接合混合动力车辆的变速器系统的方法

文档序号:10501480阅读:615来源:国知局
接合混合动力车辆的变速器系统的方法
【专利摘要】提供一种接合混合动力车辆的变速器系统的方法。混合动力电动车辆的牵引马达驱动主泵以提供加压的液压流体来接合多传动比变速器的功率传动路径。为了减小燃料消耗,马达保持处于零转速直到移动换挡杆进入行驶位置。在建立功率传输路径之后,马达转速再次减小至零直到驾驶员通过压加速器踏板而需要扭矩。当牵引马达静止时,辅助泵保持流体压力以保持变速器功率传输路径的接合。
【专利说明】
接合混合动力车辆的变速器系统的方法
技术领域
[0001] 本发明涉及车辆控制的领域。更特别地,本发明涉及在车辆启动事件之后使用牵 引马达和辅助栗接合变速器。
【背景技术】
[0002] 很多车辆在宽范围的车速(包括向前和向后移动两者)下使用。然而,某些类型的 发动机只能在较窄的转速范围内高效运转。所以,能以多个传动比(speed ratio)高效传输 动力的变速器被频繁使用。当车辆处于较低车速时,变速器通常以高传动比运转使得它放 大发动机扭矩用于改善加速。较高车速时,以低传动比运转变速器允许与安静、燃料经济的 巡航关联的发动机转速。自动变速器通常提供至少一个用于向后移动的负传动比。通常,变 速器具有安装至车辆结构的壳体、由发动机曲轴驱动的输入轴、以及经常经由差速器总成 驱动车轮的输出轴,该差速器总成允许车辆转弯时左轮和右轮以略微不同的转速旋转。
[0003] 很多变速器被设计成以离散数量(discrete number)的固定传动比运转。即使每 个传动比和变速器内特别的物理齿轮之间不存在直接的对应,可用的传动比也可以称为挡 位或齿轮比(gear ratio)。传动比通常从最高的传动比开始编号并继续至较低的传动比。 例如,一挡的传动比可能是4.5、二挡的传动比可能是3.0、三挡的传动比可能是2.3等。可以 通过接合特定的换挡元件(比如离合器或制动器)从这组可用传动比中选择特定的传动比。 换挡元件可以包括主动控制的装置和被动控制的装置(比如单向离合器)。通常,通过将加 压的流体引导至变速器阀体中对应的离合器应用回路而接合换挡元件。
[0004] -些车辆(统称为混合动力车辆)利用一个或多个牵引马达和电能存储(比如电 池)以减小燃料消耗。在很多工况下,发动机停机并且由牵引马达使用存储在电池中的能量 来执行所有推进。通过在制动期间回收的能量对电池充电。额外地,当发动机运行时,它可 以产生多于当前推进所需要的功率并且将多余的功率存储在电池中。由于发动机以较高的 功率水平运转时通常更高效,这减少了总燃料消耗。在传统的车辆中,多个车辆功能依赖于 来自发动机的连续的功率。在混合动力车辆中,由于发动机可能在很多时间是关闭的,必须 不同地执行这些功能。这样的一种功能是提供加压的液压流体以接合变速器换挡元件。

【发明内容】

[0005] -种车辆包括离散传动比变速器、主栗、第二栗、阀体、可驱动地连接至变速器输 入的牵引马达、行驶选择器,以及控制器。通过变速器输入驱动的主栗以提升的压力供应流 体至阀体中的管路压力回路。不是通过变速器输入驱动的第二栗保持管路压力回路中的压 力。阀体从管路压力回路引导流体至变速器的换挡元件。控制器配置用于通过增加牵引马 达的转速并且指令阀体引导流体至变速器的一些换挡元件以建立功率传输路径(power flow path)并且随后减小牵引马达的转速并且使用第二栗保持功率传输路径来响应行驶 模式选择器的移动。控制器可以在车辆启动事件(比如钥匙启动事件)和行驶模式选择器的 移动之间保持牵引马达的转速处于零。车辆还可以包括通过分离离合器选择性地连接至变 速器输入的发动机。控制器可以配置用于通过接合分离离合器或者使用独立的起动机马达 起动发动机。
