车辆控制装置及车辆的控制方法与流程

文档序号:11330413阅读:282来源:国知局
车辆控制装置及车辆的控制方法与流程

本发明涉及车辆控制装置及车辆的控制方法。



背景技术:

在发动机的动力经由带传递到发电机的车辆中,jp2003-193877a中公开有一种在带不打滑的范围内增大发电机的发电量的技术。

使用上述技术,在电动发电机和驱动轮之间设有无级变速器的车辆中,在利用电动发电机进行发电(以下,称为再生制动)的情况下,考虑利用无级变速器在不产生带打滑的范围内增大电动发电机的再生制动。

在这种车辆中,有在再生制动中使无级变速器变速的情况,例如,在车辆减速的情况下,存在使无级变速器降挡,同时进行再生制动的情况。这时,若增大通过再生制动而产生的再生制动扭矩,输入至无级变速器的输入扭矩就会增加。为了防止针对增加的输入扭矩而在无级变速器中产生带打滑的情况,需要提高向无级变速器供给的油压(带容量)。因此,对从油泵排出的油进行调压而产生的油压大多被用于防止无级变速器中带打滑,使无级变速器降挡的油压不足,有可能会产生实际变速比相对于目标变速比的追随性降低的变速不良的情况。

当产生变速不良时,无级变速器的输入轴及与无级变速器的输入轴连结的油泵的转轴的转速与车辆的减速一起下降,油泵的排出量降低。因此,通过对从油泵排出的油进行调压而产生的油压下降,产生不能供给无级变速器等需要的油压的油量收支不足的情况。

特别是,无级变速器与通过切换摩擦联接元件的联接、释放状态而进行变速的有级变速器比较,需要更多的油压。因此,因上述的油泵的转速的下降而容易产生油量收支不足。



技术实现要素:

本发明是鉴于这种情况而创立的,其目的在于,抑制在再生制动中产生油量收支不足的情况。

本发明的某方式的无级变速器的控制装置是控制车辆的车辆控制装置,该车辆具备设置于电动发电机与驱动轮之间的无级变速器、通过电动发电机的旋转被传递而驱动的油泵、对从油泵排出的油进行调压并将产生的油压向无级变速器供给的油压供给部,其中,在基于来自驾驶员的减速请求,通过电动发电机进行再生制动的情况下,油压供给部向无级变速器供给基于再生制动中传递输入至无级变速器的输入扭矩的第一油压和再生制动中使无级变速器变速的第二油压的油压,在再生制动中,第一油压设定为从可供给无级变速器的油压减去第二油压所得的油压以下。

本发明的另一方式的无级变速器的控制方法是控制车辆的车辆的控制方法,该车辆具备设置于电动发电机与驱动轮之间的无级变速器和通过电动发电机的旋转被传递而驱动的油泵,对从油泵排出的油进行调压并将产生的油压向无级变速器供给,其中,在基于来自驾驶员的减速请求,通过电动发电机进行再生制动的情况下,向无级变速器供给基于再生制动中传递输入至无级变速器的输入扭矩的第一油压和再生制动中使无级变速器变速的第二油压的油压,在再生制动中,第一油压设定为从可供给无级变速器的油压减去第二油压所得的油压以下。

根据这些方式,在再生制动中,通过确保使无级变速器变速的第二油压,能够抑制无级变速器的变速不良的情况,抑制油泵的转轴的转速下降的情况,能抑制产生油量收支不足的情况。

附图说明

图1是本实施方式的混合动力车辆的概略构成图;

图2是变速器的变速图;

图3是表示电机转速和再生制动扭矩和再生效率的关系的图;

图4a是表示必要次级压和实际次级压的关系的图;

图4b是表示必要次级压和实际次级压的关系的图;

图4c是表示必要次级压和实际次级压的关系的图;

图4d是表示必要次级压和实际次级压的关系的图;

图4e是表示必要次级压和实际次级压的关系的图;

图5是说明再生制动扭矩限制控制的流程图;

图6是表示使用本实施方式时的必要次级压和实际次级压的关系的图;

