一种液晶化合物及其制备方法和应用与流程

文档序号:13410443阅读:403来源:国知局

本申请是于2015年9月2日递交的申请号为201510556069.4发明名称为“一种液晶化合物及其制备方法和应用”的中国申请的分案申请。

本发明涉及液晶化合物的制备及应用领域,具体涉及一种具有甲基苯及二氟亚甲氧基基团的液晶化合物及其制备方法与应用。



背景技术:

目前,液晶化合物的应用范围拓展的越来越广,其可的显示器、电光器件、传感器等中。用于上述显示领域的液晶化合物的种类繁多,其中向列相液晶应用最为广泛。向列相液晶已经应用在无源tn、stn矩阵显示器和具有tft有源矩阵的系统中。

对于薄膜晶体管技术(tft-lcd)应用领域,近年来市场虽然已经非常巨大,技术也逐渐成熟,但人们对显示技术的要求也在不断的提高,尤其是在实现快速响应,降低驱动电压以降低功耗等方面。液晶材料作为液晶显示器重要的光电子材料之一,对改善液晶显示器的性能发挥重要的作用。

作为液晶材料,需要具有良好的化学和热稳定性以及对电场和电磁辐射的稳定性。而作为薄膜晶体管技术(tft-lcd)用液晶材料,不仅需要具有如上稳定性外,还应具有较宽的向列相温度范围、合适的双折射率各向异性、非常高的电阻率、良好的抗紫外线性能、高电荷保持率以及低蒸汽压等性能。

对于动态画面显示应用,如液晶电视,为了实现高品质显示,消除显示画面残影和拖尾,要求液晶具有很快的响应速度,因此要求液晶具有较低的旋转粘度γ1;另外,为了降低设备能耗,希望液晶的驱动电压尽可能低,所以提高液晶的介电各向异性△ε对混合液晶具有重要意义。

大量研究表明,液晶分子引入一个二氟亚甲氧基(-cf2o-)连接基团后,会使液晶的旋转粘度γ1有所降低。另外由于二氟亚甲氧基(-cf2o-)桥的偶极矩的贡献,端基氟原子的偶极矩也有一定程度的提高,从而使液晶分子的介电各向异性△ε有所增加。德国默克和日本智索公司(cn1717468a,cn101143808a,cn101157862a等)已经公开了一些具有不同取代基的具有二氟亚甲氧基(-cf2o-)连接基团的液晶化合物。但(-cf2o-)基团的引入会使液晶的清亮点大幅度降低。在调配液晶混合物时需要加入粘度更大的高清亮点化合物来平衡(-cf2o-)基团所造成的清亮点下降,从而制约了液晶混合物响应速度提升的空间。

液晶作为液晶显示器件的核心功能材料,为了满足液晶显示器件的各种性能参数的要求,为了适应液晶显示器件的工艺要求,需要液晶材料具有广泛的多种性能参数,而任何一种单体液晶材料都不可能满足所有这些要求,因此需要合成性能各异的单体液晶,通过调配混合液晶的方法来满足lcd器件要求的特性。



技术实现要素:

本发明需要解决的技术问题是提供一种液晶化合物及其制备方法与应用,以改善现有的具有二氟亚甲氧基的液晶化合物存在的清亮点下降的问题,提升液晶混合物的响应速度。

为解决上述技术问题,本发明所采用的技术方案是:

一种液晶化合物,所述液晶化合物的结构式如通式ⅰ所示,

其中,

选自环己基、环戊基、环丁基、环丙基、二环[2.2.1]庚基、二环[2.2.2]辛基中的任意一种;

选自1,4-亚环己基、1,4-亚环己基中的一个-ch2-或两个-ch2-被o取代而得的基团、1,4-亚苯基、氟代1,4-亚苯基中的任意一种;

