混合动力车辆、混合动力车辆的控制装置和控制方法与流程

文档序号:11243056阅读:766来源:国知局
混合动力车辆、混合动力车辆的控制装置和控制方法与流程

本发明涉及混合动力车辆的控制装置、混合动力车辆及混合动力车辆的控制方法。详细而言,涉及具备能够向前轮和后轮中的一方的车轮输出驱动力的发动机及第一电动机和能够向前轮和后轮中的另一方的车轮输出驱动力的第二电动机的混合动力车辆的控制装置、混合动力车辆及混合动力车辆的控制方法。



背景技术:

以往,作为混合动力车辆,提出了一种具备能够向前轮输出驱动力的发动机及第一电动机和能够向后轮输出驱动力的第二电动机的结构(例如,参照日本特开2005-53317)。在所述混合动力车辆中,首先,基于前后方向加速度来设定能够维持汽车的驾驶稳定性的前轮驱动力分配率的范围。接着,将在所述范围内为了使发动机和两个电动机工作而实际上消耗的每单位时间的燃料消耗量(发动机有效燃料消耗量)最少的分配率设定为前轮驱动力分配率。然后,通过设定的所述前轮驱动力分配率进行驱动力分配而进行行驶。通过这样使用发动机有效燃料消耗量最少的分配率来进行驱动力分配,能维持汽车的驾驶稳定性并降低发动机的燃料消耗量。



技术实现要素:

另外,在四轮驱动的混合动力车辆中,也提出了如下汽车,在通常时,通过从发动机和第一电动机向前轮或后轮中的一方输出驱动力来进行行驶,在转弯时或滑移抑制时,将必要的驱动力负担的一部分分配给向前轮或后轮中的另一方输出驱动力的第二电动机并作为四轮驱动进行行驶。在这样的部分时间地通过四轮驱动进行行驶的混合动力车辆中,很多情况下起辅助性的作用的第二电动机为比较小的热容量,或者安装有冷却能力的冷却装置。对于该类型的混合动力车辆,在为了能量效率的提高而如上述那样始终向第二电动机分配驱动力的负担而作为四轮驱动进行行驶时,第二电动机会产生过热。

本发明提供一种能够抑制第二电动机的过热并提高车辆的能量效率的混合动力车辆的控制装置、混合动力车辆及混合动力车辆的控制方法。

本发明的第一方式为用于混合动力车辆的控制装置。所述混合动力车辆包括前轮、后轮、发动机、第一电动机、第二电动机、蓄电池、模式切换开关和电子控制单元。所述发动机及所述第一电动机构成为向所述前轮和所述后轮中的一方的车轮输出驱动力。所述第二电动机构成为向所述前轮和所述后轮中的另一方的车轮输出驱动力。所述蓄电池构成为向所述第一电动机及所述第二电动机供给电力。所述模式切换开关构成为切换电量消耗模式和电量保持模式。所述电子控制单元构成为以使所述混合动力车辆通过所述混合动力车辆的行驶所要求的要求驱动力来行驶的方式对所述发动机、所述第一电动机和所述第二电动机进行控制。而且,所述电子控制单元构成为在所述混合动力车辆通过电量消耗模式进行时,以使第一驱动力比例比第二驱动力比例大的方式进行控制。所述第一驱动力比例是所述混合动力车辆(20、220)通过电量消耗模式进行行驶时的所述要求驱动力中的从所述第二电动机(mg3)输出的驱动力的比例。所述第二驱动力比例是所述混合动力车辆(20、220)通过所述模式切换开关从电量消耗模式切换成电量保持模式而进行行驶时的所述要求驱动力中的从所述第二电动机(mg3)输出的驱动力的比例。