图7是说明再生制动扭矩限制控制的时间图。

具体实施方式

以下,参照附图说明本发明的实施方式。此外,以下的说明中,变速器的“变速比”是变速器的输入转速除以变速器的输出转速而得到的值。另外,“最低挡(最low)变速比”是将变速器的变速比用于车辆的起步时等的最大变速比。“最高挡(最high)变速比”是变速器的最小变速比。将以变速比变大的方式向低挡侧变化称为降挡,将以变速比变小的方式向高挡侧变化称为升挡。

图1是搭载有本实施方式的变速器4的混合动力车辆的构成的说明图。

车辆具备作为驱动源的发动机1及电动发电机2。发动机1或电动发电机2的输出旋转经由前进后退切换机构3、变速器4、终端减速机构5向驱动轮6传递。

在发动机1具备发动机控制促动器10。发动机控制促动器10基于后述的发动机控制单元84的指令,使发动机1以期望的扭矩进行动作,并使输出轴11旋转。在发动机1和电动发电机2之间具备使它们之间的旋转切断、连接的第一离合器12。

电动发电机2通过从逆变器21输出的电力进行驱动。通过再生制动而获得的电动发电机2的再生电力被输入至逆变器21。逆变器21基于后述的电机控制单元83的指令,使电动发电机2以期望的扭矩进行动作。电动发电机2例如由利用三相交流电驱动的同步型旋转电机构成。逆变器21与蓄电池22连接。

前进后退切换机构3装备于由发动机1及电动发电机2构成的驱动源与变速器4之间。前进后退切换机构3使从输出轴23输入的旋转切换成正转方向(前进行驶)或反转方向(后退行驶),并输入至变速器4。前进后退切换机构3具备双小齿轮式的行星齿轮机构30、前进离合器31和后退制动器32,联接前进离合器31时切换成正转方向,联接后退制动器32时切换成反转方向。

行星齿轮机构30由输入驱动源的旋转的太阳齿轮、齿圈、支承与太阳齿轮及上述齿圈啮合的小齿轮的行星齿轮架构成。前进离合器31根据联接状态,可以将太阳齿轮和行星齿轮架一体旋转地构成,后退制动器32根据联接状态可停止齿圈的旋转地构成。

前进后退切换机构3的前进离合器31及后退制动器32的一方作为使发动机1及电动发电机2与变速器4之间的旋转进行切断、连接的第二离合器而构成。

变速器4配置于电动发电机2和驱动轮6之间。在为后述的“hev模式”的情况下,发动机1中产生的扭矩经由第一离合器12、电动发电机2、前进后退切换机构3传递至变速器4。变速器4是在初级带轮42和次级带轮43上架设带44而构成,通过分别变更初级带轮42和次级带轮43的槽宽,从而变更带44的卷挂直径而进行变速的带式无级变速机构(变速机构)。

初级带轮42具备固定带轮42a和可动带轮42b。通过向初级油压室45供给的初级油压,可动带轮42b可动,由此,变更初级带轮42的槽宽。

次级带轮43具备固定带轮43a和可动带轮43b。通过向次级油压室46供给的次级油压,可动带轮43b进行工作,由此,变更次级带轮43的槽宽。

带44架设于由初级带轮42的固定带轮42a和可动带轮42b形成的构成v字形状的滑轮面、与由次级带轮43的固定带轮43a和可动带轮43b形成的构成v字形状的滑轮面上。

终端减速机构5将来自变速器4的变速器输出轴41的输出旋转向驱动轮6传递。终端减速机构5具备多个齿轮组52及差动齿轮56。车轴51与差动齿轮56连结,而使驱动轮6旋转。

在驱动轮6装备有制动器61。制动器61基于来自后述的制动器控制单元82的指令,由制动器促动器62控制制动力。制动器促动器62基于检测制动踏板63的踏力的制动器传感器64的检测量,控制制动器61的制动力。在由驾驶员踏下制动踏板63的情况下,来自制动器传感器64的制动器信号brk变为接通(on),在未踏下的情况下,制动器信号brk变为断开(off)。制动器促动器62也可以是液压式,也可以使制动器传感器64基于制动踏板63的踏力,变换成制动器液压,基于该制动器液压,制动器促动器62控制制动器61的制动力。