选自1,4-亚苯基、氟代1,4-亚苯基中的任意一种;

x1、x2选自h、f中的任意一种;

x3、x4、x5选自h、f、cl、cf3、chf2、ocf3、ochf2中的任意一种;

m选自1、2或3;

n选自0或1。

本发明技术方案的进一步改进在于:所述通式ⅰ所示的化合物具体为下列式ⅰ-1至式ⅰ-3所示的化合物,

其中,

选自1,4-亚苯基、氟代1,4-亚苯基中的任意一种;

选自1,4-亚环己基、1,4-亚环己基中的一个-ch2-或两个-ch2-被o取代而得的基团中的任意一种。

本发明技术方案的进一步改进在于:所述通式ⅰ所示的化合物具体为下列式ⅰ-1-1至式ⅰ-3-2所示的化合物,

本发明技术方案还公开了一种液晶化合物的制备方法,

所述式ⅰ-1所示化合物的合成路线为,

具体包括下列步骤1-a~步骤1-e共五个步骤,

1-a)在惰性气氛中,将溶于四氢呋喃中降温至-70℃后加入正丁基锂进行锂卤交换,加完后再搅拌15分钟,保持温度再加入与锂试剂加成,反应体系逐渐变稀,加完时透明,升温至-20℃,倒入水中,分出有机层,萃取,水洗,加入甲苯,对甲基苯磺酸,加热升温蒸去四氢呋喃,升温至110℃,分水。停止反应,倒入水中,分出有机层,蒸干溶剂。2倍乙醇重结晶,得到白色晶体

1-b)将步骤1-a)所得x1、x2取代的苯硼酸甲苯、乙醇、水、碳酸钠和催化剂四三苯基膦钯混匀加热回流进行suzuki反应4小时后,反应液倒入水中,分液,萃取,水洗,过硅胶柱,浓缩,产物用乙醇重结晶,得到

1-c)将步骤1-b)所得溶于3倍乙醇中,加入pd/c,常压加氢反应8小时,过滤pd/c,蒸干乙醇,得到

1-d)将步骤1-c)所得溶于四氢呋喃中,充氮气置换空气,降温至-70℃,滴加正丁基锂锂代,得到锂试剂,加完后再滴加二氟二溴甲烷的四氢呋喃溶液取代锂,自然升温至0℃后,倒入水中,加盐酸,分液,萃取,水洗,过硅胶柱,得到含有的无色液体产物;该产物中的副产物不需分离,直接向下投料;

1-e)将步骤1-d)所得二甲基亚砜、无水碳酸钾、混匀后于60℃下搅拌进行醚化反应3小时后,倒入水中,溶解无机盐,萃取,水洗,过硅胶柱,用乙醇重结晶3次,石油醚重结晶一次,得到式i-1所示化合物;

所述式ⅰ-2所示化合物的合成路线为,

具体包括下列步骤2-a~步骤2-d共四个步骤,

2-a)将溶于四氢呋喃后,于三口瓶中加入镁屑、四氢呋喃加热至回流,滴加少量上述溶液制备格氏试剂,待引发反应后保持回流滴加,加完后

回流一小时,得到格氏试剂后,水浴降温下滴加加成,加完后再回流一小时得到粘稠反应液,再倒入冰水和盐酸中,搅拌下水解,分液,萃取,水洗,蒸干溶剂,加甲苯、对甲苯磺酸,回流下分水3小时,脱水完全,过硅胶柱,得到浅黄色液体,蒸干溶剂,用乙醇重结晶,得到

2-b)将步骤2-a)所得溶于乙醇、甲苯,加钯炭进行常压氢化反应6小时,吸氢至理论量,过滤除去钯炭,减压下除去溶剂,得到

2-c)将步骤2-b)所得溶于四氢呋喃中,充氮气置换空气,降温至-70℃,滴加正丁基锂锂代,得到锂试剂,加完后再滴加二氟二溴甲烷的四氢呋喃溶液加成,自然升温至0℃后,倒入水中,加盐酸,分液,萃取,水洗,过硅胶柱,得到含有的无色液体产物;该产物中的副产物不需分离,直接向下投料;