根据所述结构,在所述混合动力车辆通过电量消耗模式进行行驶时,与所述混合动力车辆通过模式切换开关从电量消耗模式切换成电量保持模式而进行行驶时相比,以使行驶所要求的要求驱动力中的从第二电动机输出的驱动力比例变大的方式进行控制。即,在所述混合动力车辆通过模式切换开关切换成电量保持模式而进行行驶时,与所述混合动力车辆通过电量消耗模式进行行驶时相比,减小要求驱动力中的从第二电动机输出的驱动力比例。因此,在所述混合动力车辆通过模式切换开关切换成电量保持模式而进行行驶时,能够良好地进行第二电动机的冷却,能够抑制第二电动机的过热。并且,在然后所述混合动力车辆通过模式切换开关从电量保持模式切换成电量消耗模式而进行行驶时,能够从第二电动机输出必要的驱动力。此时,通过以使能量效率提高的方式进行向第二电动机的驱动力分配,能够使车辆的能量效率提高。其结果是,能够抑制第二电动机的过热并实现车辆的能量效率的提高。

在所述控制装置中,所述电子控制单元也可以构成为在所述混合动力车辆通过电量消耗模式进行行驶时,以使所述第一电动机和所述第二电动机的损失成为最小的方式对所述第一电动机和所述第二电动机进行控制。根据所述结构,能够使车辆的能量效率提高。需要说明的是,第一电动机和第二电动机的损失最小是指在能够进行各电动机的驱动的范围内第一电动机和第二电动机的损失之和最小。例如在第一电动机或第二电动机中的一方由于过热等而被施加有驱动限制时,意味着在该范围内第一电动机和第二电动机的损失之和最小。

在所述控制装置中,所述电子控制单元也可以构成为在所述混合动力车辆通过电量保持模式进行行驶时,以第一驱动力分配比对所述第一电动机(mg2)和所述第二电动机(mg3)进行控制。所述第一驱动力分配比是基于行驶性能要件的驱动力分配比。而且,所述电子控制单元也可以构成为在所述混合动力车辆通过电量消耗模式进行行驶时,选择所述第一驱动力分配比和第二驱动力分配比中的一个驱动力分配比来对所述第一电动机(mg2)和所述第二电动机(mg3)进行控制。所述第二驱动力分配比是使第一电动机(mg2)和所述第二电动机(mg3)的损失最小的驱动力分配比。根据所述结构,能够满足行驶性能要件,同时能够将损失抑制为最小限度。在此,驱动力分配比是相对于驱动力的整体的后轮的分配比。即,在驱动力分配比为值0时,驱动力向前轮分配100%,向后轮分配0%。并且,在驱动力分配比为值1时,向前轮分配0%,向后轮分配100%。

在所述控制装置中,所述电子控制单元也可以构成为在所述混合动力车辆通过所述模式切换开关从电量消耗模式切换成电量保持模式而进行行驶时,以使所述第二驱动力比例比第三驱动力比例小的方式进行控制。所述第三驱动力比例是所述混合动力车辆由于所述蓄电池的蓄电比例下降而从电量消耗模式切换成电量保持模式进行行驶时的所述要求驱动力中的从所述第二电动机(mg3)输出的驱动力的比例。根据所述结构,在所述混合动力车辆通过模式切换开关切换成电量保持模式而进行行驶时,能够更良好地进行第二电动机的冷却。而且,在然后所述混合动力车辆通过模式切换开关从电量保持模式切换成电量消耗模式而进行行驶时,能够充分发挥第二电动机的性能。其结果是,能够抑制第二电动机的过热并使车辆的能量效率进一步提高。

在所述控制装置中,所述电子控制单元也可以构成为在所述混合动力车辆通过所述模式切换开关从电量消耗模式切换成电量保持模式而进行行驶时,以仅在所述电子控制单元判断为需要进行四轮驱动的行驶时从所述第二电动机输出驱动力的方式进行控制。根据所述结构,在所述混合动力车辆通过模式切换开关切换成电量保持模式而进行行驶时,能够减小第二电动机的驱动频率,能够更良好地进行第二电动机的冷却。

