用于车辆的换挡控制的设备和方法与流程

文档序号:11208706阅读:252来源:国知局
用于车辆的换挡控制的设备和方法与流程

相关申请的交叉引用

本申请要求于2016年3月29日在韩国知识产权局提出的韩国专利申请号为10-2016-0037915的优先权和权益,其全部内容通过引用纳入本文。

本发明涉及一种用于车辆的换挡控制的设备和方法,更具体的,涉及这样一种用于车辆的换挡控制的设备和方法:其防止在再生制动模式中由于不必要的换挡所导致的产生动力的损失。



背景技术:

混合动力车辆是高效结合并驱动两种或更多的不同的动力源的车辆。通常,混合动力车辆使用发动机和电机作为动力源。具体而言,混合动力车辆在低速时使用具有相对良好的低速扭矩特性的电机作为主动力源,在高速时使用具有相对良好的高速扭矩特性的发动机作为主动力源。因此,在低速区,混合动力车辆停止使用化石燃料的发动机的工作,并且使用电机作为主动力源,从而实现了燃料效率的改进和排气的减少。

混合动力车辆可以工作在电动车辆(ev)模式、混合动力电动车辆(hev)模式、以及再生制动(rb)模式等等,其中,电动车辆(ev)模式为使用电机的动力的纯ev模式;在混合动力电动车辆(hev)模式中,利用发动机的扭矩作为主动力并且利用电机的扭矩作为辅助动力;在再生制动(rb)模式中,当根据车辆的制动或者惯性来操作混合动力车辆时,经由电机的发电而收集制动和惯性能量,并且为电池充电,等等。

具有设置在电机和驱动轴之间的变速器的混合动力电机需要变速器的换挡,以增加在再生制动下的再生(产生)效率。换句话说,在再生制动模式中为了使电机在峰值动力区和最大效率点驱动,根据再生制动中车辆速度的减小,有必要进行换挡。

在换挡期间,车辆会执行减小变速器输入轴的旋转扭矩的扭矩介入控制,以获得可驾驶性。在再生制动期间,当由于换挡而执行扭矩介入控制时,由于再生制动而发生产生动力的损失。当制动时间减少时(例如,在高速行驶期间,当车辆间歇性地减速以保持车辆之间的距离时),由于换挡期间的动力损失,用于电机的最佳再生驱动点的换挡会降低充电量。

公开于本部分的上述信息仅仅用于加深对本发明背景的理解,因此其可以包含的信息并不构成在本国已为本领域技术人员所公知的现有技术。



技术实现要素:

本发明提供一种用于车辆的换挡控制的设备和方法,其具有以下优点:防止在再生制动模式中由于不必要的换挡而导致的产生动力的损失,并且提高再生效率。

本发明的示例性的实施方案提供一种用于车辆的换挡控制器的设备,其可以包括:道路信息获取单元,其配置为获取交通信息和关于车辆当前行驶道路的道路信息;前方车辆检测单元,其配置为获取前方车辆信息,前方车辆信息包括行驶在车辆前方的前方车辆的速度;行驶状态获取单元,其配置为获取车辆的平均行驶速度,并且根据道路信息、交通信息和平均行驶速度中的至少一个来确定车辆是否以高速定速行驶;以及换挡控制器,其配置为当在车辆的高速定速行驶期间发生制动时,根据前方车辆信息来调整变速器的换挡时刻。

而本发明的另一个示例性的实施方案提供一种用于车辆的换挡控制器的方法,其可以包括:获取交通信息和车辆当前行驶道路的道路信息;获取包括在车辆前方行驶的前方车辆的速度的前方车辆信息;获取车辆的平均行驶速度,根据道路信息、交通信息和平均行驶速度中来确定车辆是否以高速定速行驶;当在车辆的高速定速行驶期间发生制动时,根据前方车辆信息中的至少一个来调整变速器的换挡时刻。

根据示例性实施方案,车辆可以配置为:检测间歇性制动情况,以在高速定速行驶状态下保持车辆之间的距离。此外,可以最少化间歇性制动下的不必要的换挡,从而最小化在制动时由于换挡所导致的产生动力的损失。通过间歇性制动的换挡也可以最少化,从而提高可驾驶性。

