用于从第一供电路径向第二供电路径切换的方法和系统与流程

文档序号:11236058阅读:840来源:国知局
用于从第一供电路径向第二供电路径切换的方法和系统与流程

本发明涉及车辆,并具体地涉及用于对电动车辆的供电路径进行切换的方法和系统。本发明还涉及车辆以及实施根据本发明的方法的计算机程序和计算机程序产品。



背景技术:

一般地关于车辆,并在某种程度上至少关于重型/商用车辆(例如卡车、公共汽车等),坚持不懈地对提高燃料效率并减少废气排放进行着研究和开发。

这经常至少部分地归因于政府对(例如市区的)污染和空气质量的担忧,而且导致许多管辖区域中采用不同的排放标准。

除了政府的担忧之外,与车辆操作相关的主要费用之一是用于推动车辆的燃料的消费。重型车辆的利用程度经常较高,与之相关的燃料消费、总排放量可能较高,并且燃料的成本可能极大程度地影响车辆拥有者的盈利能力。

考虑到这些,并且考虑到如下事实:预计公路货物运输量会持续增加,由此导致相关的总排放量增加,因而正在考虑常规内燃机技术的替代方案。

例如,正在广泛地研究和开发电气化车辆和混合电动车辆。与此相关地,在试图进一步减少来自车辆的不良排放的尝试中,目前正在考虑公路供电方案,以便允许以非常类似于铁路车辆的方式向公路车辆供电。公路供电车辆的用途具有以下潜力:例如通过允许车辆任意地与公路供电网络相连或断开,以及例如当在不通电的公路上行驶时能够在混合电动车辆中使用内燃机,能够充分地减少车辆排放,同时能够保持机动性。

例如,可以使用高架输电线的系统,其中,车辆可以借助集电器(例如集电弓)连接至高架电源,从而能够利用外部电源向车辆供电。



技术实现要素:

本发明的目的在于提供如下方法和系统,用以允许在为电机供电的多个供电路径之间平顺地切换,其中,根据一个实施例,供电路径可以设置成以不同的安全性等级向电机供电。利用根据权利要求1所述的方法实现所述目的。

根据本发明,提供一种用于切换至少一个电机的供电路径的方法,所述电机设置成通过交替地断开和闭合第一供电路径和第二供电路径来选择性地分别由第一供电路径和第二供电路径供电,所述第一供电路径和所述第二供电路径设置成将电源连接至所述电机的第一连接终端装置。所述方法包括:当从所述第一供电路径向所述第二供电路径切换时,

-断开所述第一供电路径;

-借助所述电机,将所述第一连接终端装置的终端电压控制到大致所述第二供电路径的供电电压;以及

-闭合所述第二供电路径。

根据上文,可以使用电气化公路车辆来减少内燃机排放。然而,当从外部电源向电气化公路车辆供电时,存在必须要考虑的安全性问题。例如,这种车辆包括电机,用以向车辆的驱动车轮提供推动力,其中,车辆可以是电气化车辆或混合电动车辆,例如,当没有电能可供利用时,可以使用内燃机提供推动力。

在这些种类的车辆中,电机通常连接至内燃机和/或车辆动力传动系的部件,这些部件一般与车辆底盘电连接,从而使得电机也与车辆底盘电连接。与内燃机类似地,电机也可以相对于车辆底盘以电连接的方式悬挂。

然而,尽管车辆底盘通常具备车辆电气化系统的接地连接的功能,但例如由于绝缘橡胶轮胎,车辆底盘本身不接地至地面。这样,公路车辆不同于铁路车辆,这是因为铁路车辆通常利用金属车轮接触铁轨,而铁轨适当地连接至地面,从而铁路车辆连接至地面。在车辆电气化系统是低电压系统的情况下,如果例如导电的车辆底盘被出现在车辆外部的人触摸,则接地故障的影响很小或没有影响。

关于由提供较高电压的外部电源供电的公路车辆,例如由高架输电线供电的车辆,供电电压可以处于几百伏的量级。尽管对车辆上的人而言风险很小,但在这样的电压下,如果例如出现在车辆外部的、连接至地面的人意外地接触高电压车辆底盘,则接地故障可能导致致命的后果。因此,必须使用安全性系统(例如,接地故障检测系统)来确保不发生这种情况。