本发明的第二方式为混合动力车辆。所述混合动力车辆包括前轮、后轮、发动机、第一电动机、第二电动机、蓄电池、模式切换开关和电子控制单元。所述发动机及所述第一电动机构成为向所述前轮和所述后轮中的一方的车轮输出驱动力。所述第二电动机构成为向所述前轮和所述后轮中的另一方的车轮输出驱动力。所述蓄电池构成为对来自所述第一电动机及所述第二电动机的电力进行蓄电。所述模式切换开关构成为切换电量消耗模式和电量保持模式。所述电子控制单元构成为以通过所述混合动力车辆的行驶所要求的要求驱动力来使所述混合动力车辆行驶的方式对所述发动机、所述第一电动机和所述第二电动机进行控制。而且,所述电子控制单元构成为在所述混合动力车辆通过电量消耗模式进行时,以使第一驱动力比例比第二驱动力比例大的方式进行控制。所述第一驱动力比例是所述混合动力车辆(20、220)通过电量消耗模式进行行驶时的所述要求驱动力中的从所述第二电动机(mg3)输出的驱动力的比例。所述第二驱动力比例是所述混合动力车辆(20、220)通过所述模式切换开关从电量消耗模式切换成电量保持模式而进行行驶时的所述要求驱动力中的从所述第二电动机(mg3)输出的驱动力的比例。

根据所述结构,在所述混合动力车辆通过模式切换开关切换成电量保持模式而进行行驶时,能够良好地进行第二电动机的冷却,能够抑制第二电动机的过热。并且,在然后所述混合动力车辆通过模式切换开关从电量保持模式切换成电量消耗模式而进行行驶时,能够从第二电动机输出必要的驱动力。此时,通过以使能量效率提高的方式进行向第二电动机的驱动力分配,能够使车辆的能量效率提高。其结果是,能够抑制第二电动机的过热并实现车辆的能量效率的提高。

本发明的第三方式为混合动力车辆的控制方法。所述混合动力车辆包括前轮、后轮、发动机、第一电动机、第二电动机、蓄电池、模式切换开关和电子控制单元。所述发动机及所述第一电动机构成为向所述前轮和所述后轮中的一方的车轮输出驱动力。所述第二电动机构成为向所述前轮和所述后轮中的另一方的车轮输出驱动力。所述蓄电池构成为对来自所述第一电动机及所述第二电动机的电力进行蓄电。所述模式切换开关构成为切换电量消耗模式和电量保持模式。所述电子控制单元构成为以通过所述混合动力车辆的行驶所要求的要求驱动力来使所述混合动力车辆行驶的方式对所述发动机、所述第一电动机和所述第二电动机进行控制。而且,所述控制方法包括在所述混合动力车辆通过电量消耗模式进行时,以使第一驱动力比例比第二驱动力比例大的方式进行控制。所述第一驱动力比例是所述混合动力车辆(20、220)通过电量消耗模式进行行驶时的所述要求驱动力中的从所述第二电动机(mg3)输出的驱动力的比例。所述第二驱动力比例是所述混合动力车辆(20、220)通过所述模式切换开关从电量消耗模式切换成电量保持模式而进行行驶时的所述要求驱动力中的从所述第二电动机(mg3)输出的驱动力的比例。

根据所述结构,在所述混合动力车辆通过模式切换开关切换成电量保持模式而进行行驶时,能够良好地进行第二电动机的冷却,能够抑制第二电动机的过热。并且,然后在所述混合动力车辆通过模式切换开关从电量保持模式切换成电量消耗模式而进行行驶时,能够从第二电动机输出必要的驱动力。此时,通过以使能量效率提高的方式进行向第二电动机的驱动力分配,能够使车辆的能量效率提高。其结果是,能够抑制第二电动机的过热并实现车辆的能量效率的提高。

附图说明

本发明的实施方式的特征、优点、技术及工业意义通过参照附图如下来描述,其中相同的数字表示相同的元件,其中,

图1是表示作为本发明的实施例的混合动力车辆20的结构的概略的结构图。

图2是表示由hvecu70执行的驱动力分配比设定处理例程的一例的流程图。

图3是表示电动机的输出转矩与电动机的损失(loss)的关系的一例的特性图。

图4是表示蓄电比例soc、行驶模式和驱动力分配比k的时间变化的一例的时间图。

图5是表示变形例的混合动力车辆220的结构的概略的结构图。

具体实施方式

接着,使用实施例来说明用于实施本发明的方式。

图1是表示作为本发明的实施例的混合动力车辆20的结构的概略的结构图。如图示那样,实施例的混合动力车辆20具备发动机22、行星齿轮30、电动机mg1、mg2、mg3、变换器41、42、43、蓄电池50、充电器60和混合动力用电子控制单元(以下称为hvecu)70。

