微惯性测量单元及基于该测量单元的自适应前照灯控制方法

文档序号:8481631阅读:740来源:国知局
微惯性测量单元及基于该测量单元的自适应前照灯控制方法
【技术领域】
[0001]本发明涉及一种微惯性测量单元(以下简称MIMU)。还涉及基于这种微惯性测量单元的自适应前照灯控制方法。
【背景技术】
[0002]调查表明,夜间交通事故的发生率大约是白天的3倍,良好照明条件下的交通事故发生率只有不良照明条件下的30%。汽车自适应前照灯(以下简称AFS)技术是一种能够实现恶劣天气照明、弯道随动转向、车辆垂直调光等功能的自适应照明方法,可以缓解因照明不良而引起交通事故高发的问题。AFS的工作原理是:利用可变的光学系统、电子系统、随动系统技术,可根据道路和天气状况,自动地改变前照明的光束投向和光形,把有限的光投向更需要照明的地方,大幅度地提高夜间行驶的安全性。实现AFS功能的关键是实时获取车辆的转弯/俯仰等行车状态。
[0003]文献I “汽车智能前照灯系统设计《照明工程学报》2013年10月第24卷第5期Pll?114”公开了一种自适应前照灯控制系统,该控制系统通过在车上安装多种传感器感知驾驶人转向操作与行车状态的。这些传感器有:方向盘转角传感器,包括电位器式、光电式、电磁感应式等多种;开关型霍尔式车速传感器;车身高度传感器,包括片簧开关式、霍尔式、光电式和电位计式等。随着微电子技术的发展和电子控制系统在汽车上应用的增加,车载传感器的种类会越来越多,其数量由以往的几十只发展到两、三百只传感器。这些专用传感器不但安装维护复杂,且数据缺乏整合,无法实现信息共享。而且,多数传感器工作于被动感知状态,具有一定的延时,影响AFS技术的安全性。
[0004]为了提高获取信息的主动性,《交通信息与安全》2011年5期第29卷总163期16-19页刊登杜江伟等人撰写的“车路协同环境下车辆前照灯自适应控制方法研宄”中提出一种“车-路协同”的信息共享方案。该方案属于预见型AFS模型,克服被动感知具有延时的缺点,但该方案需要有地面信息源的支撑,增加了该系统工程化的难度。
[0005]另外,《电子测试》2014年第15期在pl8?19刊登了顾诚延的论文“汽车LED前照灯弯道控制系统设计探讨”中提出的通过MPU — 6000陀螺仪检测车辆行驶速度与加速度,从而预测到车辆的运行轨迹的方法。同样,《宁波职业技术学院学报》2011年第2期Pl?3刊登了赵宏颖撰写的论文“采用MEMS传感器汽车智能前照灯系统模型设计”中推出一种采用MEMS三维加速度计获取汽车运动参数的方法。虽然上述两篇论文都提出利用惯性器件获取汽车运动参数的方法,但是,利用惯性器件获取AFS所需控制参数的技术瓶颈在于建模复杂、运算量大,还需要适时对器件本身进行误差校正,文中未给出解算方法和流程。
[0006]通过上述分析可知,现在流行的AFS系统主要靠分散的多个传感器获取信息,不但存在着通用性差、安装维护复杂等缺点,而且属于被动式安全举措,使得灯光偏转时出现延时,降低了安全性,也很难实现整车电子信息共享功能。

【发明内容】