相对于车辆外部供电系统,这种安全性系统还可以包含动力传动系的电流隔离部。然而,特别是关于由外部供电系统供电的车辆,这种安全性系统必须还能够在高功率下操作,由此导致防护系统巨大且昂贵。根据一个实施例,本发明涉及弥补使用这种安全性系统时的不足的系统,其中,在不同的情况下使用不同的供电路径来提供不同的安全性量度。

例如,当车辆静止或低速移动时,电机能够设置成经由防护系统来供电,防护系统提供相对于外部供电系统的电流隔离。另一方面,当车辆以较高的速度移动并且外部人员或物体不太可能在接触地面的同时意外地接触车辆底盘时,可以减少安全防护措施,并且直接从外部电压获取电能,而不设置中间电流隔离部。因此,根据这种类型的系统,电机可以使用两条不同的供电路径供电。然而,使用两条不同的供电路径内在地意味着需要在供电路径之间进行切换,其中,经常必须在功耗较高的情况下并以不在动力传动系中施加不期望的摇晃/晃动的方式执行这种切换,否则,将对车辆部件施加不利的效果或过大的应力。

根据本发明,当从第一供电路径向第二供电路径切换时,可以利用如下系统和方法来减少不期望的效果:例如,利用适当的切换装置打开(即,切断/断开)导电回路,从而将当前的有功供电路径打开,也就是说,断开导电回路,从而使有功电源与电机之间不再有完整的或导电的路径;并且,借助电机将电机的终端电压控制在第二供电路径的电压。当终端电压大致等于第二供电路径的电压时,例如,利用适当的切换装置闭合(即,连接)导电回路,从而使第二供电路径闭合,也就是在第二供电路径与电机之间建立完整的或导电的路径,从而电机由第二供电路径供电。以上公开的类型的供电路径经常具有不同的供电电压,并且根据本发明的电压同步充分地降低不期望的摇晃/晃动的风险。

根据优选的实施例,电机的终端电压是逆变器驱动器的终端电压,逆变器驱动器用于控制电机的供电电压、扭矩和速度中的一项或多项。本领域的技术人员能够意识到,电机的旋转将会内在地影响逆变器驱动器的终端电压。

当切换至外部电源时,外部电源的电压与车辆的电压不同,因而集电器(例如集电弓)与外部电源的输电线之间经常出现电弧和/或火花。这种电弧和/或火花将会腐蚀集电器的表面并使部件生命周期缩短。本发明使出现这种电弧和/或火花的风险降低,因而也减少部件的磨损。

在以下示例性实施例的详细描述和附图中指出本发明的其他特征和优点。

附图说明

图1a示出示例性公路供电的电气化车辆的动力传动系;

图1b示出车辆控制系统中控制单元的实例;

图2示出独立的供电路径的示例性系统;

图3示出根据本发明的方法的示例性实施例;

图4a至图4d示出图3的实施例。

具体实施方式

在下文中,本发明将以并联式混合动力车辆作为例子。然而,本发明适用于执行电源切换的任何混合电动车辆。例如,本发明适用于并联式混合动力车辆和串联式混合动力车辆。此外,例如,本发明适用于具有多个电机的混合动力车辆中的供电路径切换,其中,这些电机例如能够直接地和/或借助传动元件(例如行星齿轮)互连。本发明适用于具有一个或多个行星齿轮的任何电气化混合动力车辆,还适用于功率分流混合动力车辆和串并联混合动力车辆。本发明还适用于电气化车辆。

图1a示意性地示出示例性公路供电的电气化车辆100的动力传动系。图1a中的车辆100是并联式混合动力车辆100。图1a中的并联式混合动力车辆的动力传动系包括内燃机101,所述内燃机以常规方式通过内燃机101的输出轴、通过离合器106连接至变速箱103。车辆控制系统通过控制单元115控制内燃机101。离合器106可以例如是自动操作式离合器,并且车辆控制系统借助控制单元116控制变速箱103。

车辆还包括混合动力部分,混合动力部分具有位于离合器106下游的电机110,所述电机连接至变速箱103的输入轴109,因而当离合器106断开时,变速箱输入轴109还能够被电机110驱动。因此,并联式混合动力车辆能够同时从两个独立的动力源(即,从内燃机101和电机110二者)提供动力,以便驱动车轮113、114。可选地,每次可以利用一个动力源(即,要么利用内燃机101,要么利用电机110)推动车辆。

混合动力部分还包括其他部件。图1a示出一部分这样的部件,并且示出:电机110;逆变器驱动器119,其用于控制电机110;能量存储器111,例如一节或多节电池;以及混合动力控制单元112,其控制混合动力部分的功能。另外,图1a示意性地公开集电器117,例如集电弓,用以连接至例如高架输电线。车辆100还包括切换系统118,用以切换下文描述的供电路径。