2-d)将步骤2-c)所得二甲基亚砜、无水碳酸钾、混匀后于60℃下搅拌进行醚化反应3小时后,倒入水中,溶解无机盐,萃取,水洗,过硅胶柱,用乙醇重结晶3次,石油醚重结晶一次,得到式i-2所示化合物;

所述式ⅰ-3所示化合物的合成路线为,

具体包括下列步骤3-a~步骤3-d共四个步骤,

3-a)将溶于四氢呋喃后,于三口瓶中加入镁屑、四氢呋喃加热至回流,滴加少量上述溶液制备格氏试剂,待引发反应后保持回流滴加,加完后回流一小时,得到格氏试剂后,水浴下滴加的四氢呋喃溶液加成,加完后再回流一小时得到粘稠反应液,再倒入冰水和盐酸中水解,分液,萃取,水洗,蒸干溶剂,加甲苯、对甲苯磺酸,回流下分水4小时,脱水完全,过硅胶柱,用甲苯乙醇混合溶剂重结晶,得到

3-b)将步骤3-a)所得溶于乙醇、甲苯,加钯炭进行常压氢化反应6小时,吸氢至理论量,过滤除去钯炭,减压下除去溶剂,得到

3-c)将步骤3-b)所得溶于四氢呋喃中,充氮气置换空气,降温至-70℃,滴加正丁基锂锂代,得到锂试剂,加完后再滴加二氟二溴甲烷的四氢呋喃溶液取代,自然升温至0℃后,倒入水中,加盐酸,分液,萃取,水洗,过硅胶柱,得到含有的无色液体产物;该产物中的副产物不需分离,直接向下投料;

3-d)将步骤3-c)所得二甲基亚砜、无水碳酸钾、混匀后于60℃下搅拌进行醚化反应3小时后,倒入水中,溶解无机盐,萃取,水洗,过硅胶柱,用乙醇重结晶3次,石油醚重结晶一次,得到式i-3所示化合物。

本发明技术方案进一步公开了一种液晶化合物组成的液晶组合物,

本发明技术方案的进一步改进在于:所述液晶组合物包括由通式ⅰ所示化合物组成的组分a,由通式ⅱ所示一种或两种化合物组成的组分b,由通式ⅲ所示三至十种化合物组成的组分c,所述组分a、组分b、组分c的质量比为1~40:5~40:5~80,

其中,

r1、r2选自碳原子数为1~6的直链烷基、碳原子数为2~6的直链烯基中的任意一种;

r3选自h、f、碳原子数为1~6的直链烷基中的任意一种;

选自1,4-亚环己基、1,4-亚苯基和氟代1,4-亚苯基中的任意一种;

p为2或3;

(f)表示h或f。

本发明技术方案的进一步改进在于:所述通式ⅱ所示的化合物具体为式ⅱ-1至式ⅱ-9所示的化合物,

本发明技术方案的进一步改进在于:所述通式ⅲ所示的化合物具体为式ⅲ-1至式ⅲ-10所示的化合物,

本发明技术方案的进一步改进在于:所述液晶组合物中组分a、组分b、组分c的质量比为10~35:15~35:25~75。

本发明技术方案的进一步改进在于:所述液晶组合物中还包含占液晶组合物的重量百分含量不大于0.05%的添加剂,所述添加剂为抗氧化剂、抗紫外剂、手性剂中的至少一种。

由于采用了上述技术方案,本发明取得的技术进步是:

本发明的具有甲基苯及二氟亚甲氧基基团的液晶化合物,具有较宽应用范围,既可以用作液晶混合物的基础材料,也可以作为添加材料添加到其他类型的液晶化合物所组成的液晶基础材料当中,例如来改进液晶混合物的介电各向异性△ε、旋转粘度γ1、阈值电压vth、低温下的对比度、光学各向异性△n、清亮点cp等参数。

