面向协同自适应巡航控制预期功能安全的容错控制方法

文档序号:26003899发布日期:2021-07-23 21:21阅读:77来源:国知局
面向协同自适应巡航控制预期功能安全的容错控制方法

本发明涉及智能网联汽车技术领域,特别涉及一种面向协同自适应巡航控制预期功能安全的容错控制方法及装置。



背景技术:

智能化和信息化技术的发展促进了智能网联汽车的创新。近年来,许多智能网联汽车技术被提出,其中,协同式自适应巡航控制通过扩展v2v通信实现多车互联,达到缩短跟车时距、提高道路通行效率、减少能量损耗的目的,是智能网联汽车技术中最接近最终形态的一种。

安全是智能网联汽车运行的基础,因此,由于预期功能及其实施过程造成的不合理风险必须被降低到可接受的水平。智能网联汽车依赖先进感知、决策和控制执行软、硬件,实现在复杂动态环境中的运行,对软硬件性能缺陷十分敏感,上述特点对智能网联汽车的安全提出了严峻的挑战,即预期功能安全问题。因此,保障协同式自适应巡航控制预期功能安全对此项技术的推广应用具有十分重要的现实意义。



技术实现要素:

本发明旨在至少在一定程度上解决相关技术中的技术问题之一。

为此,本发明的一个目的在于提出一种面向协同自适应巡航控制预期功能安全的容错控制方法,该方法解决了协同式自适应巡航控制在实际运行过程中,由于感知传感器和线控执行设备由于自身设计缺陷,造成的整车碰撞等不合理风险的问题。

本发明的另一个目的在于提出一种面向协同自适应巡航控制预期功能安全的容错控制装置。

为达到上述目的,本发明一方面实施例提出了一种面向协同自适应巡航控制预期功能安全的容错控制方法,包括以下步骤:

建立包含雷达传感器和驱动、制动控制执行性能缺陷的协同式自适应巡航控制系统数学模型,以雷达传感器性能缺陷作为增广状态,构造增广的协同式自适应巡航控制系统数学模型;

根据所述增广的协同式自适应巡航控制系统数学模型,构造包含控制执行性能缺陷模型的传递参数,建立包含控制执行性能缺陷估计的传递参数估计器、增广状态估计器和控制执行性能缺陷估计器,构造触发条件检测方法;

根据所述传递参数估计器、所述增广状态估计器和所述控制执行性能缺陷估计器输出的传递参数估计值、增广状态估计值、控制执行性能缺陷估计值、以及所述触发条件检测方法输出的触发条件检测结果,计算面向协同式自适应巡航控制预期功能安全的多性能缺陷主动容错控制率;

将所述多性能缺陷主动容错控制率作为车辆驱动、制动控制执行的控制输入,生成可容忍协同式自适应巡航控制系统性能缺陷的车辆加速踏板开度和制动踏板开度。

为达到上述目的,本发明另一方面实施例提出了一种面向协同自适应巡航控制预期功能安全的容错控制装置,包括:

第一构造模块,用于建立包含雷达传感器和驱动、制动控制执行性能缺陷的协同式自适应巡航控制系统数学模型,以雷达传感器性能缺陷作为增广状态,构造增广的协同式自适应巡航控制系统数学模型;

第二构造模块,用于根据所述增广的协同式自适应巡航控制系统数学模型,构造包含控制执行性能缺陷模型的传递参数,建立包含控制执行性能缺陷估计的传递参数估计器、增广状态估计器和控制执行性能缺陷估计器,构造触发条件检测方法;

计算模块,用于根据所述传递参数估计器、所述增广状态估计器和所述控制执行性能缺陷估计器输出的传递参数估计值、增广状态估计值、控制执行性能缺陷估计值、以及所述触发条件检测方法输出的触发条件检测结果,计算面向协同式自适应巡航控制预期功能安全的多性能缺陷主动容错控制率;