发动机22构成为以来自燃料罐25的汽油、轻油等为燃料来输出动力的内燃机。所述发动机22由发动机用电子控制单元(以下称为发动机ecu)24进行运转控制。

虽然未图示,但是发动机ecu24构成为以cpu为中心的微处理器。并且,除了cpu以外,发动机ecu24还具备存储处理程序的rom、暂时存储数据的ram、输入输出端口、通信端口。向发动机ecu24输入对发动机22进行运转控制所需要的来自各种传感器的信号。例如来自对发动机22的曲轴26的旋转位置进行检测的曲轴位置传感器23的曲轴转角θcr等经由输入端口向发动机ecu24输入。用于对发动机22进行运转控制的各种控制信号从发动机ecu24经由输出端口输出。发动机ecu24经由通信端口与hvecu70连接。需要说明的是,发动机ecu24基于来自曲轴位置传感器23的曲轴转角θcr来运算发动机22的转速ne。

行星齿轮30构成为单小齿轮式的行星齿轮机构。在行星齿轮30的太阳轮上连接有电动机mg1的转子。在行星齿轮30的齿圈上连接有驱动轴36f,该驱动轴36f经由差动齿轮37f连结于前轮38a、38b。在行星齿轮30的齿轮架上经由减震器28连接有发动机22的曲轴26。

电动机mg1构成为例如同步发电电动机,如上述那样,转子连接于行星齿轮30的太阳轮。电动机mg2构成为例如同步发电电动机,转子连接于驱动轴36f。电动机mg3构成为例如同步发电电动机,转子连接于驱动轴36r。所述驱动轴36r经由差动齿轮37r连结于后轮38c、38d。变换器41、42、43经由电力线54与蓄电池50连接。电动机mg1、mg2、mg3通过由电动机用电子控制单元(以下称为电动机ecu)40对变换器41、42、43的未图示的多个开关元件进行开关控制而被旋转驱动。

虽然未图示,但是电动机ecu40构成为以cpu为中心的微处理器。并且,除了cpu以外,电动机ecu40还具备存储处理程序的rom、暂时存储数据的ram、输入输出端口、通信端口。向电动机ecu40输入对电动机mg1、mg2、mg3进行驱动控制所需要的来自各种传感器的信号。例如来自对电动机mg1、mg2、mg3的转子的旋转位置进行检测的旋转位置检测传感器44、45、46的旋转位置θm1、θm2、θm3等经由输入端口向电动机ecu40输入。向变换器41、42、43的未图示的多个开关元件的开关控制信号等从电动机ecu40经由输出端口输出。电动机ecu40经由通信端口与hvecu70连接。电动机ecu40基于来自旋转位置检测传感器44、45、46的电动机mg1、mg2、mg3的转子的旋转位置θm1、θm2、θm3来运算电动机mg1、mg2、mg3的转速nm1、nm2、nm3。

蓄电池50构成为例如锂离子二次电池、镍氢二次电池。如上述那样,该蓄电池50经由电力线54与变换器41、42连接。蓄电池50由蓄电池用电子控制单元(以下称为蓄电池ecu)52管理。

虽然未图示,但是蓄电池ecu52构成为以cpu为中心的微处理器。并且,除了cpu以外,蓄电池ecu52还具备存储处理程序的rom、暂时存储数据的ram、输入输出端口、通信端口。向蓄电池ecu52输入对蓄电池50进行管理所需要的来自各种传感器的信号。例如来自在蓄电池50的端子间设置的电压传感器51a的电池电压vb、来自安装于蓄电池50的输出端子的电流传感器51b的电池电流ib等经由输入端口向蓄电池ecu52输入。蓄电池ecu52经由通信端口与hvecu70连接。蓄电池ecu52基于来自电流传感器51b的电池电流ib的累计值来运算蓄电比例soc。蓄电比例soc是能够从蓄电池50放电的电力的容量相对于蓄电池50的全部容量的比例。

