品的结果与包含增强PSA/石墨散热体的样品相比较。发现热增强PSA可提供比涂布有常规粘合剂的两种对照样品好3~7℃的改善的散热性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1