液晶组合物的响应速度t和液晶盒的厚度d、液晶的旋转粘度γ1符合t∝γ1d2的关系,故具有较低的旋转粘度γ1的液晶其响应时间较短。本发明提供的具有甲基苯及二氟亚甲氧基基团的液晶化合物分子结构中,含有甲基苯及二氟亚甲氧基(-cf2o-)连接基团,不仅具有较大的介电各向异性△ε,更重要的是同时具有较快的响应速度t、较低的旋转粘度γ1和良好的低温性能,对于调配液晶组合物来说,该性能具有重要的意义。

纯净的通式i所示化合物是无色的,并且显示出较高的对光、热、化学稳定性。尤其是通式i所示化合物表现出了大的介电各向异性△ε和良好的低温性能,如低温下的响应速度和对比度,且还具有抑制形成近晶相的优点,这表明使用通式ⅰ所示化合物的液晶组合物具有较好的低温储存稳定性。

本发明提供的具有甲基苯及二氟亚甲氧基基团的液晶化合物及其组成的液晶组合物在制备液晶显示器件材料或电光学显示器件材料中的应用,以及包含具有甲基苯及二氟亚甲氧基基团的液晶化合物或液晶组合物的液晶显示器件材料或电光学显示器件材料,也属于本发明的保护范围。

具体实施方式

本发明公开了一种液晶化合物,所述液晶化合物的结构式如通式ⅰ所示,

其中,

选自环己基、环戊基、环丁基、环丙基、二环[2.2.1]庚基、二环[2.2.2]辛基中的任意一种;

选自1,4-亚环己基、1,4-亚环己基中的一个-ch2-或两个-ch2-被o取代而得的基团、1,4-亚苯基、氟代1,4-亚苯基中的任意一种;

选自1,4-亚苯基、氟代1,4-亚苯基中的任意一种;

x1、x2选自h、f中的任意一种;

x3、x4、x5选自h、f、cl、cf3、chf2、ocf3、ochf2中的任意一种;

m选自1、2或3;

n选自0或1。

具体地,所述通式ⅰ所示的化合物具体为下列式ⅰ-1至式ⅰ-3所示的化合物,

其中,

选自1,4-亚苯基、氟代1,4-亚苯基中的任意一种;

选自1,4-亚环己基、1,4-亚环己基中的一个-ch2-或两个-ch2-被o取代而得的基团中的任意一种。

本发明还公开了一种液晶化合物的制备方法,

所述式ⅰ-1所示化合物的合成路线为,

所述式ⅰ-2所示化合物的合成路线为,

所述式ⅰ-3所示化合物的合成路线为,

本发明进一步公开了一种液晶化合物组成的液晶组合物,所述液晶组合物包括由通式ⅰ所示化合物组成的组分a,由通式ⅱ所示一种或两种化合物组成的组分b,由通式ⅲ所示三至十种化合物组成的组分c,所述组分a、组分b、组分c的质量比为1~40:5~40:5~80,

其中,

r1、r2选自碳原子数为1~6的直链烷基、碳原子数为2~6的直链烯基中的任意一种;

r3选自h、f、碳原子数为1~6的直链烷基中的任意一种;

选自1,4-亚环己基、1,4-亚苯基和氟代1,4-亚苯基中的任意一种;

p为2或3;

(f)表示h或f。

优选地,所述组分a、组分b、组分c的质量比为10~35:15~35:25~75。更优选地所述组分a、组分b、组分c的质量比为5~10:25:75,所述组分a、组分b、组分c的质量比为具体为5:25:75或10:25:75。

下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径而得。

下面实施例中gc表示气相色谱纯度,mp表示熔点,ms表示质谱,△ε表示介电各向异性,△n表示光学各向异性,γ1表示旋转粘度。

△ε表示介电各向异性,具体测试方法为:介电各向异性,△ε=ε∥-ε⊥,其中,ε∥为平行于分子轴的介电常数,ε⊥为垂直于分子轴的介电常数,测试条件为25±0.5℃;1khz;hp4284a;5.2微米tn左旋盒。