充电器60连接于电力线54。并且,充电器60构成为在电源插头61在自家住宅、充电站等充电点与家庭用电源、工业用电源等外部电源69连接时,能够进行使用来自外部电源69的电力对蓄电池50进行充电的外部充电。

虽然未图示,但是hvecu70构成为以cpu为中心的微处理器。并且,除了cpu以外,hvecu70还具备存储处理程序的rom、暂时存储数据的ram、闪存72、输入输出端口、通信端口。来自各种传感器的信号经由输入端口向hvecu70输入。作为向hvecu70输入的信号,例如可列举来自点火开关80的点火信号、来自档位传感器82的档位sp、来自加速器踏板位置传感器84的加速器开度acc、来自制动器踏板位置传感器86的制动器踏板位置bp。并且,可列举来自车速传感器88的车速v、来自模式切换开关92的开关信号、来自安装于电源插头61并判定电源插头61是否连接于外部电源69的连接开关62的连接信号等。各种控制信号例如向充电器60的控制信号等从hvecu70经由输出端口输出。并且,如上述那样,hvecu70经由通信端口与发动机ecu24、电动机ecu40、蓄电池ecu52连接。

在这样构成的实施例的混合动力车辆20中,以电量消耗模式(以下称为cd模式)或电量保持模式(以下称为cs模式)进行混合动力行驶(以下称为hv行驶)或电动行驶(以下称为ev行驶)。在此,cd模式是与cs模式相比使ev行驶更优先的模式。hv行驶是伴着发动机22的运转进行行驶的模式。ev行驶是未伴着发动机22的运转进行行驶的模式。

在实施例中,hvecu70在自家住宅或充电站等充电点进行系统关闭(系统停止)而停车时,若电源插头61连接于外部电源69,则以使用来自外部电源69的电力对蓄电池50进行充电的方式控制充电器60。并且,hvecu70在进行系统接通(系统起动)时蓄电池50的蓄电比例soc比阈值shv1(例如45%、50%、55%等)大时,以使混合动力车辆20通过cd模式进行行驶的方式进行控制,直至蓄电池50的蓄电比例soc达到阈值shv2(例如25%、30%、35%等)以下为止。并且,hvecu70在蓄电池50的蓄电比例soc达到阈值shv2以下之后,以使混合动力车辆20通过cs模式进行行驶的方式进行控制,直至进行系统关闭为止。并且,hvecu70在进行系统接通时蓄电池50的蓄电比例soc为阈值shv1以下时,以使混合动力车辆20通过cs模式进行行驶的方式进行控制,直至进行系统关闭为止。并且,hvecu70在混合动力车辆20正在通过cd模式进行行驶的时候模式切换开关92被操作时,以使混合动力车辆20通过cs模式进行行驶的方式进行控制。并且,hvecu70在通过模式切换开关92的操作设为cs模式而混合动力车辆20正在行驶的时候模式切换开关92再次被操作时,以使混合动力车辆20通过cd模式进行行驶的方式进行控制。

ev行驶通常如以下那样进行驱动控制。hvecu70首先基于加速器开度acc和车速v来设定要求转矩tr。接着,hvecu70将值0设定为电动机mg1的转矩指令tm1,并且以在蓄电池50的输入输出限制win、wout的范围内将要求转矩tr按驱动力分配比k向驱动轴36f、36r输出的方式设定电动机mg2、mg3的转矩指令tm2、tm3。驱动力分配比k在实施例中为向后轮38c、38d的分配比,在k=0时,成为前轮38a、38b中100%且后轮38c、38d中0%的分配,在k=1时,成为前轮38a、38b中0%且后轮38c、38d中100%的分配。接收到转矩指令tm1、tm2、tm3的电动机ecu40以将电动机mg1、mg2、mg3按转矩指令tm1、tm2、tm3驱动的方式进行变换器41、42、43的开关元件的开关控制。