控制模块,用于将所述多性能缺陷主动容错控制率作为车辆驱动、制动控制执行的控制输入,生成可容忍协同式自适应巡航控制系统性能缺陷的车辆加速踏板开度和制动踏板开度。

本发明实施例的面向协同自适应巡航控制预期功能安全的容错控制方法及装置,应用于自适应巡航控制的控制系统中,工作时,建立的传递参数估计器、增广状态估计器和执行系统性能缺陷估计器分别给出线控执行设备性能缺陷、自车与前车的相对距离误差、自车与前车的相对速度、自车加速度、感知设备的性能缺陷实时数值;构造的触发条件检测方法给出触发条件检测结果。上述估计值和触发条件检测值都将传入构造的面向协同式自适应巡航控制预期功能安全的主动容错控制率中,对比现有普通的控制方法,该控制率将生成可容忍协同式自适应巡航控制系统性能缺陷的车辆加速踏板开度和制动踏板开度,保障系统的预期功能安全。解决了协同式自适应巡航控制在实际运行过程中的感知和线控执行设备功能不足,造成整车碰撞等不合理风险的问题,保障该功能的预期功能安全。

本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:

图1为根据本发明一个实施例的面向协同自适应巡航控制预期功能安全的容错控制方法流程图;

图2为根据本发明一个实施例的面向协同自适应巡航控制预期功能安全的容错控制方法流程框图;

图3为根据本发明一个实施例控制下的车间相对距离误差对比图;

图4为根据本发明一个实施例控制下的车间相对速度误差对比图;

图5为根据本发明一个实施例控制下的自车加速度对比图;

图6为根据本发明一个实施例的面向协同自适应巡航控制预期功能安全的容错控制装置结构示意图。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。

下面参照附图描述根据本发明实施例提出的面向协同自适应巡航控制预期功能安全的容错控制方法及装置。

首先将参照附图描述根据本发明实施例提出的面向协同自适应巡航控制预期功能安全的容错控制方法。

图1为根据本发明一个实施例的面向协同自适应巡航控制预期功能安全的容错控制方法流程图。

如图1所示,该面向协同自适应巡航控制预期功能安全的容错控制方法包括以下步骤:

步骤s1,建立包含雷达传感器和驱动、制动控制执行性能缺陷的协同式自适应巡航控制系统数学模型,以雷达传感器性能缺陷作为增广状态,构造增广的协同式自适应巡航控制系统数学模型。

可选地,建立包含雷达传感器和驱动、制动控制执行性能缺陷的协同式自适应巡航控制系统数学模型为:

yi(t)=cixi(t)+ps,ipi(t)

其中,

u=[aiai-1]t

xi=[εiδviai]t为系统状态向量,εi为相对距离误差,δvi为相对速度,ai为自车加速度,ai-1为前车加速度,bi为输入矩阵,u为控制输入,ai为系统矩阵,h为车头时距,ζi为发动机时间常数,bpi为执行器性能缺陷矩阵,fpi为执行器性能缺陷向量,ci为输出矩阵,ps,i为雷达传感器性能缺陷参数矩阵,pi为雷达传感器性能缺陷向量。

可选地,增广状态为其中pi=[prdiprvi]t,增广的协同式自适应巡航控制系统数学模型表达式为:

定义c1i=[cips,i],简化的增广的协同式自适应巡航控制系统数学模型为:

其中,o为维度适当的零向量,i为维度适当的单位向量,prdi、prvi分别为雷达传感器由性能缺陷造成的对两车相对距离、相对速度测量的测量偏差数值。

可以理解的是,本步骤建立的包含雷达传感器和驱动、制动执行系统性能缺陷的协同式自适应巡航控制系统数学模型是后续步骤开展触发条件检测、性能缺陷估计与主动容错控制的基础。

步骤s2,根据增广的协同式自适应巡航控制系统数学模型,构造包含控制执行性能缺陷模型的传递参数,建立包含控制执行性能缺陷估计的传递参数估计器、增广状态估计器和控制执行性能缺陷估计器,构造触发条件检测方法。

可选地,传递参数为:

传递参数估计器表达式为:

增广状态估计器表达式为:

控制执行性能缺陷估计器表达式为:

其中,ni为观测器增益矩阵,为增广系统的输出估计。

可以理解的是,本步骤建立的观测器在步骤s1的基础上进行,用于对自适应巡航控制实际运行状态、感知设备和线控执行设备的性能缺陷进行综合估计,是构造主动容错控制率的重要信息。

