介电加热粘接膜、及使用了介电加热粘接膜的粘接方法与流程

文档序号:17930324发布日期:2019-06-15 00:47阅读:327来源:国知局
介电加热粘接膜、及使用了介电加热粘接膜的粘接方法与流程

本发明涉及介电加热粘接膜、及使用了介电加热粘接膜的粘接方法。

特别是,涉及可用于异种被粘物、通过介电加热处理(也称为高频介电加热处理)即使是较短时间也可得到强固的粘接力的介电加热粘接膜,以及使用了这样的介电加热粘接膜的粘接方法(也简称为接合方法)。



背景技术:

近年来,作为一般而言较为困难的多个被粘物的粘接方法,已提出了例如隔着在给定树脂中配合发热材料而成的粘接剂而实施介电加热处理、感应加热处理、超声波焊接处理、或激光焊接处理等粘接方法的方案。

这里,作为介电加热处理,已提出了通过在粘接剂中混合炭黑(cb)、碳化硅(sic)等并使其存在于多个被粘物之间,并实施频率28或40mhz的介电加热处理、或微波加热处理,从而使多个被粘物粘接的粘接方法(参见专利文献1及2)。

另外,作为其它的介电加热处理,已提出了在聚烯烃类树脂中混合强介电体和碳化合物、或导电物质等而制成介电损耗角正切(tanδ)为0.03以上的粘接剂,使其存在于多个被粘物之间,并通过频率40mhz的介电加热处理而使多个被粘物粘接的粘接方法(参见专利文献3及4)。

另外,提出了一种介电加热性的粘接层组合物,其是在对待粘接的多个被粘物(母材)具有亲和性的粘接剂中填充介电加热介质而成的介电加热用粘接剂组合物,其中,在将相对介电常数设为ε’、将介电损耗角正切设为tanδ、将要粘接的母材的合计厚度设为d(mm)时,使系数c在78~85的范围,并满足c×{(tanδ)/ε’}1/2≥d(参见专利文献5)。

此外,为了对于难粘接基材显示出优异的粘接性,已提出了加热粘接用的改性聚烯烃类树脂组合物及其片材(参见专利文献6)。

更具体而言,涉及使(b)含环氧基的乙烯基单体、(c)芳香族乙烯基单体及(d)(甲基)丙烯酸单体与(a)聚烯烃类树脂发生接枝反应而成的改性聚烯烃类树脂组合物等,其中,使该树脂组合物的熔解热在1~100j/g的范围、熔点在80~190℃的范围。

现有技术文献

专利文献

专利文献1:日本特开2010-6908号公报(权利要求书等)

专利文献2:日本特开2008-156510号公报(权利要求书等)

专利文献3:日本特开2003-238745号公报(权利要求书等)

专利文献4:日本特开2003-193009号公报(权利要求书等)

专利文献5:日本特开2014-37489号公报(权利要求书等)

专利文献6:日本特开2009-126922号公报(权利要求书等)



技术实现要素:

发明要解决的问题

然而,利用专利文献1及专利文献2中公开的介电加热处理时,已发现了下述问题:由于要在各个粘接剂中填充相当量的炭黑(cb)这样的导电性材料而构成粘接层组合物,因此在进行了介电加热处理时,容易发生绝缘击穿,产生粘接部、被粘物彼此间的碳化。

并且,所得粘接层组合物为完全不透明的黑色(可见光透过率:0%),难以将被粘物彼此在上下方向上对齐。

因此,已发现了难以在准确的位置实施介电加热处理、或将正确位置粘接这样的问题。

另外,利用专利文献3及专利文献4中公开的介电加热处理时,已发现了下述问题:由于要相对于各个粘接用树脂组合物添加相当量的金属、碳化化合物等导电物质,因此在进行了介电加热处理时,同样容易发生绝缘击穿。

并且,所得粘接用树脂组合物是完全不透明(可见光透过率:0%)的,难以将多个被粘物彼此在上下方向上对齐。

因此,已发现了难以在准确的位置实施介电加热处理这样的问题。

另外,利用专利文献5中公开的介电加热用粘接层组合物时,已发现了下述问题:由于待粘接的母材的合计厚度会对粘接性造成影响,因此可使用的被粘物的种类容易受到过度限制。

而且,为了获得充分的粘接强度,至少需要40~70秒钟的介电加热处理,在实际使用中存在处理时间长、经济方面不利这样的问题。

并且,在专利文献1~5中公开的任一介电加热用粘接层组合物中,对于要通过着眼于粘接剂成分的熔解热(熔化焓)的值并对该值加以控制来控制介电加热用粘接剂的高频粘接性、拉伸剪切力、以及耐热蠕变性这样的技术方案,均不存在任何的记载或启示。