hv行驶通常如以下那样进行驱动控制。hvecu70首先基于加速器开度acc和车速v来设定行驶所要求的要求转矩tr。接着,hvecu70向要求转矩tr乘以驱动轴36f的转速nr来计算行驶所要求的行驶用功率pdrv。驱动轴36f的转速nr例如是向电动机mg2的转速nm2或车速v乘以换算系数而得到的转速。接着,hvecu70从行驶用功率pdrv减去基于蓄电池50的蓄电比例soc的蓄电池50的充放电要求功率pb(从蓄电池50放电时为正值)来设定对车辆要求的要求功率pe。然后,hvecu70使发动机22输出要求功率pe,并且设定发动机22的目标转速ne和目标转矩te、电动机mg1、mg2、mg3的转矩指令tm1、tm2、tm3。然后,hvecu70将设定的发动机22的目标转速ne和目标转矩te、电动机mg1、mg2、mg3的转矩指令tm1、tm2、tm3向发动机ecu24和电动机ecu40发送。发动机22的目标转速ne和目标转矩te、电动机mg1、mg2、mg3的转矩指令tm1、tm2、tm3以在蓄电池50的输入输出限制win、wout的范围内将要求转矩tr向驱动轴36f、36r输出的方式进行设定。并且,发动机22的目标转速ne和目标转矩te通过使要求功率pe从发动机22高效地输出的燃料经济性最佳动作线来设定。电动机mg1的转矩指令tm1以使发动机22按目标转速ne和目标转矩te运转的方式通过反馈控制来设定。电动机mg2、mg3的转矩指令tm2、tm3以在蓄电池50的输入输出限制win、wout的范围内将要求转矩tr按驱动力分配比k向驱动轴36f、36r输出的方式进行设定。接收到目标转速ne和目标转矩te的发动机ecu24以按照目标转速ne和目标转矩te使发动机22运转的方式进行发动机22的吸入空气量控制、燃料喷射控制、点火控制等。接收到转矩指令tm1、tm2、tm3的电动机ecu40以使电动机mg1、mg2、mg3按照转矩指令tm1、tm2、tm3驱动的方式进行变换器41、42、43的开关元件的开关控制。

接着,说明这样构成的实施例的混合动力车辆20的动作。尤其说明在混合动力车辆20正通过cd模式进行行驶的时候模式切换开关92被操作而混合动力车辆20通过cs模式进行行驶时的驱动力分配比k的设定动作和然后模式切换开关92再次被操作而混合动力车辆20通过cd模式进行行驶时的驱动力分配比k的设定动作。图2是表示由hvecu70执行的驱动力分配比设定处理例程的一例的流程图。该例程每规定时间(例如每数msec或每数十msec)反复执行。

在驱动力分配比设定处理例程被执行时,hvecu70首先设定基于行驶性能要件的驱动力分配比kdrv(步骤s100)。在实施例中,所述基于行驶性能要件的驱动力分配比kdrv在通过来自未图示的转向角传感器的转向角而判断为需要进行四轮驱动时设定成为转向而预先确定的值。并且,所述驱动力分配比kdrv在通过路面因降雪等而易滑从而判断为需要进行四轮驱动时设定成为滑移防止而预先确定的值。而且,所述驱动力分配比kdrv在未判断为需要进行四轮驱动时设定成值0。

接着,hvecu70判定是否通过模式切换开关92的操作从cd模式切换成了cs模式(步骤s110)。hvecu70在没有通过模式切换开关92的操作从cd模式切换成cs模式时,设定燃料经济性最佳的驱动力分配比knenpi(步骤s120)。燃料经济性最佳的驱动力分配比knenpi以使电动机mg2和电动机mg3的损失之和成为最小的方式进行设定。图3是表示电动机的输出转矩与电动机的损失(loss)的关系的一例的特性图。通常,输出转矩越大,电动机的损失越大。因此,以使电动机mg2的损失和电动机mg3的损失之和成为最小的方式分配应从电动机mg2和电动机mg3输出的转矩,由此成为燃料经济性最佳。需要说明的是,在电动机mg2或电动机mg3因过热等而受到驱动限制时,以在所述驱动限制的范围内使电动机mg2和电动机mg3的损失之和成为最小的方式设定驱动力分配比knenpi。这样设定燃料经济性最佳的驱动力分配比knenpi后,hvecu70将基于行驶性能要件的驱动力分配比kdrv和燃料经济性最佳的驱动力分配比knenpi中的较大的一方设定为执行用的驱动力分配比k(步骤s130),结束本例程。通过这样设定驱动力分配比k,主要会将燃料经济性最佳的驱动力分配比knenpi设定为驱动力分配比k,所以能够使车辆的能量效率提高。