[0006] -种接合混合动力电动车辆的变速器的方法,包括增加牵引马达的转速以使加压 的流体流至至少一个变速器换挡元件并且随后减小牵引马达的转速并且使用辅助流体压 力源保持压力。牵引马达可以通过分离离合器选择性地连接至内燃发动机。辅助流体压力 源可以是通过电动马达驱动的独立的栗。牵引马达的转速在车辆启动事件之后可以保持处 于零并且随后响应于进入行驶模式的换挡而增加。可以响应于扭矩请求再次增加牵引马达 的转速。
[0007] 根据本发明的一个实施例,控制器进一步配置用于在车辆起动事件和行驶模式选 择器的移动之间保持牵引马达的转速为零。
[0008] 根据本发明的一个实施例,控制器进一步配置用于响应于行驶模式选择器的移动 之后的扭矩需求而增加牵引马达的转速。
[0009] 根据本发明的一个实施例,离散传动比变速器包含:具有涡轮和连接至输入的栗 轮的变矩器;并且离散传动比变速箱配置用于在涡轮和输出之间建立离散数量的功率传输 路径,每个功率传输路径与预定的传动比相关联。
[0010]根据本发明的一个实施例,建立功率传输路径包含接合变速器的换挡元件中的至 少三个。
[0011] 根据本发明的一个实施例,建立功率传输路径包含接合变速器的四个换挡元件。
[0012] 根据本发明的一个实施例,进一步包含:内燃发动机;以及配置用于选择性地连接 内燃发动机至输入的分离离合器。
[0013] 根据本发明的一个实施例,控制器进一步配置用于当牵引马达旋转时通过增加分 离离合器的扭矩容量而起动发动机。
[0014] 根据本发明的一个实施例,控制器进一步配置用于使用独立的起动机马达起动发 动机。
[0015] 根据本发明的一个实施例,进一步包含在车辆启动事件和行驶模式的选择之间保 持牵引马达的转速处于零。
[0016] 根据本发明的一个实施例,进一步包含通过增加分离离合器的扭矩容量以选择性 地连接发动机至牵引马达而起动发动机。
【附图说明】
[0017] 图1是包括离散传动比变速器的混合动力车辆动力传动系统的示意代表;
[0018] 图2是用于图1的车辆的离散传动比变速器的示例齿轮变速器的示意图;
[0019] 图3是根据第一控制方法的作为用于车辆启动事件、行驶模式的选择以及扭矩需 求的时间的函数的马达转速的图;
[0020] 图4是描述相对于第一控制方法减小燃料消耗的第二控制方法的流程图;
[0021]图5是根据图4的控制方法的作为用于车辆启动事件、行驶模式的选择以及扭矩需 求的时间的函数的马达转速的图。
【具体实施方式】
[0022]本说明书描述了本发明的实施例。然而,应理解公开的实施例仅为示例,其可以多 种替代形式实施。附图无需按比例绘制;可放大或缩小一些特征以显示特定部件的细节。所 以,此处公开的具体结构和功能细节不应解释为限定,而仅为教导本领域技术人员以多种 形式实施本发明的代表性基础。本领域内的技术人员应理解,参考任一【附图说明】和描述的 多个特征可以与一个或多个其它附图中说明的特征组合以形成未明确说明或描述的实施 例。说明的组合特征提供用于典型应用的代表实施例。然而,与本发明的教导一致的特征的 多种组合和变型可以根据需要用于特定应用或实施。
[0023]图1示意地说明混合动力电动车辆的动力传动系统。车辆内的部件的物理布局可 能不同。通过粗实线说明机械功率流连接。机械功率流连接可以包括轴和/或固定传动比的 齿轮传动装置。如果元件在所有工况下作为整体一起旋转则元件被固定连接,如果元件仅 在换挡元件接合时作为整体旋转则元件被选择性地连接。如果固定的功率传输路径在元件 之间传输功率并且约束元件以成比例的转速旋转则元件被可驱动地连接。通过粗虚线说明 电力流。通过细实线说明液压流体的流动。虚线指示信号流,该信号流可以采用低电流电连 接的形式。