△n表示光学各向异性,具体测试方法为:光学各向异性,△n=no-ne,其中,no为寻常光的折射率,ne为非寻常光的折射率,测试条件为,589nm,25±0.5℃。

γ1表示旋转粘度,具体测试方法为:旋转粘度,单位mpa·s,测试条件为25±0.5℃。

对比度为液晶显示器亮态与暗态之比,其测定方法如下:将液晶灌入液晶盒,贴偏光片,常白模式,根据液晶的阈值电压确定驱动电压,再将贴好的液晶盒引出导线,在恒定的背光源下进行测试,对液晶盒不加电压测试亮态光强,加电压测试暗态光强,亮态与暗态光强之比为对比度。

常温低温对比度变化率(%)=(常温下对比度-低温下对比度)/常温下对比度×100(%),常温为25℃,低温为-20℃。

cp表示清亮点,该清亮点可直接测定而得,对于无法直接测定的化合物,可按照如下方法计算其拟合数据:

由于在混合液晶的调制过程中,通过选择多种且适当的单体液晶调配混合,可以形成低共熔混合物,有效降低液晶的熔点;同时通过加入高清亮点的单体液晶,能够提高混合液晶的清亮点,从而调制出向列相温度范围满足要求的混合液晶,混合液晶和单体液晶的清亮点及浓度满足如下关系式:

tc=∑xiti

其中,tc表示混合液晶的清亮点,xi表示单体液晶在混合液晶中的浓度,ti表示单体液晶的清亮点。

实施例1

制备式ⅰ-1-1-1所示液晶化合物,结构式如下,

合成路线为,

具体包括下列步骤1-a~步骤1-e共五个步骤,

1-a)47.2g(0.2mol)溶于280ml四氢呋喃,氮气保护下降温至-70℃,反应液变得较为粘稠,滴加正丁基锂84ml(0.21mol,2.5m)进行锂溴交换,加完后再搅拌15分钟,再保持温度滴加16.8g(0.2mol)加成,逐渐变稀,加完时透明,升温至0℃,倒入300ml水中,分出有机层,萃取,水洗,蒸净溶剂。加入甲苯200ml,对甲基苯磺酸1.8g,升温至110℃回流分水。倒入200ml水中,分出有机层,萃取,水洗得到的产物,蒸净溶剂,用乙醇重结晶,得到26.6g白色晶体收率60%。

1-b)将步骤1-a)所得14.6g(0.066mol)产物11.5g(0.073mol)50ml甲苯、50ml乙醇、50ml水、8.5g(0.08mol)碳酸钠、0.4g四三苯基膦钯,一起加热回流进行suzuki反应4小时后,反应液倒入100ml水中,分液,萃取,水洗,过硅胶柱,浓缩,产物用50ml乙醇重结晶,得到15.2g收率90%。

1-c)将步骤1-b)所得15.2g(0.06mol)产物溶于100ml无水乙醇中,加入钯碳1g,充氢气置换空气三次,常温常压反应6小时。反应完毕,过滤钯碳,蒸干溶剂,得到白色固体15.2g收率100%。

1-d)将步骤1-c)所得7.8g(0.032mol)产物溶于80ml四氢呋喃中,充氮气置换空气,降温至-70℃,滴加16ml(0.040mol,2.5m)正丁基锂锂代,加完后再滴加10.5g(0.050mol)二氟二溴甲烷的10ml四氢呋喃溶液加成,自然升温至0℃后,倒入100ml水中,加1ml盐酸,分液,萃取,水洗,过硅胶柱,得到无色液体产物10.5g,做气相色谱分析,产物含量为73.9%,另有23.6%含量的不需分离,可以直接向下投料。

1-e)将步骤1-d)得到的10.5g(0.021mol)产物50ml二甲基亚砜,7.7g无水碳酸钾,4.05g(0.025mol)于60℃下搅拌反应3小时后,倒入200ml水中,溶解无机盐,萃取,水洗,过硅胶柱,用乙醇重结晶3次,石油醚重结晶一次,得到5.0g纯度为99.9%的产物