向变速器4的初级带轮42及次级带轮43供给来自变速油压控制单元7的油压。

变速油压控制单元7具备将由从油泵70排出的油(也用于润滑油)产生的油压控制成主压pl的调节阀71和使调节阀71动作的主压电磁铁72。主压pl通过主压油路73供给至第一调压阀74及第二调压阀77。第一调压阀74根据初级油压电磁铁75进行动作,向初级压油路76供给初级油压。第二调压阀77根据次级油压电磁铁78进行动作,向次级压油路79供给次级油压。主压电磁铁72、初级油压电磁铁75及次级油压电磁铁78根据来自cvt控制单元81的指令进行动作,控制各油压。变速油压控制单元7还向前进后退切换机构3、变速器4等供给润滑油。

油泵70经由链轮或链条等连结于电动发电机2与前进后退切换机构3之间的输出轴23,传递输出轴23的旋转而进行驱动。

cvt控制单元81、制动器控制单元82、电机控制单元83、发动机控制单元84与后述的混合动力控制模块80一起经由可相互通信的can90连接。

cvt控制单元81输入来自初级旋转传感器88、次级旋转传感器89等的信号,基于输入的信号向变速油压控制单元7输送指令。变速油压控制单元7的油压也向变速器4及前进后退切换机构3供给。cvt控制单元81还控制前进后退切换机构3的前进离合器31及后退制动器32的联接状态。

在变速器4中,通过cvt控制单元81及变速油压控制单元7,基于图2所示的变速图执行变速。该变速图中,变速器4的动作点由车速vsp和初级转速npri定义。连结变速器4的动作点和变速图左下角的零点的线的倾斜度与变速器4的变速比对应。变速器4可以在图2所示的最低挡变速线与最高挡变速线之间进行变速。该变速图中,虽然未详细地图示,但每个加速器开度apo设定有变速线,变速器4的变速按照根据加速器开度apo选择的变速线而进行。变速图中,作为未踏下加速踏板时(加速器开度apo=0)的变速线,设定有滑行变速线。滑行变速线设定为在未踏下加速踏板的情况下,油泵70的转轴的转速nop不低于根据油泵70的油量收支的下限值决定的下限转速nolim。即,滑行变速线设定为基于按照下限转速nolim从油泵70排出的最小排出量而产生的主压pl可供给在变速器4等需要的油压,即不会产生油量收支不足。此外,也可以将下限值加上安全率而设定下限转速nolim。滑行变速线在车速vsp为第一规定车速vsp1以上的情况下,与最高挡变速线一致,在车速vsp为比第一规定车速vsp1低的第二规定车速vsp2以下的情况下,与最低挡变速线一致。在图2中,以虚线表示滑行变速线,在与最低挡变速线及最高挡变速线一致的情况下,为了说明,将滑行变速线错开记载。

混合动力控制模块80以管理车辆整体的消耗能量,控制发动机1及电动发电机2的驱动而提高能量效率的方式进行控制。

向混合动力控制模块80输入来自加速器开度传感器85、车速传感器86、断路开关传感器87等的信号及经由can通信线来自各控制单元的信息。混合动力控制模块80根据这些信号及信息,计算出目标驱动扭矩td和目标制动扭矩tb。混合动力控制模块80在由驾驶员踏下制动踏板63的情况下,设定目标制动扭矩tb,将目标制动扭矩tb减去电动发电机2中可产生的最大限度的再生扭矩量即再生制动扭矩trg量的剩余扭矩设为液压制动扭矩trq,根据再生制动扭矩trg和液压制动扭矩trq的总和得到目标制动扭矩tb。混合动力控制模块80在减速时通过电动发电机2产生目标制动扭矩tb,由此,回收电力。此外,在再生制动时,第一离合器12被释放。

制动器控制单元82基于来自混合动力控制模块80的控制指令,向制动器促动器62输出驱动指令。制动器控制单元82取得制动器促动器62中产生的制动器液压的信息并向混合动力控制模块80发送。