[0024]通过将液体或气体燃料的化学能转化的发动机10和使用存储在高压电池14中的 能量的牵引马达12的组合产生推进车辆的机械功率。例如,牵引马达12可以是永磁同步马 达。发动机10通过分离离合器16选择性地连接至动力传动系统。通过变矩器18、变速箱20和 差速器22针对当前的车辆需要来调整发动机10和牵引马达12产生的机械功率。变矩器18是 当车辆移动太慢而不能建立固定传动比时使得能够传输扭矩的起动装置。固定至牵引马达 转子的栗轮液动地(hydro-dynamical ly)驱动固定至变速箱20的输入轴的祸轮。变矩器18 可以包括当涡轮旋转得慢于栗轮时能放大扭矩的导轮。变矩器18还可以包括通过摩擦选择 性地而不是通过液动地传输扭矩的锁止离合器以在较高车速时增加功率传输效率。在替代 实施例中,可以通过启动离合器替代变矩器18。变速箱20选择性地建立多个可用功率传输 路径中的一者,每个功率传输路径中具有不同的传动比。较低车速时,提供扭矩放大的功率 传输路径优化了加速性能。较高车速时,提供速度放大的功率传输路径优化了燃料经济性。 对于后退,选择旋转方向反向的功率传输路径。差速器22通过主减速比放大扭矩、将旋转轴 线改变90度并且在左轮24和右轮26之间分配功率,随着车辆转弯允许轻微的车轮转速差 异。
[0025]通过控制器28控制动力传动系统。控制器28可以是单个微处理器或者可以是多个 通信的微处理器。例如,控制器28可以包括经由控制器局域网(CAN)通信的车辆系统控制 器、发动机控制器和变速器控制器。控制器28从包括换挡杆30、点火开关31和加速器踏板32 的多个传感器接受信号。基于这些信号,控制器28确定驾驶员所需扭矩的幅度和方向并且 确定是否使用发动机10、牵引马达14或者这两者的组合输送扭矩。控制器28通过发送信号 至发动机以控制节气门开度、燃料喷射、火花等来控制发动机传输的扭矩。控制器28通过发 送信号至逆变器34来控制牵引马达12输送的扭矩。逆变器34通过直流(DC)总线连接至高压 电池14并且通过三相交流(AC)总线连接至牵引马达12。
[0026] 控制器28通过发送信号至阀体36间接地控制分离离合器16、变矩器18和变速箱 20。继而,阀体36调节多个液压回路中的压力以控制分离离合器16、变矩器18的锁止离合器 和变速箱20的每个换挡元件的扭矩容量(torque capacity)。特别地,来自管路压力回路的 流体流过多个螺线管控制的阀进入各个回路。每个回路中的压力小于管路压力的量是流率 和阀门开度的尺寸的函数。螺线管调节阀门开度使得压力与来自控制器28的信号电流成比 例。通过主栗38和/或辅助栗40将流体提供至管路压力回路。主栗38可以是通过牵引马达12 的转子驱动或者当分离离合器16接合时通过发动机10驱动的正排量栗。主栗38的流率与栗 的排量以及栗的转速成比例。可以通过相对较小的低压电动马达响应于来自控制器28的指 令来驱动辅助栗40。为了减小成本,辅助栗40可以设计成限制的最大流率能力。通过低压电 池42驱动辅助栗40。可以通过发动机驱动的发电机或者通过高压电池14经由直流/直流 (DC/DC)转换器为低压电池42充电。