实施例2

制备式ⅰ-1-10-1所示液晶化合物,结构式如下,

按照与实施例1相同的步骤,将实施例1步骤1-a)中的替换为制备式ⅰ-1-10-1所示液晶化合物。

实施例3

制备式ⅰ-2-1-1所示液晶化合物,结构式如下,

合成路线为,

具体包括下列步骤2-a~步骤2-d共四个步骤,

2-a)将67.2g(0.35mol)原料溶于100ml四氢呋喃待用,500ml三口瓶中加入镁屑8.4g(0.35mol)、100ml四氢呋喃加热至回流,滴加少量上述溶液制备格氏试剂,待引发反应后保持回流滴加(如引发反应困难,可加入碘粒或溴乙烷引发),加完后回流1小时,得到格氏试剂后,水浴降温下滴加58.1g(0.35mol)加成,加完后在回流1小时。得到粘稠反应液,再倒入300ml冰水和30ml盐酸中,搅拌下水解,分液,萃取,水洗,蒸干溶剂,加甲苯150ml,1g对甲苯磺酸,回流下分水,约3小时,脱水完全,过硅胶柱,得到浅黄色液体,蒸干溶剂,用乙醇重结晶,得到55g产物收率60%。

2-b)将步骤2-a)得到的55g产物溶于200ml乙醇、100ml甲苯,加钯炭2g,常压下氢化6小时,吸氢至理论量,过滤除去钯炭,减压下除去溶剂,得到55g无色液体

2-c)参考实施例1步骤1-d)得到

2-d)参考实施例1步骤1-e)得到

实施例4

制备式ⅰ-3-1-1所示液晶化合物,结构式如下,

合成路线为,

具体包括下列步骤3-a~步骤3-d共四个步骤,

3-a)将40.3g(0.15mol)原料溶于150ml四氢呋喃待用。500ml三口瓶中投入3.6g(0.15mol)镁屑、50ml四氢呋喃,回流下滴加少量上述溶液制备格氏试剂待引发后保持回流下滴加(如难以引发,可加碘粒或溴乙烷引发),加完后回流半小时后,水浴下滴加27.0g(0.15mol)环戊基环己酮的30ml四氢呋喃溶液,加完后再回流1小时加成,得到粘稠液体,再倒入200ml冰水、15ml盐酸中水解,分液,萃取,水洗,蒸干溶剂,加甲苯200ml,对甲苯磺酸1g,回流分水4小时,过硅胶柱,用甲苯乙醇混合溶剂重结晶,得到38.0g白色晶体收率75%。

3-b)将步骤3-a)所得38.0g(0.11mol)产物溶于200ml甲苯、50ml乙醇,加钯炭催化剂1g,常压下催化氢化5小时,吸氢至理论量,过滤除去钯炭,浓缩,产物用用甲苯乙醇混合溶剂重结晶,得到37.4g白色晶体收率99%。

3-c)参考实施例1步骤1-d)得到

3-d)参考实施例1步骤1-e)得到

实施例1~4制备出的液晶化合物的性能参数如下表所示。

实施例5

按照下列各组分的质量比,制备液晶组合物m1。

按照组分b与组分c之间的质量比25:75,以25份通式ⅱ所示液晶化合物组成组分b,以下述质量份数的通式iii所示化合物组成组分c,制备液晶组合物m1。

实施例6

按照下列各组分的质量比,制备液晶组合物a。

实施例7

按照与实施例6相同的方法,仅将组分a替换为等质量份的化合物得到液晶混合物b。

实施例8

按照与实施例6相同的方法,仅将组分a替换为等质量份的化合物得到液晶混合物c。

实施例9

按照与实施例6相同的方法,仅将组分a替换为等质量份的化合物得到液晶混合物d。

实施例5~9中的液晶组合物的性能测试结果如下表所示。

由实施例5~9可以看出,通式i化合物添加到混合物中,具有加大混合物介电各向异性δε、降低混合物旋转粘度γ1、低温下对比度变化较小的特点。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1