电机控制单元83基于来自混合动力控制模块80的控制指令,对逆变器21输出目标动力运转指令(正扭矩指令)pr或目标再生指令(负扭矩指令)rg。电机控制单元83通过检测向电动发电机2施加的实际电流值等,取得实际电机驱动扭矩信息,并向混合动力控制模块80发送。

发动机控制单元84基于来自混合动力控制模块80的控制指令,对发动机控制促动器10输出驱动指令。发动机控制单元84将根据发动机1的转速ne或燃料喷射量等得到的实际发动机驱动扭矩信息向混合动力控制模块80发送。

混合动力控制模块80执行与下面那样的模式对应的控制。

车辆具有电动汽车模式(以下,称为“ev模式”)和混合动力车模式(以下,称为“hev模式”)作为运转模式。

“ev模式”是将第一离合器12设为释放状态,且仅将驱动源设为电动发电机2的模式。“ev模式”在例如要求驱动力较低,且充分确保蓄电池soc(stateofcharge)的情况下被选择。

“hev模式”是将第一离合器12设为联接状态,且将驱动源设为发动机1和电动发电机2的模式。“hev模式”在例如要求驱动力较大时,或用于驱动电动发电机2的蓄电池soc不足的情况下被选择。

在此,对再生制动时与变速器4中需要的油压的关系进行说明。

如上所述,在减速时,由电动发电机2产生再生制动扭矩trg,但当产生再生制动扭矩trg时,从电动发电机2侧向变速器4输入作为负的值的与再生制动扭矩trg对应的扭矩。即使在变速器4中被输入包含与再生制动扭矩trg对应的扭矩的输入扭矩tin时,也可控制向变速器4供给的油压,使带不产生打滑。因此,变速器4中需要不产生带打滑的油压(以下,称为第一油压psec1)。再生制动中,向变速器4输入与成为负的扭矩的再生制动扭矩trg对应的扭矩,因此,第一油压psec1比进行再生制动之前变高。

在没有驾驶员进行的加速踏板的踏下,而踏下制动踏板63的情况下,在变速器4中,按照滑行变速线设定目标变速比it,以实际变速比ia追随目标变速比it进行变化的方式控制向变速器4供给的油压。例如,车速vsp降低,比第一规定车速vsp1低时,进行伴随着车速vsp的降低,将实际变速比ia向低挡侧变更的降挡。因此,需要实际变速比ia追随目标变速比it进行变化的油压。

另外,在电动发电机2的再生中得到的电力pm,在电动发电机2的再生制动扭矩trg(电机扭矩tm)、电动发电机2的转轴的转速(以下,称为电机转速nm)和单位换算系数k的关系中,可以如式(1)那样进行表示。

pm=trg×nm×k(1)

当电机转速nm增加时,因在电动发电机2中得到的电力pm增加,所以在再生制动中考虑将变速器4降挡,提高电机转速nm。但是,电机转速nm和再生制动扭矩trg和电动发电机2的再生效率(发电效率)e的关系如图3的图那样,电机转速nm变高时,电动发电机2的再生效率e以某转速为边界而下降。图3中,用线连结相等的再生效率e,随着箭头方向,电动发电机2的再生效率e变高。

因此,理想的是,再生制动中,设定再生制动扭矩trg和电机转速nm,使变速器4变速,形成电动发电机2的再生效率e高的电机转速nm,且形成电动发电机2的再生效率e高的再生制动扭矩trg,以使电动发电机2的再生效率e变高。该情况下,需要以成为电动发电机2的再生效率e高的电机转速nm的方式使变速器4的变速比变速的油压。

在再生制动中,为了提高电动发电机2的再生效率e而在变速器4中降挡的情况下,目标变速比it有时脱离滑行变速线而设定在低挡侧。在这种情况下,变速器4中,需要将为了按照滑行变速线降挡而需要的油压和用于提高电动发电机2的再生效率e的变速需要的油压相加而得到的油压(以下,称为第二油压psec2)。

因此,在再生制动时,作为次级压,在变速器4中需要不会产生带打滑的油压(扭矩容量)即第一油压psec1和变速需要的油压即第二油压psec2的总和即必要次级压psecn。

