基于氧化石墨颗粒协同稳定的强化泡沫体系及其制备方法与流程

文档序号:15223564发布日期:2018-08-21 17:48阅读:153来源:国知局

本发明涉及油气田开发工程技术领域,特别是指一种基于氧化石墨颗粒协同稳定的强化泡沫体系及其制备方法。



背景技术:

泡沫驱作为一种提高原油采收率的技术手段应用广泛,至今已经有近60年的应用历史。泡沫可以引起气相相对渗透率降低,延缓气体指进。泡沫质量是决定泡沫驱油效率的关键因素,然而泡沫作为一种热力学上不稳定的分散体系,这种不稳定性给泡沫的应用带来了巨大影响。国内外的学者们围绕如何提高泡沫稳定性进行了大量研究,也提出了许多方法。

研发新型的起泡剂是一种重要的方法。目前对起泡剂的研发主要集中在表面活性剂的合成或复配。之前研究发现适当的延长烷基链有助于增加泡沫的稳定性。由于表面活性剂自身化学特性的限制,虽然可以产生足够的起泡体积,但是其稳定性较差。为了增加气泡的稳定性,在起泡剂中加入聚丙烯酰胺、蛋白、多肽等聚合物,通过提高基液的粘度,降低泡沫流动性,从而达到稳泡的效果。

中国专利文件zl201210223060.0公开了一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法。复合泡沫体系由阴离子表面活性剂,改性二氧化硅纳米颗粒,反离子盐及水组成。利用该复合泡沫体系产生的泡沫,比普通表面活性剂稳定的泡沫半衰期长,起泡体积大;但是该体系中所用纳米颗粒制备过程复杂,造价昂贵,无法在油气田开发领域大规模应用。

中国专利文件zl201510600689.6公开了一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法。该方法所用的新型无机微细颗粒为大气中捕集筛选到的粒径≤2.5μm的细颗粒物,与油茶皂甙和月桂酰基谷氨酸钠组成的表面活性剂复配形成稳定泡沫体系。该类微细颗粒来源广泛,多为燃煤电厂固体废弃物,将其应用于油田提高采收率可实现其资源化利用,但是该类微细颗粒受各批次煤炭种类、成分及燃烧程度的影响较为明显,成分组成较为复杂多变,使得其与表面活性剂复配协同稳定泡沫的效果难以控制。



技术实现要素:

本发明要解决的技术问题是提供一种成本低、性能稳定、制备方法简单的基于氧化石墨颗粒协同稳定的强化泡沫体系及其制备方法。

为解决上述技术问题,本发明提供技术方案如下:

一方面,提供一种基于氧化石墨颗粒协同稳定的强化泡沫体系,由以下重量份的组分组成:阳离子表面活性剂0.3~0.7份,分散剂0.1~0.3份,氧化石墨颗粒0.2~0.5份,水100份;

其中,阳离子表面活性剂为十六烷基三甲基溴化铵,氧化石墨颗粒经超声作用分散为尺度更小的氧化石墨片,均匀稳定的分散在水中,表面带负电,十六烷基三甲基溴化铵在水溶液中带正电,通过静电作用将十六烷基三甲基溴化铵吸附到氧化石墨颗粒表面;十六烷基三甲基溴化铵的疏水链段伸向水溶液,增加了氧化石墨片表面疏水性能。

优选的,所述分散剂为木质素磺酸钠;木质素磺酸钠作为一种高分子聚合物骨架,形成三维网状结构的将石墨烯颗粒包围,进一步降低泡沫的排液,从而提高泡沫的稳定性。

优选的,所述水为蒸馏水。

优选的,所述氧化石墨颗粒为100目鳞片状石墨,粒径为3-5μm,对水的润湿角为30°~50°。

本发明所使用的氧化石墨颗粒可以为市售产品,也可以经hummers方法制备而成,具体方法如下:

步骤1:在冰水浴中放入大烧杯,加入110ml浓硫酸,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右;

步骤2:加100目鳞片状石墨5g,再加入2.5g硝酸钠,然后缓慢加入15g高锰酸钾,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色,将冰水浴换成温水浴,温度控制在32℃~40℃,反应30min,溶液呈紫绿色;

步骤3:反应结束之后,缓慢加入220ml去离子水,加热保持温度70~100℃左右,缓慢加入质量浓度为5%双氧水进行反应,反应液颜色变成金黄色;

步骤4:反应后的溶液在离心机中多次离心,用水洗涤,直至溶液中无硫酸根离子,40~50℃温度下烘干即得氧化石墨颗粒。

另一方面,本发明还提供上述基于氧化石墨颗粒协同稳定的强化泡沫体系的制备方法,包括:

步骤1:将氧化石墨颗粒加入到水中进行超声分散,得到片层状氧化石墨分散液;