可选地,构造触发条件检测方法进一步包括:

构造的雷达传感器相关的触发条件检测方法为:

构造的控制执行相关的触发条件检测方法为:

式中,jth_rdi、jth_rdi分别为雷达传感器测量相对距离、相对速度的性能缺陷阈值,jthp为控制执行性能缺陷阈值。

可以理解的是,触发条件检测结果是主动容错控制率构造的关键组成,起到切换控制率的作用。

步骤s3,根据传递参数估计器、增广状态估计器和控制执行性能缺陷估计器输出的传递参数估计值、增广状态估计值、控制执行性能缺陷估计值、以及触发条件检测方法输出的触发条件检测结果,计算面向协同式自适应巡航控制预期功能安全的多性能缺陷主动容错控制率。

可选地,面向协同式自适应巡航控制预期功能安全的多性能缺陷主动容错控制率的计算公式为:

其中,uftci(t)为面向协同式自适应巡航控制预期功能安全的多性能缺陷主动容错控制率,pi、qi分别为基于可测输出的反馈和基于v2x通信的前馈ucoi(t)的权重,k1i为增广系统的输出反馈增益矩阵,yi(t)为雷达传感器和加速度传感器测量值向量,∈1i、∈2i分别雷达传感器相关的触发条件检测结果和控制执行相关的触发条件检测结果,为传递参数估计结果,αi为给定参数,bp1i为增广系统的控制执行性能缺陷矩阵,为增广状态向量估计值,为传感器性能缺陷矩阵,o为零矩阵,i为单位矩阵。

步骤s4,将多性能缺陷主动容错控制率作为车辆驱动、制动控制执行的控制输入,生成可容忍协同式自适应巡航控制系统性能缺陷的车辆加速踏板开度θ1和制动踏板开度θ2。

如图2所示,为整个方法的流程框图。本发明实施例的方法应用于自适应巡航控制的控制系统中,工作时,建立的传递参数估计器、增广状态估计器和执行系统性能缺陷估计器分别给出线控执行设备性能缺陷、自车与前车的相对距离误差、自车与前车的相对速度、自车加速度、感知设备的性能缺陷实时数值;构造的触发条件检测方法给出触发条件检测结果。上述估计值和触发条件检测值都将传入构造的面向协同式自适应巡航控制预期功能安全的主动容错控制率中,如图3、图4、图5所示,对比现有普通的控制方法,该控制率将生成可容忍协同式自适应巡航控制系统性能缺陷的车辆加速踏板开度和制动踏板开度,保障系统的预期功能安全。

根据本发明实施例提出的面向协同自适应巡航控制预期功能安全的容错控制方法,以雷达传感器和车载惯性测量单元(imu)为反馈输入、v2x协同信息为前馈输入,相对距离误差、相对速度和自车加速度为输出的,包含雷达传感器和控制执行系统性能缺陷的增广状态空间模型;在此模型的基础上构造传递参数估计器、增广状态估计器和控制执行性能缺陷估计器,实时估计出协同式自适应巡航控制系统增广状态和性能缺陷;据此综合构造在线主动容错控制率,用于输入车辆底盘控制系统,生成加速踏板开度和制动踏板开度,可以弥补协同式自适应巡航控制感知和执行系统的功能不足,增强协同式自适应巡航控制功能的态势认知和场景适应能力,使之在多性能缺陷的状况下仍然能够安全稳定地运行,保障协同式自适应巡航预期功能安全。

其次参照附图描述根据本发明实施例提出的面向协同自适应巡航控制预期功能安全的容错控制装置。

图6为根据本发明一个实施例的面向协同自适应巡航控制预期功能安全的容错控制装置结构示意图。

如图6所示,该面向协同自适应巡航控制预期功能安全的容错控制装置包括:第一构造模块601、第二构造模块602、计算模块603和控制模块604。

第一构造模块601,用于建立包含雷达传感器和驱动、制动控制执行性能缺陷的协同式自适应巡航控制系统数学模型,以雷达传感器性能缺陷作为增广状态,构造增广的协同式自适应巡航控制系统数学模型。