更不必说通过将粘接剂成分的熔解热控制于给定范围内的值而达到即使是短时间的介电加热处理也可获得充分的粘接力这样的效果,当然也是完全没有被意识到的。

另一方面,就专利文献6中公开的改性聚烯烃类树脂组合物等而言,虽然有使熔解热、熔点为给定范围内的值的规定,但对于包含介电填料却没有任何的记载或启示,存在无法用于介电加热粘接膜的用途这样的根本性的问题。

并且,还发现了下述问题:所公开的改性聚烯烃类树脂组合物等的主成分为给定的接枝聚烯烃类树脂,是极为昂贵的,而这在经济方面是不利的。

于是,本发明人等针对现有的问题进行了深入研究,结果发现,通过将用于介电加热粘接膜的热塑性树脂的熔解热控制于给定范围内的值,即使是例如少于40秒钟的介电加热处理也可获得良好的粘接性,并且能够使用较宽范围的粒径的介电填料,进而完成了本发明。

即,本发明的目的在于提供能够适用于各种被粘物、即使利用短时间的介电加热处理也会获得良好的粘接性、并且能够使用具有较宽范围的平均粒径的介电填料的给定的介电加热粘接膜、及使用了给定的介电加热粘接膜的粘接方法。

解决问题的方法

根据本发明,提供一种介电加热粘接膜,其用于通过介电加热处理而将由相同材料或不同材料形成的一对被粘物粘接,其中,

该介电加热粘接膜含有作为a成分的热塑性树脂、及作为b成分的介电填料,并且满足下述(i)~(ii)的条件。

(i)按照jisk7121(1987)中规定的方法测定的熔点或软化点为80~200℃范围内的值。

(ii)基于jisk7121(1987)而测定的熔解热为1~80j/g范围内的值。

即,只要是至少具有给定的熔点等和熔解热的介电加热粘接膜,即可适用于各种被粘物,并且即使通过短时间的介电加热处理也能够得到良好的粘接性。

另外,通过在介电加热粘接膜的状态下具有给定的熔点或软化点,能够在使用环境等中的耐热性(包括耐热蠕变性)、与介电加热处理中的焊接性之间谋求良好的平衡。

另外,构成本发明的介电加热粘接膜时,在23℃、频率40mhz的条件下测定的介电特性(tanδ/ε’)优选为0.005以上的值,所述介电特性(tanδ/ε’)由介电损耗角正切(tanδ)除以介电常数(ε’)而得到的。

像这样地,通过控制介电加热粘接膜的介电特性的值,能够定量地确保介电加热处理中良好的焊接性,进而在一对被粘物之间获得强固的粘接力。

另外,在构成本发明的介电加热粘接膜时,相对于a成分100质量份,优选使b成分的配合量为5~800质量份范围内的值。

像这样地,如果是上述的b成分相对于a成分的配合量比,则能够使作为介电加热粘接膜的给定的操作性提高,同时能够通过短时间的介电加热处理而切实地获得良好的粘接性。

另外,构成本发明的介电加热粘接膜时,a成分优选为选自下组中的至少一种热塑性树脂:聚烯烃类树脂、烯烃类热塑性弹性体、苯乙烯类热塑性弹性体、聚酰胺树脂、聚乙酸乙烯酯树脂、聚缩醛树脂、及聚酯类树脂。

通过使用这样的热塑性树脂,即使利用短时间的介电加热处理也会均匀且迅速地溶解,即使被粘物由难粘接性的聚丙烯树脂、聚酯树脂等形成也能够切实地获得良好的粘接性。

另外,构成本发明的介电加热粘接膜时,优选b成分为氧化锌。

像这样地,如果b成分为氧化锌,则即使以较少的量配合在作为粘接剂成分的a成分中,也能够在介电加热处理中发挥出给定的发热效果。

而且,如果为氧化锌,则能够实现在作为粘接剂成分的a成分中的均匀分散,能够在介电加热粘接膜的透明性和介电加热处理中的焊接性之间谋求良好的平衡。

另外,构成本发明的介电加热粘接膜时,优选使基于jisz8819-2(2001)而测定的b成分的平均粒径为0.1~30μm范围内的值。

像这样地,通过将b成分的平均粒径控制于给定范围,在填料内部可极化的距离会变大,因此极化的程度变大,在高频施加时的反转运动变得剧烈,因此能够使介电加热性提高。

本发明的另一实施方式,提供使用了介电加热粘接膜的粘接方法,其用于通过介电加热处理而将由相同材料或不同材料形成的一对被粘物粘接,所述介电加热粘接膜含有作为a成分的热塑性树脂及作为b成分的介电填料,介电加热粘接膜满足下述(i)~(ii)的条件:

(i)按照jisk7121(1987)中规定的方法测定的熔点或软化点为80~200℃范围内的值;

(ii)基于jisk7121(1987)而测定的熔解热为1~80j/g范围内的值,

并且,该粘接方法依次包括下述工序(1)及(2):

(1)将介电加热粘接膜夹持在一对被粘物之间的工序

(2)使用介电加热装置,在高频输出功率0.1~20kw及高频施加时间1秒钟以上且低于40秒钟的条件下,对夹持在一对被粘物之间的介电加热粘接膜进行介电加热处理的工序。