步骤2:将十六烷基三甲基溴化铵和木质素磺酸盐加入到步骤1得到的氧化石墨分散液中,搅拌,得到复配分散液;

步骤3:将复配分散液用waringblender法搅拌,生成泡沫后即得。

优选的,所述步骤1中,氧化石墨颗粒采用100目鳞片状石墨,粒径3-5μm,对水的润湿角为30°~50°;氧化石墨的质量浓度为0.2~0.5wt.%;步骤1制备得到的片层状氧化石墨优选粒径为0.5-2μm,单层厚度为1-3nm。氧化石墨具有优秀的耐温性能,所以本发明提供的强化泡沫体系具有较强的耐温性。

优选的,所述步骤1中,超声分散的条件为时间2h,超声功率为500-1000w。

优选的,所述步骤2中,十六烷基三甲基溴化铵的质量浓度为0.3~0.7wt.%时,氧化石墨片与水的接触角为80°~90°,这种具有一定疏水性质的氧化石墨薄片,能够不可逆的吸附到气泡界面液膜上,并且通过凝絮作用,在界面上形成一层致密层,增加了泡沫液膜的粘弹性,降低了泡沫的排液以及气体扩散。

优选的,木质素磺酸盐的质量浓度为0.1~0.3wt.%。

优选的,所述步骤2中,搅拌的条件为温度25℃-30℃,时间0.5-1h。

优选的,所述步骤2中,复配分散液中片层状氧化石墨与水的接触角为80°~90°。

优选的,所述步骤3中,waringblender法中以8000rpm的速度搅拌3分钟,气源为空气、氮气或二氧化碳气体。

本发明具有以下有益效果:

上述方案中,本发明首次使用阳离子表面活性剂与氧化石墨颗粒制备得到稳定的泡沫体系,增加了氧化石墨颗粒的疏水性能,能够不可逆的吸附到气泡界面液膜上,并且通过凝絮作用,在界面上形成一层致密层,增加了泡沫液膜的粘弹性,降低了泡沫的排液以及气体扩散;配合使用木质素磺酸盐,使氧化石墨颗粒在溶液相中形成三维网状结构,进一步降低泡沫的排液,从而提高泡沫的稳定性;且本发明成本低、制备工艺简单,室内模拟可显著提高采收率。

附图说明

图1为本发明的氧化石墨颗粒超声分散为片层层状氧化石墨示意图;

图2为本发明实施例2中使用的氧化石墨颗粒的扫描电镜图像;

图3为本发明实施例2制备方法步骤1中得到的片层状氧化石墨的透射电镜图像。

具体实施方式

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。

本发明针对现有技术中成本高、且泡沫体系稳定性能差的问题,提供一种基于氧化石墨颗粒协同稳定的强化泡沫体系及其制备方法。

实施例1

氧化石墨颗粒的制备方法,包括:

步骤1:在冰水浴中放入大烧杯,加入110ml浓硫酸,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右;

步骤2:加100目鳞片状石墨5g,再加入2.5g硝酸钠,然后缓慢加入15g高锰酸钾,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色,将冰水浴换成温水浴,温度控制在32℃~40℃,反应30min,溶液呈紫绿色;

步骤3:反应结束之后,缓慢加入220ml去离子水,加热保持温度70~100℃左右,缓慢加入质量浓度为5%双氧水进行反应,反应液颜色变成金黄色;

步骤4:反应后的溶液在离心机中多次离心,用水洗涤,直至溶液中无硫酸根离子,40~50℃温度下烘干即得氧化石墨颗粒。

通过sem测定得到的氧化石墨颗粒平均粒径为3.5μm,基于悬滴法测得其对水的润湿角为35°。

需要说明的是,发明人经过验证,氧化石墨颗粒的粒径优选3-5μm,对水的润湿角为30°~50°范围内,自制氧化石墨颗粒与市售氧化石墨颗粒(粒径3-5μm,润湿角45°)对强化泡沫体系的影响差异微小,为了节约时间成本,本发明使用的氧化石墨颗粒均购于南京先丰纳米技术有限公司。

实施例2

基于氧化石墨颗粒协同稳定的强化泡沫体系,由以下重量份的组分组成:十六烷基三甲基溴化铵0.7份,木质素磺酸盐0.1份,氧化石墨颗粒0.3份,水100份。

基于氧化石墨颗粒协同稳定的强化泡沫体系的制备方法,包括:

步骤1:将粒径为3-5μm,对水的润湿角为30°~50°的氧化石墨颗粒0.3g加入到100g水中,30℃下进行超声分散2h,超声功率为800w,得到粒径为0.5-2μm,单层厚度为1-3nm的片层状氧化石墨分散液;

步骤2:将0.7g十六烷基三甲基溴化铵和0.1g

木质素磺酸盐加入到步骤1得到的氧化石墨分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中片层状氧化石墨与水的接触角约为85°;