如上所述,车辆的功能一般由多个控制单元控制;并且,现代车辆中的控制系统一般包括由一条或多条总线构成的通信总线系统,用以将多个电子控制单元(ecu)或控制器连接至车辆上的各个部件。这种控制系统可以包括很多控制单元,并且可以在这些控制单元中的两个或多个控制单元之间分配特定功能的控制权。

虽然为了简单起见,图1a仅示出控制器单元112、115至116,但本领域的技术人员将会理解的是,图中所示类型的车辆100经常设置有明显地更多的控制单元。控制单元112、115至116能够通过上述通信总线系统相互通信。

本发明能够在任何适当的控制单元中实施;在图示实例中,本发明在用于控制车辆的混合动力驱动部分的控制单元112中实施。然而,本发明也在任何其他适当的控制单元中实施。根据本发明的供电路径的切换控制通常会基于从其他控制单元和/或车辆部件接收的信号,并且一般情况下以上公开的类型的控制单元在正常情况下适于从车辆100的多个部分接收传感器信号。图中示出的类型的控制单元还通常适于将控制信号传送至车辆的多个部分和部件。例如,除了混合动力驱动系统的其他控制之外,控制单元112将会提供用于控制供电路径的断开和闭合的控制信号。

上述控制经常由程序指令控制。程序指令典型地由计算机程序构成;当在计算机或控制单元中执行计算机程序时,计算机程序使得计算机/控制单元执行期望的控制,例如执行根据本发明的方法步骤。计算机程序通常包括一部分计算机程序产品,其中,上述计算机程序产品包括适当的存储介质121(参见图1b),计算机程序126存储在上述存储介质121上。计算机程序能够以非易失性的方式存储在上述存储介质上。上述数据存储介质121可以例如由包括rom(只读存储器)、prom(可编程只读存储器)、eprom(可擦写prom)、闪速存储器、eeprom(电子可擦写prom)、硬盘单元等的群组中的任何一者构成;并且,上述数据存储介质121设置在控制单元中或与控制单元相连,由此可以利用控制单元执行计算机程序。因此,能够通过修改计算机程序的指令来适应车辆在特定情况下的行为。

图1b中示意性地示出示例性控制单元(控制单元112),其中,控制单元可以包括处理单元120,处理单元120可以由例如任何适当类型的处理器或微型计算机(例如,用于数字信号处理的电路(数字信号处理器,dsp)或具有预定的特定功能(专用集成电路,asic)电路)构成。处理单元120连接至存储单元121,存储单元121将例如存储的程序代码126和/或存储的数据——这些是处理单元120能够执行计算所需要的——供应至处理单元120。计算单元120还设置成将一部分或最终的计算结果存储在存储单元121中。

此外,控制单元112配备有装置122、123、124、125,这些装置分别用于接收和发送输入信号和输出信号。这些输入和输出信号能够包括用于接收输入信号的装置122、125能够作为由计算单元120处理的信息的波形、脉冲或其他属性。用于发送输出信号的装置123、124设置成将来自计算单元120的计算结果转换成输出信号,以便将其传送至车辆控制系统的其他部分和/或信号预计去往的部件。用于接收和发送相应的输入信号和输出信号的装置的各条或每条连接线路可以由缆线、数据总线或无线连接线路中的一项或多项构成;数据总线例如是can总线(控制器局域网络总线)、most(面向媒体的系统传输)总线或其他总线构造。

如上所述,关于公路供电的电气化车辆,需要考虑额外的安全性方面。根据本发明,通过使用不同的供电路径解决这个问题,其中,在不同的情况下使用不同的供电路径,并且表现出不同的安全性量度。

图2公开图1a所示的实施例,特别是与供电路径有关的更多细节。在图2中,集电器117(在本实例中为集电弓)连接至从外部电源提供电能的高架输电线201、202。在当前的实例中,电源是电压相对较高的直流电源,例如电压处于300v至1000v的量级。图2中公开的系统还包括直流-直流转换器,所述直流-直流转换器提供直流-直流转换器203的输入侧203a和输出侧203b之间的电流隔离,进而提供外部电源与电机之间的电流隔离。直流-直流转换器的输出侧203b还与能量存储器111相连,因而允许对能量存储器111充电。直流-直流转换器的输出侧203b还设置成借助第一开关sw1来与电机110的逆变器驱动器119相连或断开,从而能够选择性地连接至逆变器驱动器119。因此,电机110能够通过逆变器驱动器119并经由开关sw1由第一供电路径供电,其中,可以从能量存储器111和/或经由直流-直流转换器203从外部电源供电。直流-直流转换器203还可以设置成在输出侧203b提供不同的电源,例如,比外部电源的电压低的电压。例如,当集电弓117和输电线201、202之间的连接被破坏时和/或当车辆离开电气化公路以便改为沿无外部电源可用的公路行驶时,电机110可以由能量存储器111供电。