第二构造模块602,用于根据增广的协同式自适应巡航控制系统数学模型,构造包含控制执行性能缺陷模型的传递参数,建立包含控制执行性能缺陷估计的传递参数估计器、增广状态估计器和控制执行性能缺陷估计器,构造触发条件检测方法。

计算模块603,用于根据传递参数估计器、增广状态估计器和控制执行性能缺陷估计器输出的传递参数估计值、增广状态估计值、控制执行性能缺陷估计值、以及触发条件检测方法输出的触发条件检测结果,计算面向协同式自适应巡航控制预期功能安全的多性能缺陷主动容错控制率。

控制模块604,用于将多性能缺陷主动容错控制率作为车辆驱动、制动控制执行的控制输入,生成可容忍协同式自适应巡航控制系统性能缺陷的车辆加速踏板开度和制动踏板开度。

可选地,建立包含雷达传感器和驱动、制动控制执行性能缺陷的协同式自适应巡航控制系统数学模型为:

yi(t)=cixi(t)+ps,ipi(t)

其中,

u=[aiai-1]t

xi=[εiδviai]t为系统状态向量,εi为相对距离误差,δvi为相对速度,ai为自车加速度,ai-1为前车加速度,bi为输入矩阵,u为控制输入,ai为系统矩阵,h为车头时距,ζi为发动机时间常数,bpi为执行器性能缺陷矩阵,fpi为执行器性能缺陷向量,ci为输出矩阵,ps,i为雷达传感器性能缺陷参数矩阵,pi为雷达传感器性能缺陷向量;

增广状态为其中pi=[prdiprvi]t,增广的协同式自适应巡航控制系统数学模型表达式为:

定义c1i=[cips,i],简化的增广的协同式自适应巡航控制系统数学模型为:

其中,o为维度适当的零向量,i为维度适当的单位向量,prdi、prvi分别为雷达传感器由性能缺陷造成的对两车相对距离、相对速度测量的测量偏差数值。

可选地,传递参数为:

传递参数估计器表达式为:

增广状态估计器表达式为:

控制执行性能缺陷估计器表达式为:

其中,ni为观测器增益矩阵,为增广系统的输出估计。

可选地,构造触发条件检测方法进一步包括:

构造的雷达传感器相关的触发条件检测方法为:

构造的控制执行相关的触发条件检测方法为:

式中,jth_rdi、jth_rdi分别为雷达传感器测量相对距离、相对速度的性能缺陷阈值,jthp为控制执行性能缺陷阈值。

可选地,面向协同式自适应巡航控制预期功能安全的多性能缺陷主动容错控制率的计算公式为:

其中,uftci(t)为面向协同式自适应巡航控制预期功能安全的多性能缺陷主动容错控制率,pi、qi分别为基于可测输出的反馈和基于v2x通信的前馈ucoi(t)的权重,k1i为增广系统的输出反馈增益矩阵,yi(t)为雷达传感器和加速度传感器测量值向量,∈1i、∈2i分别雷达传感器相关的触发条件检测结果和控制执行相关的触发条件检测结果,为传递参数估计结果,αi为给定参数,bp1i为增广系统的控制执行性能缺陷矩阵,为增广状态向量估计值,为传感器性能缺陷矩阵,o为零矩阵,i为单位矩阵。

需要说明的是,前述对方法实施例的解释说明也适用于该实施例的装置,此处不再赘述。

根据本发明实施例提出的面向协同自适应巡航控制预期功能安全的容错控制装置,以雷达传感器和车载惯性测量单元(imu)为反馈输入、v2x协同信息为前馈输入,相对距离误差、相对速度和自车加速度为输出的,包含雷达传感器和控制执行系统性能缺陷的增广状态空间模型;在此模型的基础上构造传递参数估计器、增广状态估计器和控制执行性能缺陷估计器,实时估计出协同式自适应巡航控制系统增广状态和性能缺陷;据此综合构造在线主动容错控制率,用于输入车辆底盘控制系统,生成加速踏板开度和制动踏板开度,可以弥补协同式自适应巡航控制感知和执行系统的功能不足,增强协同式自适应巡航控制功能的态势认知和场景适应能力,使之在多性能缺陷的状况下仍然能够安全稳定地运行,保障协同式自适应巡航预期功能安全。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1