步骤3:将复配分散液用waringblender法以8000rpm的速度搅拌3分钟制备出稳定的空气泡沫,即得。

实施例3

基于氧化石墨颗粒协同稳定的强化泡沫体系,由以下重量份的组分组成:十六烷基三甲基溴化铵0.7份,木质素磺酸盐0.1份,氧化石墨颗粒0.3份,水100份。

基于氧化石墨颗粒协同稳定的强化泡沫体系的制备方法除采用waringblender方法搅拌过程中气源使用的为氮气,其他步骤与实施例2完全相同。

实施例4

基于氧化石墨颗粒协同稳定的强化泡沫体系,由以下重量份的组分组成:十六烷基三甲基溴化铵0.5份,木质素磺酸盐0.3份,氧化石墨颗粒0.3份,水100份。

基于氧化石墨颗粒协同稳定的强化泡沫体系的制备方法与实施例3完全相同。

由于篇幅所限,为了进一步说明本发明取得的有益效果,仅以实施例3为例,设置相关的对比例,进行性能验证。实施例及对比例中使用试剂及材料,如无特殊说明,均可通过商业途径得到。应当指出,对于本领域的技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

对比例1

泡沫体系,由以下重量份的组分组成:十六烷基三甲基溴化铵0.7份,氧化石墨颗粒0.3份,水100份。

泡沫体系的制备方法包括:

步骤1:将粒径为3-5μm,对水的润湿角为30°~50°的氧化石墨颗粒0.3g加入到100g水中,30℃下进行超声分散2h,超声功率为800w,得到粒径为0.5-2μm,单层厚度为1-3nm的片层状氧化石墨分散液;

步骤2:将0.7g十六烷基三甲基溴化铵加入到步骤1得到的氧化石墨分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中片层状氧化石墨与水的接触角约为85°;

步骤3:将复配分散液用waringblender法以8000rpm的速度搅拌3分钟,搅拌过程中向罐体内持续通入氮气,即得稳定的氮气泡沫。

对比例2

泡沫体系,由以下重量份的组分组成:木质素磺酸盐0.1份,氧化石墨颗粒0.3份,水100份。

泡沫体系的制备方法包括:

步骤1:将粒径为3-5μm,对水的润湿角为30°~50°的氧化石墨颗粒0.3g加入到100g水中,30℃下进行超声分散2h,超声功率为800w,得到氧化石墨分散液;

步骤2:将0.1g木质素磺酸盐加入到步骤1得到的氧化石墨分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中片层状氧化石墨与水的接触角约为45°;

步骤3:将复配分散液用waringblender法以8000rpm的速度搅拌3分钟,搅拌过程中向罐体内持续通入氮气,即得稳定的氮气泡沫。

对比例3

泡沫体系,由以下重量份的组分组成:十六烷基三甲基溴化铵0.7份,木质素磺酸盐0.1份,水100份。

步骤1:将0.7g十六烷基三甲基溴化铵和0.1g木质素磺酸盐加入到100g水中,在30℃下搅拌1h,静置10min;

步骤3:用waringblender法以8000rpm的速度搅拌3分钟,搅拌过程中向罐体内持续通入氮气,即得稳定的氮气泡沫。

对比例4

泡沫体系,由以下重量份的组分组成:十六烷基三甲基溴化铵0.7份,木质素磺酸盐0.1份,100目鳞片状石墨0.3份,水100份。

泡沫体系的制备方法,与实施例3相同。

对比例5

泡沫体系,由以下重量份的组分组成:十二烷基苯磺酸钠0.7份,木质素磺酸盐0.1份,100目鳞片状石墨0.3份,水100份。

泡沫体系的制备方法,与实施例3相同。

实施例及对比例中产品的起泡性和稳定性评价采用常规实验室方法waringblender法测定。

waringblender搅拌法是常用的搅拌方法之一,常采用此方法测定起泡剂的气泡能力和形成泡沫的稳定性,搅拌法采用高速搅拌器测定起泡剂性能。将定量起泡剂溶液倒入量筒中,一定的速度搅拌一定的时间,记录停止搅拌时泡沫体积v0(ml)和泡沫析出一半液体时的时间(成为半衰期)t0.5(s),用v0表示气泡能力,用t0.5表示泡沫稳定性。

取100ml起泡液采用waringblender方法以8000rpm的速度搅拌3分钟,搅拌完成后将泡沫倒入1000ml量筒中,在常温常压下记录泡沫的初始体积和泡沫中液体析出50ml所用的时间,可验证泡沫的稳定性。

上述实施例2-4及对比例1-5制备的泡沫体系的起泡体积及析液半衰期的性能数据见表1。

表1

由上表可知,发明提供的基于氧化石墨颗粒协同稳定的强化泡沫体系,具有优异的起泡性能及半衰期时间长,气泡稳定性能好的特点。

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1