图2中公开的系统还包括第二供电路径,用以向电机110供电。经由第二供电路径经由第二开关sw2将电能从集电弓117直接供应至逆变器驱动器119;因此,第二供电路径也设置成能够选择性地连接至电机110。

如上所述,与铁路车辆相比,公路车辆面对不同的问题,这是因为例如橡胶轮胎不像铁路车辆的情况那样固接到地面上——在铁路车辆的情况下,铁轨固接到地面上。这意味着,经由第二供电路径向车辆供电也就是经由开关sw2向未与高架输电线201、202电流隔离的电机110供电。因此,如果发生导致车辆底盘电位不同于地面电位的接地故障,则站在车辆外部并与地面相连的人在触摸车辆底盘时可能遭遇贯穿车辆底盘的危险以及可能致命的电压。

因此,例如,当车辆静止时,不适于使用根据图2的第二供电路径,这是因为如果发生接地故障,则与底盘及地面二者都相连地站立的人可能遭遇危险。因此,在这种情况下,可以使用参考图2公开的第一种类型的供电路径(即,经由直流-直流转换器203),以确保不发生危险状况。

然而,以上公开的类型的直流-直流转换器203具有如下缺点:如果所述供电路径专门用于向电机供电,则直流-直流转换器203必须能够处理相对较高的功率,特别是在推动重型车辆的情况下。因此,根据本发明的一个实施例,使用图2中公开的类型的系统,其中,当车辆静止和/或车辆以低于第一速度限制vlim1的车速移动时,可以使用第一供电路径(即,经由直流-直流转换器203)。

例如,可以将第一速度限制vlim1设置为如下速度:在所述速度下,人不太可能同时接触地面和车辆底盘,至少不会存在由于其他原因(例如,由于车速)而处于极大危险中的风险。当车速超过上述第一速度限制vlim1时,可以将供电切换至第二供电路径(即,经由图2中的开关sw2),从而经由逆变器驱动器119由外部电源直接向电机供电。因此,使用所述系统意味着可以将直流-直流转换器203的尺寸设置成使得与使用中的车辆从外部电源消耗的最大功率相比,可以将直流-直流转换器必须能够转换的最大功率设置为相当低的功率。

根据上文,本发明提供一种用于在向电机供电的不同的供电路径之间进行切换的方法,并且图3中示出本发明的第一示例性实施例300,从而举例说明从第一供电路径(经由直流-直流转换器203)到第二供电路径的切换。

在步骤301中,判断车辆是否根据第一供电路径(即,经由直流-直流转换器203)供电。只要不是这种情况,所述方法就停留在步骤301。当在步骤301中确定车辆经由第一供电路径供电时,所述方法前进至步骤302;在步骤302中,判断车速vvehicle是否高于上述第一车速vlim1。当不是这种情况时,也就是当车速低于上述第一车速限制vlim1时,所述方法返回到步骤301。当车速vvehicle超过上述第一车速限制vlim1时,所述方法前进至步骤303。

在步骤303中,电机110产生的扭矩被减小至扭矩t1,扭矩t1为零或为大致零,以使通过第一供电路径消耗的功率减小至大致零。然后,所述方法前进至步骤304;在步骤304中,判断电机110产生的扭矩是否已经减小至足够的程度。例如,可以将扭矩设置成减小至零或某些其他相对较低的扭矩,以便确定当供电中断时,车辆动力传动系不遭受任何不期望的摇晃或破坏。

根据一个实施例,扭矩至少减少至从步骤303中减小的扭矩水平的至多10%的扭矩t1。所述方法停留在步骤304中,直到扭矩减小至期望的程度;然后,在步骤305中,将图2中的开关sw1断开,从而使第一供电路径断开。