接着,对必要次级压psecn和使用由从油泵70排出的油产生的油压而供给的实际次级压(最大次级压)pseca的关系进行说明。

在没有减速请求、不进行再生制动的情况下,如图4a所示,必要次级压psecn比使用由从油泵70排出的油产生的油压而供给的实际次级压pseca低。因此,在变速器4中,不会产生带打滑,或者,不会产生实际变速比ia相对于目标变速比it的变化延迟的变速不良。

当由驾驶员踏下制动踏板63而进行减速请求,开始再生制动时,产生再生制动扭矩trg,相应地,相对于输入扭矩tin,为了不产生带打滑而需要的油压增加,所以第一油压psec1增加。在图4b以后,用向右下的阴影表示该增加量。在此,如图4b所示,减速请求小,必要次级压psecn比实际次级压pseca低。因此,在变速器4中,不会产生带打滑,或不会产生变速不良。此外,在此,不考虑用于提高电动发电机2的再生效率e的变速。

当减速请求变大,再生制动扭矩trg变大时,第一油压psec1变高,如图4c所示,必要次级压psecn比实际次级压pseca高。但是,因不能向次级带轮43供给超过实际次级压pseca的油压,所以在次级带轮43中超过实际次级压pseca的油压不足。这种情况下,实际变速比ia相对于目标变速比it的追随延迟,产生降挡中的变速不良。

在次级带轮43中,除了车速vsp的降低以外,还产生降挡中的变速不良时,不能维持油泵70的转轴的转速nop,转速nop降低,油泵70的排出量变少,如图4d所示,实际次级压pseca变低。在此,虽然产生降挡中的变速不良,但由于实际次级压pseca比第一油压psec1高,因此,在变速器4中不会产生带打滑。

进而,当车速vsp降低,变速不良进一步发展时,油泵70的转轴的转速nop进一步变低,油泵70的排出量进一步变少。因此,如图4e所示,实际次级压pseca进一步变低,当实际次级压pseca变得比第一油压psec1低时,在变速器4中产生带打滑。

这样,根据减速请求开始进行再生制动,必要次级压psecn比实际次级压pseca变高,在变速器4中产生降挡的变速不良时,导致实际次级压pseca的降低,其结果是,有时在变速器4中产生带打滑。

此外,在使用图4a~图4e的说明中,并未考虑为了提高电动发电机2的再生效率e而利用变速器4进行变速的情况,考虑利用变速器4进行变速时,为了变速而需要的第二油压psec2就会变高,所以更容易产生上述问题。

于是,本实施方式中,进行以下说明的再生制动扭矩限制控制。图5是说明再生制动扭矩限制控制的流程图。

步骤s100中,cvt控制单元81判定是否踏下制动踏板63。在踏下制动踏板63,制动器信号brk成为接通(on)的情况下,处理进入步骤s101,未踏下制动踏板63,制动器信号brk成为断开(off)的情况下,结束此次的处理。

步骤s101中,cvt控制单元81判定是否输出目标再生指令rg。在输出目标再生指令rg的情况下,处理进入步骤s102,在未输出目标再生指令rg的情况下,结束此次的处理。

步骤s102中,cvt控制单元81判定实际次级压pseca是否比必要次级压psecn低。在实际次级压pseca比必要次级压psecn低的情况下,cvt控制单元81判定为次级压不足。在实际次级压pseca比必要次级压psecn低的情况下,处理进入步骤s103,在实际次级压pseca为必要次级压psecn以上的情况下,结束此次的处理。

步骤s103中,cvt控制单元81判定实际次级压pseca是否比将第一油压psec1加上第一规定压p1而得到的压力低。第一规定压p1是预设定的压力,在实际次级压pseca比将第一油压psec1加上第一规定压p1而得到的压力低时,是成为可判定为在变速器4中有可能产生带打滑的压力。在实际次级压pseca为将第一油压psec1加上第一规定压p1而得到的压力以上的情况下,处理进入步骤s104,在实际次级压pseca比将第一油压psec1加上第一规定压p1而得到的压力低的情况下,处理进入步骤s105。