即,如果是这样的使用了介电加热粘接膜的粘接方法,则能够适用于各种被粘物,并且即使通过短时间的介电加热处理也能够得到良好的粘接性。

在实施本发明的使用了介电加热粘接膜的粘接方法时,优选介电加热粘接膜不仅满足上述(i)~(ii)的条件,还满足下述(iii)的条件。

(iii)在23℃、频率40mhz的条件下的介电特性(tanδ/ε’)为0.005以上的值,所述介电特性(tanδ/ε’)是由作为介电损耗角正切的tanδ除以作为介电常数的ε’而得到的。

即,如果是这样的使用了介电加热粘接膜的粘接方法,则能够适用于各种被粘物,并且即使通过短时间的介电加热处理也能够得到良好的粘接性、耐热蠕变特性等。

附图说明

[图1]图1为用于对使用了介电加热装置的介电加热处理进行说明的图。

[图2]图2(a)~(b)为用于对本发明的介电加热粘接膜的表面及剖面状态进行说明的图(照片、倍率:150倍)。

符号说明

10:高频介电加热装置

12:第1被粘物

13:介电加热粘接膜

14:第2被粘物

16:第1高频施加电极(同时用作加压装置)

18:第2高频施加电极(同时用作加压装置)

20:高频电源

具体实施方式

[第1实施方式]

第1实施方式中的介电加热粘接膜是用于通过介电加热处理而将由相同材料或不同材料形成的一对被粘物粘接的介电加热粘接膜,其中,

该介电加热粘接膜含有作为a成分的热塑性树脂、及作为b成分的介电填料,并且满足下述(i)~(ii)的条件。

(i)按照jisk7121(1987)中规定的方法测定的、熔点或软化点为80~200℃范围内的值。

(ii)基于jisk7121(1987)而测定的熔解热为1~80j/g范围内的值。

以下,针对第1实施方式中的介电加热粘接膜的配合成分、形态等进行具体说明。

1.介电加热粘接膜的配合成分

(1)a成分

(种类)

关于作为a成分的热塑性树脂的种类,并没有特殊限制,但从例如容易发生熔解、并且具有给定的耐热性等发面出发,优选为聚烯烃类树脂、烯烃类热塑性弹性体、苯乙烯类热塑性弹性体、聚酰胺树脂、聚乙酸乙烯酯树脂、聚缩醛树脂、聚碳酸酯类树脂、聚丙烯酸类树脂、聚酰胺类树脂、聚酰亚胺类树脂、聚乙酸乙烯酯类树脂、苯氧基类树脂及聚酯类树脂中的至少一种。

更具体而言,作为聚烯烃类树脂,可列举:由聚乙烯、聚丙烯、聚丁烯、聚甲基戊烯等的均聚物形成的树脂、及由乙烯、丙烯、丁烯、己烯、辛烯、4-甲基戊烯等的共聚物形成的α-烯烃树脂等中的单独一种或两种以上的组合。

进而,在聚烯烃树脂中,如果是聚丙烯树脂,则不仅熔点或软化点的调整容易、且廉价,并且机械强度、透明性优异,因此可以说是特别优选的。

需要说明的是,对于用于本发明的聚丙烯类树脂的情况而言,优选使其介电常数(ε/1mhz)为2.2~2.6范围内的值、使介质损耗因数(tanδ/1mhz)为0.0005~0.0018范围内的值、并且使损耗因子为0.0047左右。

另外,对于用于本发明的结晶性聚酯树脂的情况而言,优选使其介电常数(ε/1mhz)为2.8~4.1范围内的值、使介质损耗因数(tanδ/1mhz)为0.005~0.026范围内的值、并且使损耗因子为0.0168~0.11范围内的值。

(熔点或软化点)

另外,优选使a成分的熔点或软化点为80~200℃范围内的值。

即,在a成分为结晶性树脂的情况下,作为结晶部分发生熔融的温度,通过将利用差示扫描量热仪(dsc)等测定的熔点规定为给定范围内的值,能够谋求使用环境等中的耐热性、与介电加热处理中的焊接性之间的良好平衡。

更具体而言,可以使用差示扫描量热仪,在使测定试样(第1热塑性树脂)10mg升温至250℃之后,以10℃/分的降温速度冷却至25℃而使其发生结晶化,再次以10℃/分的升温速度进行加热而使其熔解,将此时在dsc曲线图(熔解曲线)上观察到的熔解峰的峰值温度作为测定试样的熔点。

另外,在a成分为非晶性(无定形性)树脂的情况下,作为非晶部分发生熔融的温度,通过将基于环球法等测定的软化点(玻璃化转变温度)规定为给定范围内的值,对于此情况也能够谋求耐热性与介电加热处理中的焊接性之间的良好平衡。