附图说明

通过将随后的说明书中的示例性的实施方案与所附附图相结合,本发明的一些方面和/或其他方面将变得清晰和更容易理解。

图1为根据本发明的示例性实施方案的混合动力车辆的示意图;

图2为根据本发明的示例性实施方案的用于车辆的换挡控制的设备的配置示意图;

图3为描述了在根据本发明的示例性实施方案的用于换挡控制的设备中选择换挡模式的方法的示意图;以及

图4为根据本发明的示例性实施方案的用于车辆的换挡控制的方法的示意流程图。

具体实施方式

应当理解,此处所使用的术语“车辆”或“车辆的”或其它类似术语一般包括机动车辆,例如包括运动型多用途车辆(suv)、大客车、卡车、各种商用车辆的乘用汽车,包括各种舟艇、船舶的船只,航空器等等,并且包括混合动力车辆、电动车辆、可插式混合动力电动车辆、氢动力车辆以及其它替代性燃料车辆(例如源于非石油的能源的燃料)。正如此处所提到的,混合动力车辆是具有两种或更多动力源的车辆,例如汽油动力和电力动力两者的车辆。

虽然示例性实施方案描述为使用多个单元以执行示例性的过程,但是应当理解,示例性的过程也可以由一个或多个模块执行。此外,应当理解的是,术语“控制器/控制单元”指代的是包含有存储器和处理器的硬件设备。该存储器配置为对模块进行存储,并且处理器特别配置成执行所述模块以执行下文进一步描述的一个或多个过程。

此外,本发明的控制逻辑可以实施为计算机可读介质上的非瞬态计算机可读介质,其包含由处理器、控制器/控制单元等执行的可执行程序指令。计算机可读介质的示例包括但不限于rom、ram、光碟(cd)-rom、磁带、软盘、闪盘驱动器、智能卡和光学数据存储设备。计算机可读记录介质还可以分布在网络连接的计算机系统,使得计算机可读介质以分布方式(例如,通过远程信息处理服务器或控制器局域网络(can))存储和执行。

本文所用的术语仅为了描述特定实施例的目的,并不旨在限制本公开。正如本文所使用的,单数形式“一(a)”和“所述”旨在也包括复数形式,除非上下文另有清楚的说明。还将理解当在本说明书中使用术语“包含”和/或“包括”时,指明存在所述特征、整体、步骤、操作、元件和/或组件,但是不排除存在或加入一种或多种其他的特征、整体、步骤、操作、元件、组件和/或其群体。正如本文所述的,术语“和/或”包括一种或多种相关列举项目的任何和所有组合。”

除非特别声明或者从上下文显而易见的,本文所使用的术语“约”被理解为在本领域的正常公差范围内,例如在平均2个标准偏差内。“大约”可被理解为在指定值的10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%或0.01%之内。除非从上下文清楚的,本文提供的所有数值通过术语“大约”来进行修改。

下文将参考所附附图对本发明进行更为全面的描述,在这些附图中显示了本发明的示例性实施方案。本领域技术人员将意识到,可以对所描述的示例性的实施方案进行各种不同方式的修改,所有这些修改将不脱离本发明的精神或范围。附图和说明书应当被认为本质上是说明性的而非限制性的。在整个说明书中,同样的附图标记表示同样的元件。贯穿于随后的说明书和权利要求,当描述了元件“联接至”另一个元件时,元件可以是“直接地联接至”另一个元件,或者经由第三元件“电联接至”另一个元件。

图1为根据示例性实施方案的混合动力车辆的示例的示意图。参见图1,该车辆可以包括:发动机10、电机20、发动机离合器30、变速器40、逆变器50、电池60、一体式的起动机发电机70、车轮80等等。

特别的,发动机10燃烧燃料以产生动力,电机20对发动机10的动力进行补充,该电机20在制动情况下操作为发电机,并且产生电能。由电机20产生的电能可以储存在电池60中。发动机离合器30连接在发动机10和电机20之间,执行发动机10和电机20之间的动力传递。变速器40可以与电机20串联连接,以根据速度来将发动机10产生的动力转换成必要的扭矩,并且将扭矩传递至车轮80。由变速器40进行变换的驱动扭矩可以传递至车轮80,以驱动车轮80。