步骤s104中,cvt控制单元81以从可向次级带轮43供给的油压即实际次级压pseca减去为了使变速器4变速而需要的第二油压psec2而得到的压力以下的方式,设定第一油压psec1,以根据设定的第一油压psec1不会产生带打滑的方式,输出再生制动扭矩限制值trglim。具体而言,cvt控制单元81计算出必要次级压psecn和实际次级压pseca的压差,将压差换算成再生制动扭矩trg,计算出再生制动扭矩限制值trglim。再生制动扭矩限制值trglim是相当于压差的再生制动扭矩trg的减少量。再生制动扭矩限制值trglim越大,再生制动扭矩trg越小(绝对值变小),输入扭矩tin也越变小(绝对值变小)。即,电动发电机2的再生制动扭矩trg下降不足的次级压的量,随之输入扭矩tin也下降。

另外,cvt控制单元81将再生制动扭矩trg施加限制时的再生制动扭矩限制值trglim的扭矩限制变化率(每单位时间的增加量)rt设定成第一变化率r1。将再生制动扭矩trg施加限制使其降低时,相应地,制动扭矩通过增加液压制动扭矩trq而得到补偿。但是,在液压制动扭矩trq的增加跟不上再生制动扭矩trg的下降的情况下,制动力暂时下降,给驾驶员带来不适感。第一变化率r1设定成液压制动扭矩trq的增加不延迟地追随再生制动扭矩trg的下降低,不会给驾驶员带来不适感的值。另外,cvt控制单元81将缓和再生制动扭矩trg的限制时的再生制动扭矩限制值trglim的扭矩限制缓和变化率(每单位时间的减少量)rc设定成第二变化率r2。第二变化率r2设定成液压制动扭矩trq的下降低不延迟地追随再生制动扭矩trg的增加,不会给驾驶员带来不适感的值。

步骤s105中,cvt控制单元81与步骤s104同样,设定第一油压psec1,计算出再生制动扭矩限制值trglim。在实际次级压pseca比将第一油压psec1加上第一规定压p1而得到的压力低的情况下,在变速器4中有可能产生带打滑,所以cvt控制单元81将扭矩限制变化率rt设定成比第一变化率r1大的第三变化率r3。具体而言,第三变化率r3以再生制动扭矩限制值trglim阶梯地变化的方式来设定。此外,cvt控制单元81与步骤s104同样地将扭矩限制缓和变化率rc设定成第二变化率r2。

再生制动扭矩限制值trglim、扭矩限制变化率rt及扭矩限制缓和变化率rc发送至混合动力控制模块80,基于这些值,通过混合动力控制模块80向电机控制单元83输出限制电动发电机2的再生制动扭矩trg的控制指令。当基于再生制动扭矩限制值trglim,再生制动扭矩trg降低时,第一油压psec1降低,实际次级压pseca比必要次级压psecn变高。这样,通过限制再生制动扭矩trg,输入扭矩tin降低,所以第一油压psec1为从实际次级压pseca减去第二油压psec2而得到的压力以下。

步骤s106中,cvt控制单元81判定是否踏下制动踏板63。在踏下制动踏板63,制动器信号brk为接通(on)的情况下,处理进入步骤s107,在未踏下制动踏板63的情况下,处理进入步骤s109。

步骤s107中,cvt控制单元81判定是否输出了目标再生指令rg。在输出了目标再生指令rg的情况下,处理进入步骤s108,在未输出目标再生指令rg的情况下,处理进入步骤s109。

步骤s108中,cvt控制单元81判定实际次级压pseca是否比将必要次级压psecn加上第二规定压p2而得到的值高。第二规定压p2为预设定的压力,且为即使解除再生制动扭矩trg的限制,相对于必要次级压psecn,实际次级压pseca也不会为不足的值。在实际次级压pseca比将必要次级压psecn加上第二规定压p2而得到的值高的情况下,进入步骤s109,实际次级压pseca为将必要次级压psecn加上第二规定压p2而得到的值以下的情况下,返回步骤s103,反复上述处理。