更具体而言,可以基于jisk6863(1994)而测定a成分的软化点。

总之,如果a成分的熔点或软化点为低于80℃的值,则耐热性会变得不充分,可能导致使用用途过度受到限制、或机械强度显著降低。

另一方面,如果a成分的熔点或软化点为超过200℃的值,则介电加热处理中的焊接需要过长的时间,可能导致粘接力过度降低。

因此,在a成分中,更优选使第1热塑性树脂的熔点或软化点为100~190℃范围内的值、进一步优选为130~180℃范围内的值。

此外,关于后述的介电加热粘接膜的熔点或软化点,也与a成分为同样的优选范围,但上述的熔点或软化点终究是以a成分为对象的。

(平均分子量)

另外,a成分的平均分子量(重均分子量)通常为5000~30万范围内的值。

其理由在于,当a成分的重均分子量为低于5000的值时,可能会导致耐热性、粘接强度显著降低。

另一方面,理由在于当a成分的重均分子量为超过30万的值时,可能会导致实施介电加热处理时的焊接性等显著降低。

因此,更优选使a成分的重均分子量为1万~20万范围内的值,进一步优选为3万~10万范围内的值。

需要说明的是,a成分的重均分子量例如可基于jisk7367-3(1999)、通过特性粘度法、或凝胶渗透色谱法(gpc法)进行测定。

(熔体流动速率)

另外,a成分的熔体流动速率(mfr)也会对重均分子量造成影响,但通常,优选在230℃、2.16kg负载的条件下为通常1~300g/10min范围内的值。

即,这是由于,上述mfr为1g/10min以上时,粘接部的耐热性会相对地提高。

另一方面,理由在于通过使上述mfr为300g/10min以下,能够缩短基于介电加热的粘接时间,可以获得稳定的粘接性。

因此,优选使上述mfr为1~100g/10min、进一步优选为1~50g/10min。

需要说明的是,上述mfr的值可以基于jisk7210-1(2014)、在230℃、2.16kg负载的条件下进行测定。

(2)b成分

(种类)

就作为b成分的介电填料的种类而言,只要是具有能够通过例如频率28mhz或40mhz等高频的施加而发热的高介质损耗因子的高频吸收性填充剂则没有特殊限制。

因此,优选为氧化锌、碳化硅(sic)、锐钛矿型氧化钛、钛酸钡、锆钛酸钡、钛酸铅、铌酸钾、金红石型氧化钛、水合硅酸铝、碱金属或碱土金属的水合硅铝酸盐等具有结晶水的无机物质等中的单独一种或两种以上的组合。

这些中,特别优选为氧化锌、碳化硅,因为其种类丰富、且能够从各种形状、尺寸中选择,可根据用途而对介电粘接膜的粘接特性、机械特性加以改良,并且即使以较少量的配合也会富于发热性。

(配合量)

另外,相对于a成分100质量份,优选使b成分的配合量为5~800质量份范围内的值。

其理由在于,当b成分的配合量过度变少时,即使在进行了介电加热处理的情况下,也有时会缺乏发热性、a成分的熔融性过度下降、无法获得强固的粘接。

另一方面,理由在于当b成分的配合量过度变多时,可能导致进行了介电加热处理时的介电加热粘接膜的流动性过度下降。

因此,相对于a成分100质量份,更优选使b成分的配合量为30~600质量份范围内的值、进一步优选为50~300质量份范围内的值。

(平均粒径)

另外,优选使基于jisz8819-2(2001)而测定的b成分的平均粒径(中值粒径、d50)为0.1~30μm范围内的值。

其理由在于,当上述平均粒径不足0.1μm时,虽然也取决于填料的种类,但会因为在填料内部可极化的距离变小而使极化的程度变小。因此,进行高频施加时的反转运动降低,因此有时会导致介电加热性过度下降、难以实现被粘物彼此间的强固的粘接。

另一方面,随着平均粒径增大,在填料内部可极化的距离变大,因此极化的程度变大、进行高频施加时的反转运动变得剧烈,因此介电加热性提高。

然而,如果平均粒径超过30μm,则与周围的介电填料之间的距离短,因此会受到其电荷的影响而导致进行高频施加时的反转运动降低、介电加热性过度下降,或难以实现被粘物彼此间的强固的粘接。

因此,更优选使b成分的平均粒径为1~30μm范围内的值、进一步优选为2~25μm范围内的值、最优选为3~20μm范围内的值。

(3)添加剂

另外,优选在介电加热粘接膜中配合增粘剂、增塑剂、蜡、着色剂、抗氧剂、紫外线吸收剂、抗菌剂、偶联剂、粘度调整剂、除介电填料以外的有机或无机填充剂等中的至少一种的各种添加剂。

增粘剂、增塑剂可以改良介电加热粘接膜的熔融特性、粘接特性。作为增粘剂,可列举例如:松香衍生物、聚萜烯树脂、芳香族改性萜烯树脂及其氢化物、萜烯酚醛树脂、香豆酮-茚树脂、脂肪族类石油系树脂、芳香族类石油树脂及其氢化物。