逆变器50可以配置为将由电池60输出的直流(dc)电压转换成交流(ac)电压,以将ac电压传递至电机20或者一体式的起动机发电机70。电池60经由逆变器50可以提供电机20的驱动电力以及一体式的起动机发电机70的起动电力。一体式的起动机发电机70可以配置为起动机发动机10或者由发动机10的扭矩来执行发电。作为一体式的起动机发电机70,可以包括混合动力起动机发电机(hybridstarter&generator,hsg),一体式的起动机发电机(integratedstarter&generator,isg)等等。

根据示例性实施方案的混合动力车辆可以包括至少一个控制器,例如混合动力控制单元(hybridcontrolunit,hcu)200、发动机控制单元(enginecontrolunit,ecu)110、电机控制单元(motorcontrolunit,mcu)120、变速器控制单元(transmissioncontrolunit,tcu)140、电池管理系统(batterymanagementsystem,bms)160等等。hcu200可以为最高控制器或者上级控制器,并且整合并调整在网络中连接的下级控制器。hcu200可以配置为收集和分析每一个下级控制器的信息,以执行混合动力车辆的全部操作。ecu110可以与经由网络连接的hcu200配合工作,以执行发动机10的一般操作,例如,发动机10的扭矩控制。

mcu120可以与经由网络连接的hcu200配合工作,以执行电机20的一般操作。此外,mcu120可以执行一体式的起动机发电机70的一般操作。tcu140可以配置为操作包含在变速器40中的致动器,对应于驾驶员的换挡杆操作等,从而调整变速器40的换挡位置(即,挡位)。bms160可以配置为收集和检测信息(例如,电池60的电压、电流、温度等等),以管理电池60的充电状态(stateofcharge,soc),并且调整电池60的充电电流量和放电电流量,以防止电池60过度放电为小于电压限制或者防止电池60过度充电为大于电压限制。

上述结构的混合动力车辆可以在电动车辆(ev)模式、混合动力电动车辆(hev)模式、以及再生制动(rb)模式等等中行进,其中,电动车辆(ev)模式为使用电机20的电力的纯ev模式;在混合动力电动车辆(hev)模式中,发动机10的扭矩用作主动力并且电机20的扭矩用作辅助动力;在再生制动(rb)模式中,当根据车辆的制动或者惯性来操作混合动力车辆时,经由电机20的发电来收集制动和惯性能量,并且为电池60充电。

一种换挡控制设备(参见图2中的附图标记300,将在下文对其进行描述)可以安装在混合动力车辆中。组成换挡控制设备300的组成元件可以安装于混合动力车辆的hcu200或者tcu140,但是并不必须限制于此。组成换挡控制设备300的组成元件可以安装于控制器,而不是混合动力车辆的hcu200或者tcu140,或者可以配置为独立的控制器。换挡控制设备300的组成元件也可以安装于不同的控制器。

下面将参考必要的附图来描述根据示例性实施方案的用于车辆的换挡控制的设备和方法。图2为根据示例性实施方案的用于车辆的换挡控制的设备的示意配置图。参见图2,根据示例性实施方案的换挡控制设备300可以包括:存储单元310、道路信息获取单元320、前方车辆检测单元330、行驶状态获取单元340、目标速度设定单元350、以及换挡控制器360。上级控制器或者一般控制器可以配置为操作换挡控制设备300的各个组件。

存储单元310可以配置为存储多个换挡模式。换挡模式是车辆换挡时刻的模式,其对应于车辆的速度、制动踏板压力等等。存储在存储单元310中的多个换挡模式中的一个可以为这样的换挡模式(下文中称为“换挡模式a”):其设定为可以在减速时执行换挡提前进入,以在rb模式下行驶时增加再生效率。存储在存储单元310中的多个换挡模式中的另一个可以为这样的换挡模式(下文中称为“换挡模式b”):其在高速定速行驶期间准备间歇性制动。换挡模式b可以设定为,在减速时,相较于换挡模式a而推迟换挡进入。换句话说,换挡模式b可以设定为,在减速时,相较于换挡模式a而在低速时进入换挡。