[0027]提供了用于起动发动机10的两种机制。当分离离合器16分离时,控制器28可以指 令起动机44使发动机10旋转至高达可以起动发动机的转速。起动机44从低压电池42接收其 电力。因为扭矩有限,通常使用高齿轮比。起动机44的耐久性可能使其不适合用于与混合动 力车辆运转关联的频繁的发动机起动。可替代地,可以使用分离离合器16结合牵引马达12 加速发动机10。如果牵引马达12旋转得比发动机的怠速快,则接合分离离合器16迅速地将 发动机10带动至运转转速。然而,为了避免动力传动系统输出扭矩的波动,在发动机起动过 程期间必须小心地控制牵引马达12和分离离合器16。
[0028]图2示意地说明了示例变速箱20。输入轴50固定连接至变矩器18的涡轮。输出轴52 经由驱动轴固定连接至差速器22的输入。变速箱利用四个简单行星齿轮组60、70、80和90。 行星齿轮架62绕中央轴线旋转并且支持一组行星齿轮64使得行星齿轮相对于行星齿轮架 旋转。行星齿轮的外齿与中心齿轮66的外齿以及环形齿轮68的内齿啮合。中心齿轮和环形 齿轮被支持以随齿轮架绕相同的轴线旋转。类似地构建齿轮组70、80和90。
[0029] 中心齿轮66固定连接至中心齿轮76、齿轮架62固定连接至环形齿轮98、环形齿轮 78固定连接至中心齿轮86、环形齿轮88固定连接至中心齿轮96、输入轴50固定连接至齿轮 架72而输出轴52固定连接至齿轮架92。通过制动器100选择性地保持环形齿轮68不旋转而 通过制动器102选择性地保持中心齿轮66和76不旋转。输入轴50通过离合器104选择性地连 接至环形齿轮88和中心齿轮96。中间轴54通过离合器106选择性地连接至齿轮架82、通过离 合器108选择性地连接至齿轮架62和环形齿轮98并且通过离合器110选择性地连接至环形 齿轮78和中心齿轮86。
[0030] 如表1显示的,接合离合器和制动器四者的组合在输入轴50和输出轴52之间建立 十个前进传动比和一个后退传动比。X指示该离合器需要用于建立功率传输路径。(X)指示 该离合器可以应用但不是必须的。为了准备车辆的前移,必须接合至少三个换挡元件100、 102和104。为了准备车辆的后移,必须接合四个换挡元件100、102、106和108。
[0031] 表1
[0032]

[0033] 换挡元件100-110优选为液压驱动的湿式摩擦离合器。湿式摩擦离合器包括固定 用于与选择性地连接的部件中的一者旋转的离合器壳体以及固定用于与其它选择性连接 的部件旋转的毂。对于湿式摩擦制动器,离合器壳体通常与变速器箱体集成。一组摩擦盘花 键连接至毂并且与花键连接至壳体的一组分离盘交替。为了接合离合器,流体在压力下被 供应至壳体中的应用室,迫使活塞挤压摩擦盘和分离盘使摩擦防止相对旋转。释放弹簧迫 使活塞移至分离的位置。在旋转的离合器(非制动器)的情况下,通常将未加压的流体也供 应至壳体中的平衡室以抵消倾向于加压应用室中的流体的任何离心力。
[0034] 当车辆停车一段时间时,流体流出应用室和平衡室。为了准备车辆在钥匙启动 (key start)事件之后的移动,必须将基本容积的流体栗送进变速箱20以使将要接合的三 个或四个换挡元件中的活塞行程移动(stroke)。尽管辅助栗40能产生足够的压力来填充这 些室,但是可能不能提供足够高的流率来足够迅速地填充它们。如果应用离合器的流程花 费太长时间,当驾驶员通过压加速器踏板请求扭矩时车辆会没有准备好移动。