另一方面,在步骤s110中判定为通过模式切换开关92的操作从cd模式切换成了cs模式时,hvecu70将基于行驶性能要件的驱动力分配比kdrv设定为执行用的驱动力分配比k(步骤s140),结束本例程。这样在通过模式切换开关92的操作从cd模式切换成了cs模式时将基于行驶性能要件的驱动力分配比kdrv设定为驱动力分配比k是为了抑制电动机mg3的过热或促进电动机mg3的冷却。通常,与发动机22一起向前轮38a、38b输出动力的电动机mg2在行驶中始终被驱动,因此比较大型且热容量也大,用于过热抑制的冷却装置也安装在性能上充分的装置。另一方面,部分时间地驱动的电动机mg3比较小型且热容量也小,很多情况下用于过热抑制的冷却装置也安装在性能上较低的装置。因此,若始终驱动电动机mg3,则电动机mg3容易产生过热,电动机mg3会担有驱动限制。但是,在实施例中,在通过模式切换开关92的操作从cd模式切换成cs模式时,仅在判断为需要进行四轮驱动时将电动机mg3驱动,所以不仅能够抑制电动机mg3的过热,而且能够进行电动机mg3的冷却。因此,然后在通过模式切换开关92的操作从cs模式切换成cd模式时,能够充分发挥电动机mg3的性能。

图4是表示蓄电比例soc、行驶模式和驱动力分配比k的时间变化的一例的时间图。在时间t1之前的以cd模式进行行驶时,蓄电比例soc随着时间的经过而减少,通过hvecu70将基于行驶性能要件的驱动力分配比kdrv和燃料经济性最佳的驱动力分配比knenpi中的较大的一方设定为驱动力分配比k。在时间t1模式切换开关92被操作而行驶模式从cd模式切换成cs模式时,蓄电比例soc与时间的经过无关地保持,通过hvecu70将基于行驶性能要件的驱动力分配比kdrv设定为驱动力分配比k。即,在模式切换开关92被操作而从cd模式切换成cs模式时,仅在判断为需要进行四轮驱动时对电动机mg3进行驱动,与cd模式时相比使电动机mg3的驱动力比例变小。换言之,在通过cd模式进行行驶时,与模式切换开关92被操作而从cd模式切换成cs模式时相比,使电动机mg3的驱动力比例变大。因此,在模式切换开关92被操作而从cd模式切换成cs模式时,电动机mg3的驱动频率变小,能够进行电动机mg3的冷却。并且,在模式切换开关92再次被操作而行驶模式从cs模式切换成cd模式时,蓄电比例soc随着时间的经过而减少,通过hvecu70将基于行驶性能要件的驱动力分配比kdrv和燃料经济性最佳的驱动力分配比knenpi中的较大的一方设定为驱动力分配比k。此时,由于电动机mg3被充分冷却,所以不会受到由过热引起的驱动限制,能够充分发挥其性能。其结果是,能够使车辆的能量效率提高。并且,在蓄电比例soc达到阈值shv2的时间t3由于蓄电比例soc下降而行驶模式从cd模式切换成cs模式时,蓄电比例soc与时间的经过无关地保持。并且,通过hvecu70将基于行驶性能要件的驱动力分配比kdrv和燃料经济性最佳的驱动力分配比knenpi中的较大的一方设定为驱动力分配比k。