另外,作为增塑剂,可示例出例如:石蜡系加工油、环烷烃系加工油、或芳香族系加工油等石油系加工油、蓖麻油或妥尔油等天然油、苯二甲酸二丁酯、苯二甲酸二辛酯或己二酸二丁酯等二元酸二烷基酯、液态聚丁烯或液态聚异戊二烯等低分子量液态聚合物。

该情况下,也取决于添加剂的种类及其配合用途等,但通常优选为介电加热粘接膜的整体量的0.1~20质量%范围内的值、更优选为1~10质量%范围内的值、进一步优选为2~5质量%范围内的值。

2.介电加热粘接膜

(1)厚度

另外,优选使介电加热粘接膜的厚度为通常10~2,000μm范围内的值。

其理由在于,当介电加热粘接膜的厚度为10μm的值时,可能导致被粘物彼此间的粘接强度急剧下降。

另一方面,理由在于当介电加热粘接膜的厚度超过2,000μm时,可能会卷成卷状、或进而导致难以适用于卷对卷方式。

因此,虽然也取决于介电加热粘接膜的用途等,但通常更优选使介电加热粘接膜的厚度为100~1,000μm范围内的值、进一步优选为200~600μm范围内的值。

(2)介电特性(tanδ/ε’)

另外,关于作为介电加热粘接膜的介电特性的介电损耗角正切(tanδ)、介电常数(ε’),也可以基于jisc2138:2007而进行测定,但可以基于阻抗材料法(impedancematerialmethod)而实现简便且准确的测定。

即,优选使介电特性(tanδ/ε’)为0.005以上的值,所述介电特性(tanδ/ε’)是由使用阻抗材料装置等测定的介电损耗角正切(tanδ)除以同样地测定的介电常数(ε’)而得到的值。

其理由在于,当上述介电特性低于0.005时,无论a成分的种类等如何,即使在进行了介电加热处理的情况下,也有时不会发生给定的发热、难以将被粘物彼此强固地粘接。

但如果介电特性的值过度变大,则可能导致能够使用的a成分的种类、介电填料的种类过度受到限制、或总光线透射率急剧下降。

因此,更优选使介电加热粘接膜的介电特性为0.008~0.05范围内的值、进一步优选为0.01~0.03范围内的值。

需要说明的是,上述介电加热粘接膜的介电特性的测定方法在后述的实施例1中进行详细说明。

(3)总光线透射率

另外,作为介电加热粘接膜的总光线透射率,优选为1%以上的值。

其理由在于,当上述总光线透射率(%)低于1%时,在介电加热粘接膜的厚度过厚的情况下,基于目测而向给定部位的定位有时会在事实上变得困难。

需要说明的是,关于介电加热粘接膜的总光线透射率的上限值并没有特殊限制,但当上述总光线透射率的值过度变大时,可能导致能够使用的a成分、b成分的种类过度受到限制。

因此,更优选使介电加热粘接膜的总光线透射率为5~99%范围内的值、进一步优选为10~95%范围内的值。

需要说明的是,已明确的是,在使用作为a成分而优选的聚烯烃树脂、作为b成分而优选的介电填料,并使它们为适宜的配合比率(约100重量份:156重量份)时,其总光线透射率通常会达到50%左右。

此外,对于介电加热粘接膜的总光线透射率(%)的测定方法,在后述的实施例1中进行详细说明。

(4)熔点或软化点

另外,使作为介电加热粘接膜的熔点或软化点为80~200℃范围内的值。

即,如上所述,可以与a成分同样地使用差示扫描量热仪(dsc)等来测定介电加热粘接膜的熔点或软化点。

进而,当介电加热粘接膜的熔点或软化点为低于80℃的值时,可能导致耐热性变得不充分、耐热蠕变性显著下降而损害发生了熔粘的被粘物的保存稳定性。

另一方面,当介电加热粘接膜的熔点或软化点为超过200℃的值时,可能导致介电加热处理中的焊接需要过长的时间、或粘接强度反而下降。

因此,更优选使介电加热粘接膜的熔点或软化点为100~190℃范围内的值、进一步优选为130~180℃范围内的值。

(5)熔解热

使介电加热粘接膜的基于jisk7121(1987)而测定的熔解热为1~80j/g范围内的值。

其理由在于,通过将介电加热粘接膜规定为给定范围内的值,能够谋求使用环境等中的耐热性与介电加热处理中的焊接性之间的良好平衡。

更具体而言,当上述熔解热为低于1j/g的值时,可能导致耐热性变得不充分,高频粘接性、粘接力(拉伸剪切力)、以及耐热蠕变性显著下降。

另一方面,当上述熔解热为超过80j/g的值时,可能导致介电加热处理中的焊接需要过长时间,或所得粘接力(拉伸剪切力)过度下降。

因此,更优选使上述熔解热为5~70j/g范围内的值、进一步优选为10~60j/g范围内的值。

需要说明的是,有时会由于添加剂的配合等而使得例如所得dsc曲线图中存在多个熔解峰,但在这样的情况下,可以由多个熔解峰的合计量而计算出介电加热粘接膜的熔解热。

(6)粘弹性特性

另外,关于介电加热粘接膜的粘弹性特性(动态弹性模量),在频率10hz的条件下测定的储能模量(e’)优选在室温及80℃的温度下均为1×106~1×1010pa范围内的值。