[0035] 为了确保车辆响应于扭矩请求而准备移动,如图3所示控制器可以控制牵引马达 12的转速。响应于车辆启动事件120,控制器将122处的马达转速增加至怠速转速124。车辆 启动事件是来自驾驶员的驾驶员准备行驶但是还没有准备车辆移动的指示。例如,可以通 过驾驶员旋转点火开关31中的钥匙而触发车辆启动事件。可替代地,车辆可以提供用于驾 驶员提供该指示的启动按钮或者一些其它装置。车辆启动事件之前,包括控制器28的大多 车辆系统没有通电。响应于马达12的旋转,主栗38提供流体至管路压力回路。控制器可以指 示阀体36引导一些流体至倒挡和一挡都需要的换挡元件100和102。然而,此时没有建立功 率传输路径。响应于在126处进入行驶挡或者倒挡的换挡,控制器指示阀体36从管路压力回 路引导流体至需要建立对应的功率传输路径的换挡元件。可以通过换挡杆30的驾驶员操作 来指示进入行驶挡或倒挡的换挡。所以,在128处建立功率传输路径。尽管在128处动力传动 系统准备好移动,但是车辆没有移动直到驾驶员在130处通过释放制动器踏板并且压加速 器踏板32而指示扭矩请求。(一些车辆可能将两个踏板的释放理解成小的扭矩请求)马达转 速保持处于怠速直到扭矩请求事件130,这时如果需要,则控制器可以指令马达转速增加 132来提供请求的扭矩。最后,在134处,车辆已经开始移动之后控制器可以起动发动机10。 [0036]在图3说明的场景中,从紧接车俩启动事件120之后马达12保持处于怠速转速直到 扭矩请求130。由于驾驶员将目的地输入GPS系统、调整收音机并且等待交通通畅,这可能有 几分钟。这段时间期间,电力从高压电池14流失。此外,驾驶员可能被马达转动的声音打扰。
[0037]图4是在车辆启动事件和扭矩需求之间的间隔期间减少使用牵引马达12的控制牵 引马达12、换挡元件100-110和辅助栗40的程序的流程图。所以,消耗较少的燃料。图5说明 在这段时间间隔期间对应的马达转速。该方法响应于车辆启动事件(比如转动点火钥匙)而 开始。在140处,马达转速设置为零。在142处,只要换挡杆30保持在泊车挡或空挡位置则控 制器分支回到140使马达转速保持为零。当在142处移动换挡杆30时,控制移动至144,在144 处控制器指令倒挡和一挡都应用的换挡元件的接合。取决于如146处确定的是已经选择倒 挡还是行驶挡,控制器在148处指令离合器108的接合或者在150处指令离合器104的接合。
[0038] 由于在接合指令之后需要时间填充各个离合器应用室,这些换挡元件不会立刻接 合。在152处,控制器通过每隔一定时间向当前指令的马达转速添加增量而指令马达转速增 加。马达转速继续增加直到在154处控制器在时间128处探测到对应的功率传输路径的接 合。变矩器涡轮的转速随马达转速增加,直到换挡元件接合建立功率传输路径为止。一旦建 立了功率传输路径,涡轮转速减小为零。可以通过控制器监视涡轮转速传感器来探测功率 传输路径的建立。控制器在156处指令辅助栗保持管路压力并且在158处指令开始减小马达 转速。控制器每隔一定时间从当前指令的马达转速减去增量直到指令的转速为零或者直到 在160处探测到扭矩需求。在一些情况下,扭矩需求可能发生在马达转速达到零之前。在其 它情况下,如图5所示,在130处的扭矩需求发生之前马达可能处于零转速(zero speed)达 一段时间。
[0039] 在162处,基于扭矩需求的幅度和测量的涡轮转速设置马达转速。对于高扭矩需 求,马达设置为大幅度地高于涡轮转速以产生高涡轮扭矩。对于不太大的扭矩需求,与涡轮 转速的差距较小。只要扭矩需求为正,马达转速随车速稳定增加,并且从而涡轮转速增加。 一旦马达转速足以保持管路压力,在164处指令辅助栗关闭。由于换挡元件的状态没有变 化,流动需求(flow demand)低并且从而保持管路压力所需要的马达转速低。当在166处控 制器确定需要发动机功率时(比如在时间134处),在168处起动发动机。