图4a至图4d也示出上述方案,其中,图4a公开电机产生的扭矩;并且,当确定要执行供电路径的切换时,电机产生的扭矩在时刻a开始减小。当扭矩减小至足够的程度时,在图4a中的时刻b,根据步骤305断开开关sw1。这种情况如图4c所示。图4b公开电机的逆变器驱动器119的当前终端电压。如上所述,虽然两条供电路径不需要以类似的电压向电机110供电,但第一供电路径和第二供电路径可以设置成以不同的电压供电,其中,第二供电路径可以设置成以比第一供电路径高或低的电压供电。

这也是本实例中的情况,其中,第二供电路径设置成以比第一供电路径的电压udcdc高的电压ugrid供电。还可以从图4d看出,在经由开关sw1由第一供电路径向电机110供电的同时,开关sw2是断开的。当在步骤305中通过断开开关sw1而使第一供电路径断开时,所述方法前进至步骤306;在步骤306中,逆变器驱动器119的连接终端的电压被控制为第二供电路径的电压ugrid,也就是开关sw2上游的通用电压。所述电压借助电机110、时常还有逆变器驱动器119来控制,其中,所述电机和逆变器驱动器借助适当地改变电机感应出的电压并且/或者控制电机的功耗、还借助适当地改变、例如减小逆变器驱动器连接终端的电压来控制逆变器驱动器终端电压。

通过向车辆动力传动系施加正的或负的扭矩,使用电机来控制终端电压。通常,将逆变器驱动器119的终端电压控制在期望电压所需要的能量相对较小,因而能够容易地实现。如果要像本实例中那样增大电压,则要控制电机110来施加再生制动;相反地,如果要减小电压,则可以控制电机通过消耗例如逆变器驱动器的电容器中的能量来施加正扭矩,由此减小电压。如上所述,所需要的能量经常较少,并且这种情况由图4a中的时刻b与时刻c之间的微小负扭矩来表示。

当在步骤307中确定逆变器驱动器119的连接终端的电压已经增大到期望的电压时,在步骤308中闭合开关sw2,以便提供外部电源和逆变器驱动器119之间的直接连接。这种情况如图4d中的点c所示。在步骤309中,由电机110产生的扭矩增大至要求的扭矩,例如在切换供电路径之前产生的扭矩。这种情况如图4a中的时刻c和d之间所示,因而然后能够使用来自第二供电路径的电能来驱动车辆。所述方法在步骤310结束。

本发明提供一种用于切换供电路径的方法,所述方法对车辆动力传动系的影响较小或者没有瞬时表现,因而充分地减少车辆部件的摇晃或其他应力等风险。从驾驶员的观点来看,根据图4a至图4c的供电路径之间的切换将会平顺地进行,并且非常类似于变速箱103中的常规变速操作,例如自动化手动传动(amt)变速箱中的变速操作。实际上,根据本发明的一个实施例,当根据本发明切换供电路径时,可以使用相同或相似的软件程序来控制变速箱103中的变速操作。本领域的技术人员能够理解的是,可以将当减小/增大电机交付的扭矩时的斜坡函数设置成呈现任何适当的外观。例如,虽然斜坡函数可以呈图4a中的线性形式,但斜坡函数也可以包括例如指数函数或不同的斜坡函数的组合,其中,不同的斜坡函数例如被用于不同的扭矩水平。可以将斜坡函数设计成以可控的方式释放动力传动系中的扭矩,以便实现供电路径的平顺且舒适的切换。

此外,图3、图4a至图4d中示出的方法涉及当车辆所需要的功率增大时供电路径的切换,并且供电路径的切换是从第一供电路径开始执行的,其中,相对于要切换到的供电路径,第一供电路径具有更高的安全性量度。然而,当情况相反时,所述方法同样适用,例如,当要执行向具有相对较高的安全性量度的供电路径的切换而导致车辆减速时,也可以使用所述方法。关于上述实例,终端电压不会增大,而会借助电机从电压ugrid减小至电压udcdc。

此外,与第一供电路径的电压udcdc相比,第二供电路径(即,根据本实例的外部供电路径)也可以具有较低的电压ugrid。在这种情况下,当由于车辆的功率需求增大而切换供电路径时,电压将会减小,而不是增大。相反地,在这种情况下,当例如由于功率需求减小而切换供电路径时,电压反而会增大。

此外,本发明适用于电机能够选择性地由不同的供电路径供电的任何情况,特别是当供电路径的电压不同时,也就是与车辆是不是被设置成由外部电源供电的车辆无关。因此,不需要将供电路径设置成提供不同的安全性量度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1