其理由在于,当上述储能模量在室温或80℃下为低于1×106pa的值时,介电加热粘接膜的表面会表现出粘性,有时会因粘连而难以以卷状进行保管。

另一方面,理由在于当上述储能模量在室温或80℃下为超过1×1010pa的值时,介电加热粘接膜容易变为脆性,有时难以从卷展开、或以高张力粘贴至被粘物。

[第2实施方式]

第2实施方式涉及使用了介电加热粘接膜的粘接方法,其用于通过介电加热处理而将由相同材料或不同材料形成的一对被粘物粘接,所述介电加热粘接膜含有作为a成分的热塑性树脂、及作为b成分的介电填料,并且满足下述(i)~(ii)的条件:

(i)按照jisk7121(1987)中规定的方法测定的熔点或软化点为80~200℃范围内的值;

(ii)基于jisk7121(1987)而测定的熔解热为1~80j/g范围内的值。

并且,该粘接方法依次包括下述工序(1)及(2):

(1)将介电加热粘接膜夹持在一对被粘物之间的工序;

(2)使用介电加热装置,在高频输出功率为0.1~20kw及高频施加时间1秒钟以上且低于40秒钟的条件下,对夹持在一对被粘物之间的介电加热粘接膜进行介电加热处理的工序。

以下,针对第2实施方式中的介电加热粘接膜的粘接方法,以与第1实施方式不同的点为中心进行说明。

1.工序(1)

工序(1)是将介电加热粘接膜配置于给定部位的工序,其中,将介电加热粘接膜夹持在由相同或不同材料形成的多个被粘物之间。

此时,通常优选将介电加热粘接膜切割为给定形状、并夹持在多个被粘物之间。

进一步而言,应将介电加热粘接膜以不发生位置偏移的方式配置于准确的位置,还优选在介电加热粘接膜的一面或两面、并且是整个面或部分面设置粘合部、或进一步在介电加热粘接膜的一部分设置临时固定用孔或突起等。

另外,作为在第2实施方式中使用的被粘物的材质,没有特殊限制,可以是有机、无机、及金属等材料,还可以是它们的复合材料。作为有机材料,可列举:聚丙烯树脂、聚乙烯树脂、丙烯腈-丁二烯-苯乙烯共聚物树脂(abs树脂)、聚碳酸酯树脂、尼龙6、尼龙66等聚酰胺树脂、聚对苯二甲酸丁二醇酯树脂(pbt树脂)、聚缩醛树脂(pom树脂)、聚甲基丙烯酸甲酯树脂、聚苯乙烯树脂等塑料材料、苯乙烯-丁二烯橡胶(sbr)、乙丙橡胶(epr)、有机硅橡胶等橡胶材料。作为无机材料,可列举玻璃等。

另外,作为优选的被粘物的材质,还可列举作为玻璃纤维与上述塑料材料的复合材料的纤维增强树脂(frp)。

2.工序(2)

工序(2)是如图1所示地,使用介电加热装置在例如高频输出功率0.1~20kw及施加时间1秒钟以上且低于40秒钟的条件下,对夹持在被粘物彼此间之间的介电加热粘接膜进行介电加热处理的工序。

以下,针对在工序(2)中使用的介电加热粘接装置、其介电加热条件进行说明。

(1)介电加热粘接装置

介电加热粘接装置10如图1所示,是用于经由夹持在第1被粘物12及第2被粘物14之间的介电加热粘接膜13,在进行介电加热处理的同时,通过第1高频施加电极16及第2高频施加电极18的加压处理而将第1被粘物12及第2被粘物14粘接的装置。

进而,在上述介电加热粘接装置10中,在方向相对地设置的第1高频施加电极16及第2高频施加电极18的各个电极上,分别配备有例如高频电源20,以用于施加频率28mhz或40mhz左右的高频。

另外,在向两电极间施加高频电场时,在第1被粘物及第2被粘物的重合部分,介电加热粘接膜、即,均匀分散在该介电加热粘接膜中的介电加热介质会吸收高频能量。

此外,介电加热介质作为发热源而发挥作用,由于其发热,作为介电加热粘接膜的主成分的烯烃类树脂可发生熔融,并最终将第1被粘物及第2被粘物粘接。

因此,如图1所示,将同时用作加压装置的第1高频施加电极16及第2高频施加电极18的向着压缩方向的加压也一并考虑进去,通过介电加热粘接膜13的加热熔融,能够实现对第1被粘物12及第2被粘物14的强固粘接。

