汽车水平探测的制作方法

文档序号:3824618阅读:353来源:国知局
专利名称:汽车水平探测的制作方法
技术领域
本发明涉及一种按独立权利要求1前序部分所述的用于测量汽车的弹性跳动位置的装置以及一种具有独立权利要求9和10前序部分所述特征的汽车。
背景技术
为了调节高度比如使用通过检测旋转角来确定弹性跳动状态的传感器,其目的是即使在不同的负载状态中也使汽车保持相同的水平。这些传感器在车轮悬架的范围内多数在车轮罩的范围内固定在汽车底盘上,并且借助于转向节与导向摇臂相连接,从而因载荷而产生的弹性跳动状态的变化使导向摇臂接近底盘,并且由此引起所述固定在导向摇臂上的旋转角传感器的相应的偏转。所述旋转角传感器发出作为电参数的转向节角度变化,用于获得一个控制信号,通过该控制信号借助于相应的信号处理来进行汽车的水平调节。这种传感器的复杂的结构以及为此所必需的很大的结构空间是这种高度调节的缺点。将该传感器曝露布置在汽车的车轮罩中,该传感器会因此十分容易地比如因石击而遭到损坏。另一个缺点就是因机械运动引起的磨损以及随之增加的信号不准确性。
DE4413341C2公开了一种传感器装置,该传感器装置由于使用了借助于磁场传感器的无接触测量装置,所以磨损极少。在该实施例中,在两个不同的构件上布置了两个同向地彼此定向的永久磁体,一个布置在导向摇臂上,另一个则布置在底盘上。借助于固定在所述永久磁体之间的非对称布置的磁场传感器来探测到比如因汽车载荷而产生的弹性跳动位置的变化,方法是该传感器将因高度变化以及与此相关的所述两个永久磁体彼此间的相对间距的变化所引起的磁场强度的变化转化为电参数,用于获得一个控制信号。这里的缺点是,一方面所述传感器装置的结构十分复杂并且需要大量的组件,另一方面因布置方式而需要很大的结构空间。

发明内容
因此,本发明的任务是提供一种装置,该装置在空间需求很小的情况下能够可靠地测量弹性跳动位置。
按本发明,该任务用一种按独立权利要求1所述特征的装置来解决。按本发明的装置的其它优选的设计方案产生于从属权利要求所述特征。
按本发明的用于对具有多个轴向件和一个底盘的汽车的弹性跳动位置进行测量的装置,其中在所述轴向件和底盘之间布置了弹性元件,如此安装该装置,使得要么磁体装置要么磁场传感器直接布置在弹性元件的一个位置上,该位置在所述弹性跳动位置变化时不仅相对于所述底盘而且相对于所述轴向件进行运动。磁体装置和磁场传感器形成所述按本发明的装置的仅有的两个组件。该装置的未布置在所述弹性元件上的组件被固定在底盘上或者导向摇臂上,使得该组件与其它组件一起在尽可能狭窄的空间上借助于在有载荷时引起的、直接作用于所述弹性元件上的并且引起该弹簧的单个弹簧节之间的间距变化的力来简单地检测弹性跳动位置。这种间距变化可以比如借助于霍耳IC传感器检测得到,并且作为电参数加以传送,以便继续处理成控制信号。
优选所述磁体装置具有两个相对于气隙朝向彼此的同名磁极,其中在该气隙的范围内磁场强度趋于零。零磁场探测的使用证实十分有利,因为尤其借助于霍耳IC可以探测到这种零磁场,这种探测非常精确并且不太容易受到来自直接环境的干扰量的影响。
正是线性霍耳IC的使用,证实在用于无接触的测量的零磁场探测中特别有利,因为其可以显示出磁场强度的最为细小的变化。由此仅仅需要非常小的偏移,这与提供狭窄的结构及很小的组件尺寸的方案具有相同的意义。
如果优选如此布置所述磁场传感器,使得其在汽车的标准位置中探测所述气隙的场强为零的区域,那么该装置特别适合用于进行汽车的水平调节。该传感器为此可以优选简单地通过一个控制器与水平调节装置的调节执行器相耦联。
按磁场传感器的布置,该传感器也可以用作比如用在载货车上的过载传感器,方法是将所述零磁场布置在最大允许的轴载荷的范围内。如果比如在外部超过一个可调节的以及也可按要求变化的数值,那就由传感器产生一个电信号。这可以是一个声学警示信号或者比如一个发送给防盗器的信号。同样可以设想,将该装置用于比如通过大灯的调节角度的改变进行照明距离调节。
此外,为了将结构空间尽可能保持在最低限度上,优选将所述磁场传感器设置在所述底盘上,并且将磁体装置直接设置在所述弹性元件上。