道路信息获取单元320可以配置为:获取关于车辆当前行驶道路的道路信息,以及从导航系统(未示出)获取交通信息。所述导航系统为先这样的设备:其配置为获取车辆的位置信息并且根据位置信息来提供路径导向服务。道路信息可以包括车辆当前行驶道路的道路类型、速度限制等等。交通信息可以包括车辆当前行驶道路的平均速度、交通阻塞信息等等。此外,前方车辆检测单元330可以配置为,利用车前传感器(未示出)来检测在车辆(例如,对象车辆)前方行驶的前方车辆。所述车前传感器可以安装于车辆的前方并且可以包括至少一个传感器,该传感器配置为检测距前方车辆的距离,例如,雷达、激光雷达、超声波传感器等等。

前方车辆检测单元330可以配置为获取前方车辆信息,该前方车辆信息包括距前方车辆的距离、前方车辆的当前速度、前方车辆的加速度等等。前方车辆检测单元330可以进一步的配置为,根据车前传感器的感测信息来获取前方车辆和车辆之间的距离。此外,前方车辆检测单元330可以配置为,根据前方车辆与车辆之间的距离的变化以及车辆的当前速度来获取前方车辆的当前速度和加速度。

行驶状态获取单元340可以配置为检测车辆的当前行驶状态。例如,行驶状态获取单元340可以配置为获取车辆的当前速度。此外,行驶状态获取单元340可以配置为根据车辆的当前速度获取在最近预定部分内的车辆平均行驶速度。例如,行驶状态获取单元340可以配置为监测制动踏板传感器(brakepedalsensor,bps)以检测车辆的制动状态(例如,踏板的接合量)。例如,行驶状态获取单元340可以配置为,根据通过道路信息获取单元320所获取的道路信息和交通信息,确定车辆当前是否以高速定速行驶(例如,65至80mph)。行驶状态获取单元340可以进一步的配置为,当满足下面的条件时,确定车辆的当前行驶状态为高速定速行驶。

首先,车辆当前行驶道路的类型是机动车辆专用的道路,例如高速公路,以确定车辆的行驶状态为高速定速行驶状态。此外,车辆的当前行驶道路的速度限制大于参考值并且道路的交通流动为顺畅的(例如,低流量情况),以确定车辆的行驶状态为高速定速行驶状态。由行驶状态获取单元340获取的车辆平均行驶速度大于参考值,以确定车辆的行驶状态为高速定速行驶状态。

此外,目标速度设定单元350可以配置为:当利用前方车辆检测单元330来检测前面车辆时,根据前面车辆的当前速度来设定车辆的目标速度,以避免与前面车辆碰撞。特别的,响应于通过行驶状态获取单元340确定车辆当前以高速定速行驶,目标速度设定单元350可以配置为根据前方车辆的当前速度来设定车辆的目标速度。

换挡控制器360可以配置为:当发生车辆的制动时,根据由目标速度设定单元350设定的目标速度、前方车辆的当前速度、或者前方车辆的加速度等来调整变速器40的换挡时刻。特别的,当在车辆的高速定速行驶状态下发生制动时,换挡控制器360可以配置为:根据前方车辆的当前速度和加速度来确定制动是否为间歇性制动,并且根据确定的结果来确定是否存在变速器40的换挡进入。

例如,当在高速定速行驶状态下发生制动时,换挡控制器360可以配置为:当前方车辆没有减速(例如,制动踏板没有接合)并且前方车辆的当前速度在速度范围(该速度范围对应于换挡模式b中的当前挡位)内时,确定当前发生的制动为间歇性制动,以保持车辆之间的距离。在间歇性制动中,车辆的制动通常在目标速度附近(即,前方车辆的当前速度附近)停止。因此,当换挡控制器360确定发生在高速定速行驶状态下的制动为间歇性制动时,换挡控制器360可以配置为通过利用换挡模式b来操作变速器40,因此变速器40的换挡时刻可以推迟,或者可以避免变速器40的换挡,从而避免由于换挡而造成的产生动力的损失。