步骤s109中,cvt控制单元81解除再生制动扭矩trg的限制。cvt控制单元81使再生制动扭矩限制值trglim成为零。

此外,也可以利用cvt控制单元81以外的控制单元进行上述处理的一部分,例如,也可以利用混合动力控制模块80进行再生制动扭矩限制值trglim、扭矩限制变化率rt及扭矩限制缓和变化率rc的计算。

这样,在实际次级压pseca比必要次级压psecn低的情况下,在变速器4中不使变速所需要的第二油压psec2降低,而是使再生制动扭矩trg降低(限制),从而使变速器4的输入扭矩tin降低,使第一油压psec1降低。由此,如图6所示,抑制必要次级压psecn比实际次级压pseca高的情况。即,使变速器4中的变速(降挡)优先而执行变速,抑制变速不良,通过限制再生制动扭矩trg,抑制必要次级压psecn比实际次级压pseca高的情况,从而抑制带打滑的产生。

接着,使用图7的时间图对进行再生制动扭矩限制控制的情况进行说明。此外,车辆在车速vsp比第一规定车速vsp1高的状态下行驶。

在时间t0,加速踏板的踏下消失,加速器开度apo成为零,车辆进行滑行行驶。表示最终目标变速比if的变速线根据加速器开度apo阶梯地变更成滑行变速线(最高挡变速线)。随之,目标变速比it以实际变速比ia成为最高挡变速比的方式逐渐被变更,实际变速比ia追随目标变速比it而变化。在图7的变速比中,以单点划线表示最终目标变速比if,以虚线表示目标变速比it及以实线表示实际变速比ia。

目标初级转速nprif根据最终目标变速比if阶梯地变更,实际初级转速npria(电机转速nm)根据实际变速比ia逐渐降低。在图7的初级转速中,用点划线表示目标初级转速nprif,用实线表示实际初级转速npria。另外,在图7的初级转速中,为了说明与目标变速比it对应的初级转速nprit,用虚线表示。

伴随实际初级转速npria的降低,从油泵70排出的油的流量降低,所以实际次级压pseca降低。另外,随着实际变速比ia成为最高挡变速比,必要次级压psecn也降低。在图7的次级压中,用点划线表示必要次级压psecn,用双点划线表示第二油压psec2,用实线表示实际次级压pseca。

另外,变速器4的目标输入扭矩tint成为负的值,变速器4的实际输入扭矩tina根据目标输入扭矩tint逐渐变更。图7的输入扭矩中,用虚线表示目标输入扭矩tint,用实线表示实际输入扭矩tina。

在时间t1,车速vsp比第一规定车速vsp1低,且踏下制动踏板63。由此,为了产生再生制动扭矩trg,目标制动扭矩tb增加,目标输入扭矩tint向负侧变大(绝对值大),实际输入扭矩tina根据目标输入扭矩tint向负侧增变大(绝对值大)。

最终目标变速比if设定为除了沿着滑行变速线进行降挡以外,还为了提高电动发电机2的再生效率e而进行降挡,目标变速比it追随最终目标变速比if而变更,实际变速比ia产生变化。在此,除了沿着滑行变速线的降挡需要的油压以外,第二油压psec2还包含用于提高电动发电机2的再生效率e的降挡所需要的油压,所以第二油压psec2阶梯地变高。另外,必要次级压psecn也阶梯地变高。

另外,实际变速比ia向低挡侧变化,实际初级转速npria变高,所以从油泵70排出的油量变多,实际次级压pseca变高。

在时间t2,必要次级压psecn比实际次级压pseca高时,设定再生制动扭矩限制值trglim,限制再生制动扭矩trg。图7的输入扭矩中,用点划线表示相当于再生制动扭矩限制值trglim的输入扭矩限制值tinlim。这样,因限制了再生制动扭矩trg,所以变速器4的实际输入扭矩tina向负侧变小(绝对值小)。再生制动扭矩限制值trglim根据必要次级压psecn和实际次级压pseca的压差来设定,压差变大时,再生制动扭矩限制值trglim变大,实际输入扭矩tina向负侧变小(绝对值小)。在此,因确保了变速所需要的第二油压psec2,所以实际变速比ia不会产生变速不良,而追随目标变速比it进行变化。