按照按本发明的装置的另一种优选的实施方式,设置了多构件的弹性元件,其中一个具有软的特性曲线的第一弹簧比如螺旋弹簧以及至少一个具有硬的特性曲线的第二弹簧比如盘形弹簧一起构成所述弹性元件,并且所述单个弹簧在弹簧方向上依次布置,并且在一个支承部位上彼此抵靠,其中所述磁体装置或者所述磁场传感器固定在该支承部位上。通过这种布置,有利的是所述汽车的弹性元件的实际弹性跳动过程的弹簧行程因盘形弹簧而变小。由此磁体装置及磁场传感器仅仅经受很小的弹簧行程,这应该与更快的信号处理具有相同的意义。


下面借助于附图对按本发明的装置的实施例进行详细解释。其中图1是具有单构件的弹性元件的装置的示意图;图2是具有多构件的弹性元件的装置的示意图;图3是多构件的具有磁极及磁场传感器的弹簧腿的放大剖面示意图。
具体实施例方式
图1示出了具有单构件的弹性元件1的装置的示意图。其中,汽车的底盘2和其中一个轴向件3形成所述弹性元件1的支承面4,该弹性元件1以一个预应力安装在所述底盘2和轴向件3之间。所述轴向件3通过转向节5与车轮6相连接。在本实施例中所述弹性元件1构造为螺旋弹簧,在该弹性元件1的上部区域中将一个磁体装置7直接固定在该弹性元件1上。在其对面,将一个磁场传感器8固定在底盘2上,使得该磁场传感器8处于所述磁体装置7的两个磁极9之间的区域中,这两个磁极9朝向彼此地形成一个气隙10。所述磁极9朝向彼此同名布置,使得在由磁极形成的气隙10中在一个平面中磁场强度趋于零。如果该磁场传感器8比如在汽车处于标准位置中时处于该平面的区域中,那么该磁场传感器8就探测不到任何场强。在从该标准位置移出最小的位移时,这个线性霍耳IC形式的磁场传感器8就能够探测到磁场强度的上升。
图2示出所述装置的示意图,其中所述弹性元件1为多构件结构。在该实施例中,所述弹性元件由一个螺旋弹簧11和多个盘形弹簧12以及一个布置在所述螺旋弹簧11和盘形弹簧12之间的支承部位13所组成。其中,所述螺旋弹簧11和盘形弹簧12彼此串联。对于该螺旋弹簧11来说,所述汽车的通过转向节5又与车轮6相连接的轴向件3以及支承部位13一起形成支承面4,对所述盘形弹簧12来说所述支承部位13以及底盘2一起形成支承面4。在所述支承部位13上固定着所述磁体装置7,由此一方面简化了所述磁场传感器8的安装,并且另一方面将下述危险降低到最低限度,即在因所述构成单构件弹性元件1(参见图1)的螺旋弹簧11的压缩而可能出现扭转时,所述磁体装置7被移出了磁体装置7及磁场传感器8彼此间的对探测来说最佳的位置。在所述磁体装置7的气隙9中布置了所述磁场传感器8。它在另一侧固定在汽车的底盘2上。
图3示出了多构件的具有磁极9及磁场传感器8的弹簧腿的放大剖面示意图。所述螺旋弹簧11的最下面的螺圈在这里也平放在所述支承部位13上。在该支承部位13上示例性地固定着所述磁极9。所述布置在磁极9之间的磁场传感器8在其远离磁极9的一侧上与轴向件3相连接。同样可以设想,在将磁极9固定在轴向件3上的同时,将磁场传感器8布置在支承部位13上。在该支承部位13下方,五个盘形弹簧12通过该支承部位13与螺旋弹簧11串联,其中如此布置所述盘形弹簧12,使得所述单个盘形弹簧12的最小直径和最大直径彼此接触。
在图1所示实施例中,如此布置所述磁场传感器8,使得其在汽车的标准位置中处于所述气隙10的平面中,在该平面中磁场强度等于零。所述磁场传感器8在这个位置中探测不到任何磁场。如果比如给汽车加载负荷,那么该弹性元件1的压缩程度就加大。由此所述磁体装置7同时与弹性元件1一起相对于底盘2向上运动。因为所述磁场传感器8固定在汽车的底盘2上,所以该磁场传感器的位置没有任何空间变化。与此相反,所述磁体装置7的位置的最小变化则会使两个磁极9的位置移动,由此就会立即由所述磁场传感器8探测到磁场强度的上升。如果给汽车卸载,那么所述弹性元件1就会膨胀,并且所述磁体装置7与该弹性元件1一起相对于磁场传感器8向下运动,由此又引起所述磁极9的移动并且由此使气隙10中的磁场强度减小。
同样可以设想,在将所述磁体装置7固定在汽车的底盘2上的同时,将所述磁场传感器8布置在弹性元件1上。其中,汽车的负荷变化而后会在由所述磁体装置7的磁极9形成的气隙10内部引起磁场传感器8的位置的变化,由此同样会由所述磁场传感器8探测到磁场强度的变化。
在图2所示的多构件弹性元件1上,所述螺旋弹簧11和盘形弹簧12根据其特性曲线也受到强烈压缩。其中,所述螺旋弹簧11所经过的弹簧行程就是主弹簧行程Δs1,所述盘形弹簧12的弹簧行程就是弹簧行程Δs2。因为所述盘形弹簧12的特性曲线比所述螺旋弹簧11的特性曲线硬得多,所以螺旋弹簧11所经过的弹簧行程Δs1比盘形弹簧12的弹簧行程Δs2大得多。所述汽车的弹性元件的实际弹性跳动过程的弹簧行程由此通过所述盘形弹簧12在一个可以通过弹性常数及盘形弹簧12的数目加以选择的变换比中得到描绘。所述磁体装置7及磁场传感器8因此仅仅经受所述较小的弹簧行程Δs2,这与较小的结构空间意义相同。