[0007]为了克服现有自适应前照灯控制方法安全性差的不足,本发明提供一种微惯性测量单元及基于该测量单元的自适应前照灯控制方法。该微惯性测量单元包括X轴陀螺、Y轴陀螺、Z轴陀螺、三轴加速度计、磁阻传感器、信号调理板和单片机,该测量单元由陀螺感知倾斜角γ、偏航角φ和俯仰角Θ信号,三轴加速度计输出车体在三维空间的重力加速度值。倾斜角γ、偏航角Φ和俯仰角θ信号,以及重力加速度值通过信号调理单元进行调理,进入单片机进行融合处理,得到准确的倾斜角γ、偏航角Φ和俯仰角θ信号及其变化速率信号,经过预测估算,获得车体下一步可能出现的状态,单片机根据倾斜角γ、偏航角Φ和俯仰角θ信号及其变化速率信号以及预测估算值,得出自适应前照灯的控制方案,经过RS232 口送入上位PC机实施灯光的控制。由于本发明所提取的倾斜角γ、偏航角Φ和俯仰角Θ信号及其变化速率信号是增量值,对于积累误差具有鲁棒性;再加上自身的校正功能,使得前照灯控制安全可靠。
[0008]本发明解决其技术问题所采用的技术方案是:一种微惯性测量单元,其特点是:包括X轴陀螺、Y轴陀螺、Z轴陀螺、三轴加速度计、磁阻传感器、信号调理单元和单片机,行驶前,X轴陀螺、Y轴陀螺、Z轴陀螺和三轴加速度计均在车体导航坐标系OXYZ中通过磁阻传感器输出的方位信息进行静态校准。行驶中,随着车体的偏转、倾斜和加速,使得车体行车坐标系Oxyz和导航坐标系OXYZ发生动态偏离,形成倾斜角γ、偏航角Φ和俯仰角Θ。倾斜角γ、偏航角φ和俯仰角θ由X轴陀螺、Y轴陀螺、ζ轴陀螺和三轴加速度计共同感知,并输出倾斜角γ、偏航角φ和俯仰角θ信号;与此同时,三轴加速度计输出车体在三维空间的重力加速度值。倾斜角γ、偏航角Φ和俯仰角θ信号,以及重力加速度值通过信号调理单元进行调理后,进入单片机的五路A/D转换器输入口经A/D后,变为16位数字信号。该16位数字信号中的X轴陀螺、Y轴陀螺、Z轴陀螺信号和三轴加速度计信号在单片机中进行融合处理后,得到准确的倾斜角γ、偏航角Φ和俯仰角Θ信号及其变化速率信号,经过预测估算,获得车体下一步可能出现的状态,单片机根据倾斜角γ、偏航角Φ和俯仰角θ信号及其变化速率信号以及预测估算值,经过判决后得出自适应前照灯的控制方案,该控制方案经过RS232 口送入上位PC机实施灯光的控制。
[0009]所述X轴陀螺、Y轴陀螺和Y轴陀螺三维垂直安装。
[0010]一种基于微惯性测量单元的自适应前照灯控制方法,其特点是采用以下步骤:
[0011]步骤一、行车状态量的获取。
[0012]①建立车体导航坐标系OXYZ和车体行车坐标系Oxyz。
[0013]②行车状态信息的获取。
[0014]行车前,对MINU进行静态校准,即首先利用三轴加速度计的输出判断车体是处于静止状态,再利用三轴加速度计和磁阻传感器计算车体姿态误差,并以此姿态误差作为观测量,校正X轴陀螺、Y轴陀螺、Z轴陀螺漂移。同时,提取因车辆载重产生的俯仰角Θ,作为灯光纵向调整的依据。
[0015]行车时,通过MINU的捷联解算,分别求得基于车体导航坐标系OXYZ的三轴加速度计、X轴陀螺、Y轴陀螺、Z轴陀螺的输出量,并进行组合,求得瞬时偏转角增量值及其速率;
[0016]提取增量值的方法是:对当前时刻k状态量和上一时刻k-Ι的状态量求差值,并判其增减性。即:
[0017]Δ Θ (k) = I θ (k)- θ (k-1)
[0018]其中,θ (k)、θ (k-1)是MINU检测的当前量和上一个状态量;增减性通过差值的符号确定。
[0019]步骤二、AFS控制量的获取。
[0020]①预处理。
[0021]以已经确定的门限值为依据,参照三轴加速度计和磁阻传感器计算车体姿态角,对X轴陀螺、Y轴陀螺、Z轴陀螺输出的姿态角数据进行误差分析和滤波处理,校正陀螺漂移,并剔除飞值。
[0022]②数据处理。