在以上说明的实施例的混合动力车辆20中,在通过cd模式进行行驶时,将基于行驶性能要件的驱动力分配比kdrv和燃料经济性最佳的驱动力分配比knenpi中的较大的一方设定为驱动力分配比k。由此,能够使车辆的能量效率提高。并且,实施例的混合动力车辆20在正通过cd模式进行行驶的时候模式切换开关92被操作而从cd模式切换成cs模式时,将基于行驶性能要件的驱动力分配比kdrv设定为驱动力分配比k。即,在模式切换开关92被操作而从cd模式切换成cs模式时,仅在判断为需要进行四轮驱动时对电动机mg3进行驱动,与cd模式时相比使电动机mg3的驱动力比例变小。由此,能够抑制电动机mg3的过热,并且进行电动机mg2的冷却。并且,实施例的混合动力车辆20在模式切换开关92再次被操作而从cs模式切换成cd模式时,将基于行驶性能要件的驱动力分配比kdrv和燃料经济性最佳的驱动力分配比knenpi中的较大的一方设定为驱动力分配比k。此时,由于电动机mg3被冷却,所以不会受到由过热引起的驱动限制,能够充分发挥其性能。其结果是,能够使车辆的能量效率提高。这些结果是,能够抑制电动机mg3的过热并实现车辆的能量效率的提高。

在实施例的混合动力车辆20中,在由于蓄电比例soc下降而行驶模式从cd模式切换成cs模式时,将基于行驶性能要件的驱动力分配比kdrv和燃料经济性最佳的驱动力分配比knenpi中的较大的一方设定为驱动力分配比k。但是,在该情况下,与通过模式切换开关92的操作从cd模式切换成cs模式时一样,hvecu也可以将基于行驶性能要件的驱动力分配比kdrv设定为驱动力分配比k。

在实施例的混合动力车辆20中,在正通过cd模式进行行驶的时候模式切换开关92被操作而从cd模式切换成cs模式时,将基于行驶性能要件的驱动力分配比kdrv设定为驱动力分配比k。但是,通过cd模式进行行驶时的电动机mg3的驱动力比例只要比模式切换开关92被操作而从cd模式切换成cs模式时大即可。因此,除了基于行驶性能要件的驱动力分配比kdrv之外,hvecu还可以通过其他要件来设定驱动力分配比。

在实施例的混合动力车辆20中,具备将电源插头61连接于外部电源69而对蓄电池50进行充电的充电器60,但是也可以具备以非接触的方式接受来自外部电源69的电力而对蓄电池50进行充电的充电器。

在实施例的混合动力车辆20中,形成为将发动机22、电动机mg1、电动机mg2连接于与前轮38a、38b连结的驱动轴36f,将电动机mg3连接于与后轮38c、38d连结的驱动轴36r的结构。但是,也可以形成为将发动机22、电动机mg1、电动机mg2连接于与后轮连结的驱动轴,将电动机mg3连接于与前轮连结的驱动轴的结构。

在实施例的混合动力车辆20中,发动机22、电动机mg1和与前轮38a、38b连结的驱动轴36f连接于行星齿轮30,并且电动机mg2连接于驱动轴36f,电动机mg3连接于与后轮38c、38d连结的驱动轴36r。但是,也可以如图5的变形例的混合动力车辆220所例示的那样,形成为将电动机mgf经由变速器230连接于与前轮38a、38b连结的驱动轴36f,并且将发动机22经由离合器229连接于电动机mgf的旋转轴,将电动机mgr连接于与后轮38c、38d连结的驱动轴36r的结构。并且,只要是具备向前轮和后轮中的一方的车轮输出驱动力的发动机及第一电动机和能够向前轮和后轮中的另一方的车轮输出驱动力的第二电动机的结构,形成为什么样的混合动力车辆的结构都没关系。

说明实施例的主要的要素与本发明的主要的要素的对应关系。在实施例中,发动机22相当于发动机,电动机mg2相当于第一电动机,电动机mg3相当于第二电动机,蓄电池50相当于蓄电池,hvecu70、发动机ecu24和电动机ecu40相当于电子控制单元,模式切换开关92相当于模式切换开关。

需要说明的是,实施例的主要的要素与本发明的主要的要素的对应关系是用于具体地说明实施例实施发明内容一栏所记载的发明的方式的一例,所以并不是对本发明的要素进行限定。即,实施例只不过是本发明的具体性的一例。

以上,使用实施例说明了用于实施本发明的方式,但是本发明并不受这样的实施例任何限定,在不脱离本发明的宗旨的范围内,能够以各种方式实施,这是不言而喻的。

本发明能够利用于混合动力车辆的制造产业等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1