此外,如另外一个示例,当制动发生在高速定速行驶状态下并且前方车辆的当前速度不在对应于换挡模式b中的当前挡位的速度范围时,换挡控制器360可以配置为:确定需要连续的制动,以避免与前方车辆碰撞,并且确定当前发生的制动不是间歇性制动。特别的,即使使用了换挡模式b,目标速度也超出了当前挡位的速度范围,因此发生了换挡。因此,换挡控制器360可以配置为利用换挡模式a来操作变速器40以提前进入换挡,从而提高再生制动效率。

在高速定速行驶状态下发生制动的情况下,当前方车辆减速(例如,制动踏板接合)时,换挡控制器360可以配置为:根据前方车辆的速度来使车辆持续减速,因此可以确定当前发生的制动不是间歇性制动。因此,换挡控制器360可以配置为通过利用换挡模式a来操作变速器40以提前进入换挡,从而提高再生制动效率。

此外,在高速定速行驶状态下发生制动的情况下,当前方车辆的当前速度小于参考值时,换挡控制器360可以配置为根据前方车辆的速度来使车辆持续减速,因此可以确定当前发生的制动不是间歇性制动。因此,换挡控制器360可以配置为通过利用换挡模式a来操作变速器40以提前进入换挡,从而提高了再生制动效率。

同时,当在车辆的低速行驶状态下发生制动时,由于换挡控制器360必然需要换挡以用于制动之后的再加速,因此换挡控制器360可以配置为利用一个换挡模式(例如,换挡模式a或换挡模式b)来执行变速器40的换挡,而不管当前发生的制动是否为间歇性制动。此外,当制动发生在没有检测到前方车辆的情况下时,由于难以确定情况,因此换挡控制器360可以配置为利用换挡模式a来执行变速器40的换挡。

在上述结构的换挡控制设备300中,道路信息获取单元320、前方车辆检测单元330、行驶状态获取单元340、目标速度设定单元350、和换挡控制器360可以由一个或多个中央处理单元(centralprocessingunit,cpu)或者实现为其他芯片组的处理器、微处理器等来实现。

图3为描述了在根据示例性实施方案的用于换挡控制的设备中选择换挡模式的方法的示意图。在图3中,x轴为车辆速度,y轴对应于由制动踏板传感器测量的制动踏板压力(例如,施加在踏板上的压力量)。换挡模式a和换挡模式b分别地表示为虚线和实线。虚线和实线分别地表示出对于每一个挡位和车辆速度而言发生换挡处的制动踏板压力。图3示出了车辆在高速定速行驶状态下并且车辆的当前挡位为五挡时并且当发生制动时的示例,其中,p51和p52分别示出了作为第五挡和第四挡以及车辆速度的边界的制动踏板压力。

在图3中,情况a示出了:在车辆制动时,前方车辆的当前速度在对应于换挡模式b中的(第五挡)当前挡位的速度范围内,情况b示出了:在车辆制动时,前方车辆的当前速度超出了对应于换挡模式b中的当前挡位的速度范围。

在情况a中,换挡控制器360可以配置为确定当前发生的制动为间歇性制动,以保持车辆之间的距离。因此,换挡控制器360可以配置为利用换挡模式b来执行变速器40的换挡,从而防止在再生制动期间发生换挡。在情况b中,由于前方车辆的当前速度超出了对应于换挡模式b中的当前挡位的速度范围,即使使用换挡模式b,也会发生换挡。因此,换挡控制器360可以配置为确定当前发生的制动不是间歇性制动,并且利用换挡模式a来执行变速器40的换挡,从而使得变速器40进入提前换挡。

图4为根据示例性实施方案的用于车辆的换挡控制的方法的示意流程图。图4的用于换挡控制的方法可以由参考图2描述的换挡控制设备300的控制器来执行。参见图4,当车辆开始行驶时(s100),换挡控制设备300可以配置为:利用道路信息获取单元320,接收车辆当前行驶道路的道路信息以及来自导航系统的交通信息(s110)。此外,换挡控制设备300可以配置为:经由前方车辆检测单元330来获取行驶在车辆前方的前方车辆的前方车辆信息(s120),并且获取在最近预定部分的车辆的平均行驶速度(s130)。