(2)介电加热粘接条件

因此,介电加热粘接条件可以进行适当变更,但通常,作为高频输出功率,优选为0.1~20kw范围内的值、更优选为0.2~10kw范围内的值、进一步优选为0.2~5kw范围内的值。

另外,关于高频的施加时间,也优选为低于1~40秒钟的范围内的值、更优选为5~30秒钟的范围内的值、进一步优选为10~20秒钟的范围内的值。

此外,优选使高频的频率为1~100mhz范围内的值、更优选为5~80mhz范围内的值、进一步优选为10~50mhz范围内的值。具体而言,由国际电信联盟分配的工业用频带13.56mhz、27.12mhz、40.68mhz也可用于本实施方式的介电加热粘接方法。

实施例

[实施例1]

1.介电加热粘接膜的制作

分别在容器内称量了作为a成分的无规聚丙烯类树脂(primepolymer株式会社制、primepolypron-744np、熔点:130℃、表1中记作a1-1)100质量份、和作为b成分的氧化锌(堺化学工业株式会社制、lpzinc11,平均粒径:11μm、表1中记作b1)156质量份。

接着,如表1所示地将a成分和b成分进行预混之后,供给至30mmφ双螺杆挤出机的料斗,设定料筒设定温度为180~200℃、模头温度为200℃,通过进行熔融混炼而得到了粒状的粒料。

接着,将所得粒状的粒料投入设置有t型模头的单螺杆挤出机的料斗,设为料筒温度200℃、模头温度200℃的条件,从t型模头挤出厚度400μm的膜状熔融混炼物,并冷却至室温,由此得到了实施例1的介电加热粘接膜。

需要说明的是,图2(a)~(b)中分别以照片(倍率150倍)形式示出了介电加热粘接膜的表面及剖面状态。

2.介电加热粘接膜的评价

(1)平均厚度

对于切割为给定大小的介电加热粘接膜的厚度,使用千分尺测定10个部位,并计算出其平均值,作为介电加热粘接膜的平均厚度(也简称为厚度)。

(2)熔解热

对于介电加热粘接膜,使用作为差示扫描量热仪(dsc)的q2000(tainstruments公司制),得到dsc曲线图(熔解曲线),并由其熔解峰所对应的给定面积而计算出了a1成分的熔解热。

(3)熔点或软化点

对于作为介电加热粘接膜的熔点,使用作为差示扫描量热仪(dsc)的q2000(tainstruments公司制)而进行了测定。

更具体而言,在使测定试样(介电加热粘接膜)10mg升温至250℃之后,以10℃/分的降温速度冷却至25℃而使其发生结晶化,再次以10℃/分的升温速度进行加热而使其熔解,将此时在dsc曲线图(熔解曲线)上观察到的熔解峰的峰值温度作为介电加热粘接膜的熔点。

(4)介电特性(tanδ/ε’)

对于切割为给定大小的介电加热粘接膜,使用阻抗材料分析仪e4991(agilent公司制),在23℃、频率40mhz的条件下分别测定介电常数(ε’)及介电损耗角正切(tanδ),并计算出了介电特性(tanδ/ε’)的值。

(5)总光线透射率

对于切割为给定大小的介电加热粘接膜,基于jisk7361-1(1997)、使用日本电色工业社制浊度仪ndh5000,采用d65光源测定了总光线透射率。

(6)高频粘接性

将切割为给定大小的介电加热粘接膜(粘接膜)夹入作为被粘物的2片玻璃纤维增强聚丙烯板(25cm×10cm×1.5mm)之间的给定部位。

接着,在固定于高频介电加热装置(yamamotovinita株式会社制yrp-400t-a)的电极间的状态下,在频率40mhz、输出功率200w的条件下施加给定时间高频,制成了将粘接膜和被粘物粘接而成的试验片。

对于所得试验片,按照以下基准评价了高频粘接性。

◎:经低于10秒钟的高频施加,被粘物彼此间通过粘接膜而发生了粘接。

○:经10秒钟以上且低于40秒钟的高频施加,被粘物彼此间通过粘接膜而发生了粘接。

△:经40秒钟以上且低于60秒钟的高频施加,被粘物彼此间通过粘接膜而发生了粘接。

×:即使经过60秒钟高频施加,被粘物彼此间也未通过粘接膜而发生粘接。

(7)拉伸剪切试验

使用万能拉伸试验机(instron公司制instron5581),在拉伸速度100mm/分的条件下,对在上述(6)高频粘接性的评价中得到的试验片的拉伸剪切力进行了测定,进而对破坏模式进行了观察。