[0023]采用中值平均滤波方法,即每组采集η个数据,去掉其中η/2或(η+1) /2个最大值和最小值,然后计算剩余η/2个数据算术平均。
[0024]③动态校准。
[0025]利用三轴加速度计的输出判断车体是否处于加速运动状态。如果车体处于运动状态,则根据X轴陀螺、Y轴陀螺、Z轴陀螺和三轴加速度计的测量值,采用等效矢量法计算车体姿态;并对两者输出数据进行加权平均。
[0026]④转弯机动判决。
[0027]基于速率增量[Δ I (k)]的特征量赋值:若[Λ I (k)]彡η⑴,则令δ (k) = I ;
[0028]若[ΛI(k)]〈n ⑴,则令 δ (k) = O ;
[0029]其中k表示一组测量中的第k个数据,每组共获得m个数据。
[0030]转弯机动判决:定义机动特征值J =[ Σ δ (k)]/m,
[0031]若J彡Tl⑵,则判断有新的侧向加速;
[0032]若J〈 η⑵,须结合k-Ι时刻的状态做出如下判决:
[0033]a)转弯机动结束;b)转弯机动延续。
[0034]其中,判断转弯机动结束的条件是J〈 η (2)连续出现的次数N多λ。
[0035]其中,η (I)、η⑵、δ (k)、A I(k)、m、λ均为已经设定的参量或确定值。
[0036]—旦确认有人为机动发生,则进入下一步。
[0037]⑤机动模式识别与AFS控制量的形成。
[0038]机动模式识别根据描述行车状态的三类六维特征向量确定,分别表示车辆转角大小和速度等级,并对应六种灯光控制模式。
[0039]本发明的有益效果是:该微惯性测量单元包括X轴陀螺、Y轴陀螺、Z轴陀螺、三轴加速度计、磁阻传感器、信号调理板和单片机,该测量单元由陀螺感知倾斜角γ、偏航角Φ和俯仰角Θ信号,三轴加速度计输出车体在三维空间的重力加速度值。倾斜角γ、偏航角Φ和俯仰角θ信号,以及重力加速度值通过信号调理单元进行调理,进入单片机进行融合处理,得到准确的倾斜角γ、偏航角Φ和俯仰角θ信号及其变化速率信号,经过预测估算,获得车体下一步可能出现的状态,单片机根据倾斜角γ、偏航角φ和俯仰角Θ信号及其变化速率信号以及预测估算值,得出自适应前照灯的控制方案,经过RS232 口送入上位PC机实施灯光的控制。由于本发明所提取的倾斜角γ、偏航角Φ和俯仰角Θ信号及其变化速率信号是增量值,对于积累误差具有鲁棒性;再加上自身的校正功能,使得前照灯控制安全可靠。
[0040]下面结合附图和【具体实施方式】对本发明作详细说明。
【附图说明】
[0041]图1是本发明基于微惯性测量单元的自适应前照灯控制方法的流程图。
[0042]图2是本发明基于微惯性测量单元的框图。
[0043]图3是本发明方法所用坐标系的示意图。
【具体实施方式】
[0044]参照图1-3。本发明微惯性测量单元,包括X轴陀螺、Y轴陀螺、Z轴陀螺、三轴加速度计、磁阻传感器、信号调理板和单片机。本发明设计了两个坐标系,一是车体导航坐标系OXYZ,另一是车体行车坐标系Oxyz。在行驶前,X轴陀螺、Y轴陀螺、Z轴陀螺和三轴加速度计均在车体导航坐标系OXYZ中通过磁阻传感器输出的方位信息进行静态校准。在行驶中,随着车体的偏转、倾斜和加速,使得车体行车坐标系Oxyz和导航坐标系OXYZ发生动态偏离,形成倾斜角γ、偏航角Φ和俯仰角Θ。这些偏离角度则由X轴陀螺、Y轴陀螺、ζ轴陀螺和三轴加速度计共同感知并输出。X轴陀螺、Y轴陀螺和Y轴陀螺进行三
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1