当在车辆的行驶时期发生了制动时(s140),换挡控制设备300可以配置为确定车辆的行驶状态在制动发生情况下为高速定速行驶状态(s150)。在步骤s150,换挡控制设备300可以配置为:根据道路信息、从导航系统获取的交通信息以及车辆的平均行驶速度来确定车辆的高速定速行驶状态。当车辆当前行驶的道路是机动车辆专用的道路(例如,具有大于参考值的速度限制的高速公路)、车辆行驶的道路的交通流动顺畅(例如,低阻塞)、并且车辆的平均行驶速度大于参考值时,换挡控制设备300可以配置为确定车辆当前以高速定速速度行驶。

当换挡控制设备300确定车辆当前以高速定速行驶时,换挡控制设备300可以配置为,根据前方车辆的信息,确定当前发生的制动是否为间歇性制动,以保持车辆之间的距离(s160)。在步骤s160,当前方车辆没有减速并且前方车辆的当前速度在对应于换挡模式b中的当前挡位的速度范围内时,换挡控制设备300可以配置为,确定当前发生的制动为间歇性制动,以保持车辆之间的距离。

在步骤s160,当前方车辆的当前速度超出了对应于换挡模式b中的当前挡位的速度范围时,换挡控制设备300可以配置为,确定车辆不处于间歇性制动情况。此外,当前方车辆的当前车辆速度为小于参考值的低速时,或者前方车辆减速时,换挡控制设备300可以配置为确定车辆不处于间歇性制动情况。响应于在步骤s150中确定车辆的行驶状态不是高速定速行驶状态或者在步骤s160中确定车辆的行驶状态不处于间歇性制动情况,换挡控制设备300可以配置为,确定制动时间增加,因此有必要进行换挡。因此,换挡控制设备300可以配置为,利用换挡模式a(其中,在车辆减速的情况下,可以进行换挡提前进入)来执行变速器40的换挡(s170)。因此,变速器40可以进入提前换挡,从而提高再生制动效率。

此外,响应于确定车辆在高速定速行驶状态,在步骤s160中,车辆处于不需要换挡的间歇性制动情况,换挡控制设备300可以配置为,利用换挡模式b来执行变速器40的换挡(s180)。因此,由于间歇性制动,车辆的换挡时刻可能会推迟或禁止,从而避免由于换挡所导致的产生动力的损失。

根据上述的示例性的实施方案,换挡控制设备300可以配置为:检测间歇性制动情况,以在高速定速行驶状态下保持车辆之间的距离。此外,在间歇性制动下不必要的换挡可以最少化,从而最小化在制动时由于换挡所导致的产生动力的损失。通过间歇性制动的换挡也可以最少化,从而提高可驾驶性。

根据本发明的示例性实施方案的用于车辆的换挡控制的方法可以通过软件来执行。当通过软件来执行该方法时,本发明的组成元件为执行必要过程的代码段。程序或代码段可以存储在非瞬态性处理器可读介质中,或者在通信网络中通过连接至载波的计算机数据信号或者传输媒介来传输。

上面公开的参考附图和在说明书中进行的详细描述仅仅是本发明的示例,其仅仅被用于描述本发明而并不是用于限制本发明所描述的权利要求的含义和范围。因此,一个本领域技术人员可以很容易地选择和替换它们。一个本领域技术人员也可以忽略本说明书中所描述的不具有变劣性能的组成元件,或者也可以增加组成元件,用于改进性能。此外,一个本领域技术人员根据处理环境或需求可以改变本说明书中所描述的方法的各步骤的顺序。因此,本发明的范围应当由权利要求来确定并且并不等同于所描述的示例性的实施方案。

虽然参考目前被视为是示例性实施方案描述本发明,应理解本发明并不限于所描述的实施方案,相反,本发明旨在覆盖包括在所附权利要求的精神和范围之内的各种修改形式和等效形式。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1