[0040] 在一些实施例中,可以忽略或者以不同的顺序执行一些步骤的序列。例如,在一些 实施例中,在换挡杆移出泊车挡或空挡之前可以指令接合倒挡和一挡两者共用的换挡元 件。可以示例中换出泊车挡之后的类似方式暂时指令马达增加转速以提供必需的流动以接 合这些换挡元件。随后,可以减小马达转速并且通过辅助栗保持管路压力。
[0041] 虽然上文描述了示例实施例,但是并不意味着这些实施例描述了权利要求包含的 所有可能的形式。说明书中使用的词语为描述性词语而非限定,并且应理解不脱离本发明 的精神和范围可以作出各种改变。如上所述,可以组合多个实施例的特征以形成本发明没 有明确描述或说明的进一步的实施例。尽管已经描述了多个实施例就一个或多个期望特性 来说提供了优点或相较于其他实施例或现有技术应用更为优选,本领域技术人员应该认识 到,取决于具体应用和实施,为了达到期望的整体系统属性可以对一个或多个特征或特性 妥协。因此,描述的实施例在一个或多个特性上相对于其他实施例或现有技术应用不令人 满意也未超出本发明的范围,并且这些实施例可以满足特定应用。
【主权项】
1. 一种车辆,包含: 离散传动比变速器,具有输入和输出; 主栗,可驱动地连接至所述输入并且配置用于以提升的压力供应流体至管路压力回 路; 第二栗,配置用于保持所述管路压力回路中所述提升的压力; 阀体,配置用于将所述流体从所述管路压力回路引导至所述变速器的换挡元件; 牵引马达,可驱动地连接至所述输入; 行驶模式选择器;以及 控制器,配置用于: 响应于所述行驶模式选择器的移动,增加所述牵引马达的转速并且控制所述阀体以引 导所述流体至所述换挡元件中的一些以建立从所述输入至所述输出的功率传输路径,以及 建立所述功率传输路径之后,减小所述牵引马达的转速并且使用所述第二栗保持所述 变速器处于行驶状态。2. -种接合混合动力电动车辆的变速器的方法,包含: 增加牵引马达的转速以使加压的流体流动至所述变速器内的换挡元件;以及 在所述换挡元件的接合之后,减小所述牵引马达的所述转速并且使用辅助流体压力源 保持所述换挡元件处于接合的状态。3. 根据权利要求2所述的方法,其中,响应于进入行驶模式的换挡而执行增加所述牵引 马达的转速。4. 根据权利要求3所述的方法,其中,所述行驶模式是后退行驶模式。5. 根据权利要求3所述的方法,进一步包含在车辆启动事件和进入所述行驶模式的换 挡之间保持所述牵引马达的转速处于零。6. 根据权利要求3所述的方法,进一步包含响应于进入所述行驶模式的换挡之后的扭 矩请求而增加所述马达的转速。7. 根据权利要求2所述的方法,进一步包含通过增加分离离合器的扭矩容量以选择性 地连接内燃发动机至所述牵引马达而起动内燃发动机。8. 根据权利要求2所述的方法,进一步包含使用独立的起动机马达起动内燃发动机。9. 根据权利要求2所述的方法,其中,所述辅助流体压力源是通过独立的电动马达驱动 的独立栗。10. -种运转混合动力车辆的方法,包含: 响应于行驶模式的选择,增加可驱动地连接至主栗的牵引马达的转速以提供流体至换 挡元件,以在所述牵引马达和车轮之间建立功率传输路径;以及 在建立所述功率传输路径之后,减小所述牵引马达的转速并且使用辅助流体压力源保 持所述功率传输路径。
【文档编号】B60W10/06GK105857297SQ201610081285
【公开日】2016年8月17日
【申请日】2016年2月5日
【发明人】托德·麦克洛夫, 大卫·法雷尔, 乔治·埃德蒙德·沃利, 梁伟
【申请人】福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1