◎:为材料破坏或凝聚破坏,拉伸剪切强度为6mpa以上。

○:为材料破坏或凝聚破坏,拉伸剪切强度为2mpa以上且低于6mpa。

△:为界面剥离,拉伸剪切强度低于2mpa。

×:由于在高频粘接性的评价中未能发生粘接,或粘接状态未能保持至进行试验为止、被粘物发生了脱落,因此未能进行拉伸剪切试验。

(8)耐热蠕变试验

在上述(6)高频粘接性的评价中得到的试验片的端部附加100g的重物,使其在80℃的烘箱中垂下来,静置了24小时。

最后,从烘箱中取出试验片,恢复至室温后,按照下述基准对耐热蠕变试验进行了评价。

◎:经过24小时后也保持了粘接。

○:粘接直至12小时为止,但在经过24小时时重物发生了脱落。

△:重物在12小时以内发生了脱落。

×:由于在高频粘接性的评价中未能发生粘接,或粘接状态未能保持至进行试验为止、被粘物发生了脱落,因此未能进行耐热蠕变试验。

[实施例2]

在实施例2中,将a成分的种类变更为烯烃类热塑性弹性体(住友化学(株)制、espolextpe-4675、熔点:160℃、表1中记作a-2),除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例3]

在实施例3中,将a成分的种类变更为苯乙烯类热塑性弹性体(住友化学(株)制、espolexsb-2400、熔点:162℃、表1中记作a-3),除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例4]

在实施例4中,使a成分的种类为在实施例1中使用的a-170质量份、和马来酸酐改性聚丙烯(三洋化成工业(株)制、yumex1001、熔点:142℃、表1中记作a-4)30质量份的组合,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例5]

在实施例5中,将a成分的种类变更为乙烯-(甲基)丙烯酸共聚物(dow-mitsuipolychemicals公司制、nucrel410、熔点:98℃、表1中记作a-5),除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例6]

在实施例6中,使b成分的种类为氧化锌(堺化学工业株式会社制、lpzinc2,平均粒径:2μm、比重:5.6、表1中记作b-2)156质量份,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例7]

在实施例7中,使b成分的种类为碳化硅(太平洋无规(株)制、gmf15,平均粒径:0.5μm、比重:5.6、表1中记作b-3)156质量份,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例8]

在实施例8中,将a成分的种类变更为结晶性聚酯树脂(东洋纺(株)制、byrongm-915、熔点:139℃、重均分子量:45000、表1中记作a-6)100质量份,并且使被粘物为玻璃纤维增强聚丙烯板/abs板(分别为15cm×10cm×1.5mm)的组合,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例9]

在实施例9中,将a成分的种类变更为结晶性聚酯树脂(东洋纺(株)制、byrongm-920、熔点:107℃、重均分子量:30000、表1中记作a-7)100质量份,同时使b成分的种类为氧化锌(和光纯药工业(株)制、平均粒径:0.4μm、比重:5.6、表1中记作b-4)156质量份,进一步使被粘物为玻璃纤维增强聚丙烯板/abs板(分别为15cm×10cm×1.5mm)的组合,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例10]

在实施例10中,使实施例1中使用的b-1的配合量为267质量份,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[实施例11]

在实施例11中,使实施例1中使用的b-1的配合量为67质量份,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[比较例1]

在比较例1中,将a成分的种类变更为均聚聚丙烯(japanpolypropylene(株)制、novatecppmh4、熔点:165℃、mfr:5g/10分、表1中记作a-8)100质量份,同时将b成分的氧化锌的种类变更为在实施例9中使用的b4、156质量份,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[比较例2]

在比较例2中,仅使用了在实施例1中使用的a1的无规聚丙烯100质量份、未配合b成分,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

[比较例3]

在比较例3中,将a成分的种类变更为乙烯/α-烯烃共聚物(住友化学(株)制、exelenfx352、熔点:70℃、mfr:4g/10分、表1中记作a1-9)100质量份,同时将b成分的氧化锌的种类变更为在实施例9中使用的b4、156质量份,除此以外,与实施例1同样地制成了介电加热粘接膜并进行了评价。

工业实用性

根据本发明的介电加热粘接膜等,通过在具有给定熔点或软化点的同时、将熔解热控制于给定范围内的值,即使是短时间的介电加热处理也能够获得对于各种被粘物的强固的粘接力。

进而,还能够确保给定的透明性(总光线透射率),因此无需使用给定的定位构件即能够追随着被粘物的给定表面的期望位置而进行载置。

另外,如果是本发明的使用了介电加热粘接膜的粘接方法,则可以利用介电加热装置而从外部仅对给定部位进行局部性的加热,因此在大型且复杂的立体结构体、或厚且复杂的立体结构等中,即使是要求高尺寸精度的被粘物,对于粘接而言也是非常有效的。

而且,根据本发明的介电加热粘接膜等,能够适当控制粘接膜的厚度、储能模量等物性,因此还能够适用于卷对卷方式,并且也可以通过冲裁加工等而根据多个被粘物之间的粘接面积、形状来将介电加热粘接膜处理成任意的面积、形状,可以说在制造方面的优点也是显著的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1