实际变速比ia向低挡侧变更,实际初级转速npria变高时,用于提高电动发电机2的再生效率e的降挡所需要的油压变少,所以在时间t3,第二油压psec2降低,必要次级压psecn的增加量变小。随着实际初级转速npria(电机转速nm)接近于提高电动发电机2的再生效率e的转速,能够减少第二油压psec2,相应地,能够提高第一油压psec1,所以能够增大再生制动扭矩trg(电机扭矩tm),使再生量增加。

必要次级压psecn和实际次级压pseca的压差变小时,再生制动扭矩限制值trglim变小,输入扭矩限制值tinlim变小,所以实际输入扭矩tina向负侧增大(绝对值变大)。

在时间t4,实际次级压pseca比必要次级压psecn高,在时间t5,实际次级压pseca比将必要次级压psecn加上第二规定压p2而得到的值高时,解除再生制动扭矩trg的限制。

对本发明的实施方式的效果进行说明。

在利用电动发电机2进行再生制动的情况下,相对于输入至变速器4的再生制动扭矩trg,将不产生带打滑的第一油压psec1设定成从实际次级压pseca减去为了使变速器4降挡而需要的第二油压psec2而得到的油压以下。由此,能够抑制再生制动中在变速器4产生变速不良,抑制变速不良引起的油泵70的转轴的转速nop的降低,从而抑制油量收支不足。

此外,在必要次级压psecn比实际次级压pseca高的情况下,还考虑优先第一油压psec1,使第二油压psec2降低即、使变速器4的变速延迟。但是,在变速器4中产生变速不良时,产生油泵70的转轴的转速nop的降低引起的油量收支不足,作为结果,会产生带打滑。于是,本实施方式中,优先第二油压psec2,抑制变速器4中的变速不良。

在进行再生制动,且必要次级压psecn比实际次级压pseca高的情况下,基于必要次级压psecn与实际次级压pseca的压差使再生制动扭矩trg降低。由此,抑制变速器4的变速不良的产生,抑制油量收支不足,并且减小输入至变速器4的实际输入扭矩tina(减小绝对值),可以抑制在变速器4中产生带打滑。

在滑行行驶中,在实际变速比ia未沿着滑行变速线变更的情况下,与实际变速比ia沿着滑行变速线变更的情况相比,实际初级转速npria可能变低。为了防止产生油量收支不足,滑行变速线设定为油泵70的转轴的转速nop不低于下限转速nolim。因此,在实际变速比ia未沿着滑行变速线变更的情况下,油泵70的转轴的转速nop比下限转速nolim低,产生油量收支不足,实际次级压pseca降低,在变速器4中有可能产生带打滑。

本实施方式中,在再生制动时将第二油压psec2设定成包含使实际变速比ia沿着滑行变速线可变速的油压的油压。由此,能够抑制油泵70的转轴的转速nop比下限转速nolim低的情况,能够抑制在变速器4中产生带打滑。

在再生制动时,将第二油压psec2设定为,包含以电动发电机2的电机转速nm成为电动发电机2的再生效率e变高的转速的方式使变速器4降挡的油压的油压。由此,在再生制动时能够使电机转速nm成为电动发电机2的再生效率e变高的转速,能够提高电动发电机2的再生效率e。

在再生制动时,当第一离合器12联接,在为了提高电动发电机2的再生效率e而使变速器4降挡时,发动机1被牵动旋转,发动机1作为负荷起作用,所以电机转速nm有可能无法提高至电动发电机2的再生效率e变高的转速。

本实施方式中,通过在制动再生时释放第一离合器12,能够以再生制动时电机转速nm成为电动发电机2的再生效率e变高的转速的方式使变速器4降挡。

以上,对本发明的实施方式进行了说明,但上述实施方式只不过表示本发明应用例的一部分,不是将本发明的技术范围限定于上述实施方式的具体构成的意思。

上述实施方式中,使用混合动力车辆进行了说明,但也可以应用于电动车辆。

变速器4不限于带式无级变速机构,也可以是链式无级变速机构。

本发明基于2015年3月23日在日本国专利局申请的特愿2015-59515主张优先权,该申请的全部内容通过参照引用到本说明书中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1