一种检测有机产品中铅离子的光致发光探针的制作方法

文档序号:18459959发布日期:2019-08-17 01:56阅读:756来源:国知局
一种检测有机产品中铅离子的光致发光探针的制作方法

本发明涉及离子检测技术领域,具体为一种检测有机产品中铅离子的光致发光探针。



背景技术:

铅离子是一种对人体极为有害的有毒重金属离子,即使在非常低的剂量水平下也会破坏神经系统和消化系统,如记忆力下降,头晕和消化道溃疡。各种卫生已实施pb2+离子标准,如饮用水(~0.01mg/l),食用油(~0.1mg/kg)和化妆品(~10mg/kg)等。目前,已有开发用于水中的pb2+离子检测,例如,电感耦合等离子体质谱仪,原子吸收光谱,荧光传感和电化学等。然而,在油溶性环境检测pb2+仍然受到限制。例如:化妆品,面膜,染发剂和食用油等还需要用传统的电感耦合等离子体质谱仪和原子吸收光谱,因为复杂的样品预处理,操作程序和昂贵的设备.为了克服这些问题,迫切需要开发具有高灵敏度,高选择性和低成本的新型油溶性荧光材料,用于pb2+检测。



技术实现要素:

本发明的目的在于提供一种检测有机产品中铅离子的光致发光探针,以解决上述背景技术中提出的铅离子检测复杂程度高且检测设备昂贵的问题。

为实现上述目的,本发明提供如下技术方案:一种检测有机产品中铅离子的光致发光探针,光致发光探针由无铅钙钛矿结构组成。

优选的,所述钙钛矿的结构为abx3,所述a为fa、ma、k、rb或cs等任意一种阳离子,所述b为sn或bi等任意一种金属阳离子,所述x为cl、br或i等任意一种卤族元素。

优选的,所述钙钛矿包括由a的组分不同所决定的有机钙钛矿和无机钙钛矿。

优选的,所述金属阳离子的钙钛矿量子点的改变由b的组分决定。

优选的,所述卤素元素的钙钛矿量子点的改变由x的组分决定。

优选的,所述钙钛矿量子点的尺寸由反应温度控制。

与现有技术相比,本发明的有益效果是:该荧光探针为cssnbr3结构,铅离子会替代该结构中的sn离子,从而形成cssn1-xpbxbr3结构,这种结构荧光量子产率高、光稳定性好,从而实现对铅离子的检测,其他重金属离子不被识别,不干扰测定。利用此荧光探针可实现对油性溶剂中铅离子的高选择性荧光检测。探针溶液的荧光强度与铅离子浓度在1×10-8m到1×10-1m范围内,呈现良好的线性关系,检测限为3.5×10-9m,可用于油性溶剂中离子浓度的定量检测。

附图说明

图一为本发明cssnbr3钙钛矿量子点结构示意图;

图二为本发明cssnbr3钙钛矿量子点透射电镜图;

图三为本发明cssnbr3钙钛矿量子点x射线衍射图;

图四为本发明时间分辨的荧光衰减拟合谱;

图五为本发明时间分辨的荧光衰减谱;

图六为本发明cssnbr3钙钛矿量子点归一化发射光谱和吸收谱;

图七为本发明cssnbr3钙钛矿量子点发射光谱;

图八为本发明荧光探针检测铅离子的线性关系图;

图九为本发明cssnbr3钙钛矿量子点响应时间图;

图十为本发明干扰离子对铅离子测定的影响图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明提供如下技术方案:一种检测有机产品中铅离子的光致发光探针,用于检测油性溶液中的铅离子。

使用cs作为a位阳离子;

使用sn作为b位金属阳离子;

使用br作为x位卤素阴离子。

步骤一合成荧光探针

1)取0.8g碳酸铯粉末、30ml十八烯和2.5ml油酸放入三颈瓶,在氮气保护下,用磁力加热搅拌器在120℃下搅拌碳酸铯粉末至溶解,得到油酸铯前驱体溶液;

2)取0.2g溴化锡粉末、1.5ml油酸、1.5ml油胺和15ml十八烯放入三颈瓶中,通氮气加热至120℃后搅拌至溶解,随后将温度升高至预设值,取1ml油酸铯前驱体迅速注入,反应一定时间后将三颈瓶放入冰水混合物中迅速冷却至室温;

3)将原始产物进行离心提纯,离心速率为9500rpm,时间为15分钟,取沉淀,加入甲苯再离心10分钟,取沉淀并再次溶于甲苯,得到cssnbr3量子点溶液。

步骤二荧光探针在铅离子中检测

准确取荧光探针0.1g,用甲苯溶解后,转移至500ml烧杯中定容,配制溶度为1×10-5m。

透射电镜的测定:透视电镜是使用hitachih-8100iv透射电子显微镜在200kv的加速电压下进行测试的。如图二所示,透射电镜图像显示成功制备了单分散和球形cssnbr3量子点,平均尺寸大约为13.8nm。

x射线衍射图的测试:x射线衍射图是使用α辐射(λ=1.54178)在brukeraxsd8衍射仪上以薄膜形式记录x射线衍射图案。薄膜的制备是采用旋涂的方式覆盖在硅片衬底表面,如图三所示,x射线衍射图显示cssnbr3量子点属于立方晶系。

时间分辨光谱的测试:时间分辨光谱是在290nm发光二极管光源激发下,通过单光子计数系统进行纳秒荧光寿命实验。如图四、图五所示,随着铅离子的增加,探针的荧光寿命逐渐增加。

荧光光谱的测试:是在室温环境下,连续的365nm光源照射下,使用sens-9000光谱仪记录所有样品的发射光谱。图六显示了添加铅离子和不添加铅离子的cssnbr3量子点的归一化吸收和光致发光谱。从图六中可以看出,激子吸收峰在499nm处和发射峰在522nm处。在添加铅离子后,cssnbr3量子点的吸收和发射光谱显示出15-16nm的红移,并且发射光谱的半高宽波长从49nm减小到32nm。此外,如图七所示,发射光谱随着铅离子的增加逐渐红移。如图八所示,发光强度和铅离子浓度呈良好的线性关系。荧光增强由以下等式描述:

i/i0=s|q|+k

式1

i和i0分别代表只有探针和探针加入铅离子之后的荧光强度,|q|是铅离子浓度,s是斜率,k是截距。在1×10-8——1×10-1m范围内线性关系良好(s=10.260),k为3.5×10-9m。如图九所示,响应时间为6分钟。如图十所示,cssnbr3量子点具有高选择性,在加入k+,al3+,cs+,na+,mg2+,ca2+,co2+,ni2+,mn2+,fe3+,zn2+,yb3+,er3+,sn2+,au3+等金属离子,cssnbr3量子点荧光强度并没有显著的提高。

虽然在上文中已经参考了一些实施例对本发明进行描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效无替换其中的部件。尤其是,只要不存在结构冲突,本发明所披露的各个实施例中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行穷举的描述仅仅是处于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施例,而且包括落入权利要求的范围内的所有技术方案。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1