按照图3将所述磁场传感器固定在轴向件3上,通过这种方式磁场强度的变化会因以下情况而引起,即比如在给汽车加载负荷时所述螺旋弹簧被加载更强的负荷,并且向所述支承件13施加一个更大的力,由此所述处于支承件13下方的盘形弹簧12同样被压缩,并且在轴向件3和支承部位13之间的相对间距由此根据所述盘形弹簧12的相应的特性曲线而减小。这又引起所述磁场传感器8在磁极9之间的位置的变化,并且由此可以由磁场传感器8探测到磁场强度的变化。如果给汽车卸载,那么所述支承部位13与轴向件3之间的相对间距就会相应地加大。由此,在该实施例中也可以由所述盘形弹簧12以一个可以通过弹性常数和盘形弹簧12的数目来调节的变换比来描绘所述汽车的弹性元件的实际弹性跳动过程的弹簧行程。
附图标记列表1 弹性元件2 底盘3 轴向件4 支承面5 转向节6 车轮7 磁体装置8 磁场传感器9 磁极10 气隙11 螺旋弹簧12 盘形弹簧13 支承部位
权利要求
1.用于对具有多个轴向件(3)和一个底盘(2)的汽车的弹性跳动位置进行测量的装置,其中在所述轴向件(3)和底盘(2)之间布置了弹性元件(1),该装置具有至少一个磁体装置(7)和至少一个磁场传感器(8),所述磁场传感器(8)在该汽车的弹性跳动位置变化时相对于所述磁体装置(7)进行移动,其特征在于,所述磁体装置(7)或者磁场传感器(8)布置在所述弹性元件(1)的一个位置上,该位置在所述弹性跳动位置变化时不仅相对于所述底盘(2)而且相对于所述轴向件(3)运动。
2.按权利要求1所述的装置,其特征在于,所述磁体装置(7)具有两个相对于气隙(10)朝向彼此的同名磁极(9),其中在该气隙(10)的范围内磁场强度趋于零。
3.按前述权利要求中任一项所述的装置,其特征在于,所述弹性元件(1)为多构件结构,并且具有一个具有软的特性曲线的第一弹簧以及至少一个具有硬的特性曲线的第二弹簧,它们在弹簧方向上依次布置,并且在支承部位(13)中彼此抵靠,其中所述磁体装置(7)或者所述磁场传感器(8)固定在该支承部位(13)上。
4.按前述权利要求中任一项所述的装置,其特征在于,所述磁场传感器(8)固定在所述底盘(2)上,并且所述磁体装置(7)固定在所述弹性元件(1)上,尤其固定在所述支承部位(13)上。
5.按前述权利要求中任一项所述的装置,其特征在于,所述第一弹簧是螺旋弹簧(11),并且所述至少一个第二弹簧是盘形弹簧(12)。
6.按前述权利要求中任一项所述的装置,其特征在于,所述磁场传感器(8)是线性霍耳IC。
7.按前述权利要求中任一项所述的装置,其特征在于,所述磁场传感器(8)在汽车的标准位置中探测所述气隙(10)的场强为零的区域。
8.按前述权利要求1到6中任一项所述的装置,其特征在于,所述磁场传感器(8)在一种汽车处于可调节的最大允许的轴负荷中的弹性跳动状态中探测所述气隙(10)的场强为零的区域。
9.具有水平调节装置的汽车,其中该汽车具有用于调节对行驶动力性来说最佳的位置的调节执行器,其特征在于,按前述权利要求1到7中任一项所述的装置与所述调节执行器相耦联。
10.汽车,尤其是载货车,其特征在于,该汽车具有按权利要求8所述的作为过载传感器的装置。
全文摘要
本发明涉及一种用于对具有多个轴向件(3)和一个底盘(2)的汽车的弹性跳动位置进行测量的装置,其中在所述轴向件(3)和底盘(2)之间布置了弹性元件(1),该装置具有至少一个磁体装置(7)和至少一个磁场传感器(8),所述磁场传感器(8)在该汽车的弹性跳动位置变化时相对于所述磁体装置(7)进行移动,其中所述磁体装置(7)或者磁场传感器(8)布置在所述弹性元件(1)的一个位置上,该位置在所述弹性跳动位置变化时不仅相对于所述底盘(2)而且相对于所述轴向件(3)进行运动。
文档编号B60G11/48GK101027199SQ200580031171
公开日2007年8月29日 申请日期2005年9月14日 优先权日2004年9月17日
发明者J·斯普拉特, M·埃索伊 申请人:Zf腓特烈港股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1