混合动力车辆的驱动装置的制造方法

文档序号:10639287阅读:308来源:国知局
混合动力车辆的驱动装置的制造方法
【专利摘要】本发明提供一种混合动力车辆的驱动装置,其在具备发动机及电机的混合动力车辆中,对电机断开用离合器的卡合时产生的冲击进行抑制。混合动力车辆具备:发动机、电机、旋转轴、设置在旋转轴与发动机之间的发动机断开用离合器、设置在旋转轴与电机之间的电机断开用离合器(以下称为“离合器(K2)”)、设置在旋转轴与驱动轮之间的自动变速器、ECU(电子控制装置)。ECU在使离合器(K2)卡合时,以使电机的转速与旋转轴的转速同步的方式来控制电机。ECU在离合器(K2)的卡合控制中要求了伴随有旋转轴的旋转变化的自动变速器的变速控制(旋转变化控制)的情况下,将变速控制的开始时刻延迟至离合器(K2)的卡合控制结束,并且在离合器(K2)的卡合控制结束后开始实施变速控制。
【专利说明】
混合动力车辆的驱动装置
技术领域
[0001 ]本发明涉及一种具备发动机以及电机的混合动力车辆的驱动装置。
【背景技术】
[0002]在日本特开2014-184923号公报(专利文献I)中,公开了一种具备发动机、自动变速器、和被连接在对发动机与自动变速器进行连结的旋转轴上的电机的混合动力车辆。
[0003]在先技术文献
[0004]专利文献
[0005]专利文献I:日本特开2014-184923号公报
[0006]专利文献2:日本特开2013-95205号公报
[0007]专利文献3:日本特开2014-88091号公报

【发明内容】

[0008]发明所要解决的课题
[0009]在专利文献I中所公开的混合动力车辆中,在不使用电机而通过发动机的动力来行驶的情况下,由于电机被发动机的旋转拖曳而发生空转,因此在电机中会产生拖曳损失。为了对该损失进行抑制,从而考虑到追加设置用于将电机从对发动机与自动变速器进行连结的旋转轴(以下也简称为“旋转轴”)上断开的离合器(以下称之为“电机断开用离合器”)。
[0010]然而,如果反复执行使电机断开用离合器进行卡合的控制、与伴随有旋转轴的转速急剧变化的控制(例如自动变速器的变速控制等),则在使电机断开用离合器卡合时,有可能无法使电机的转速以较高精度而与旋转轴的转速同步,从而会产生冲击。
[0011]本发明是为了解决上述的课题而被完成的,其目的在于,在具备发动机以及电机的混合动力车辆中,对电机断开用离合器卡合时所产生的冲击进行抑制。
[0012]用于解决课题的方法
[0013]本发明所涉及的驱动装置为,具备发动机以及电机的混合动力车辆的驱动装置,该混合动力车辆具备:旋转轴;发动机断开用离合器,其被设置在旋转轴与发动机之间;电机断开用离合器,其被设置在旋转轴与电机之间;自动变速器,其被设置在旋转轴与驱动轮之间;控制装置,其能够执行卡合控制以及旋转变化控制,所述卡合控制为,在以使电机的转速与旋转轴的转速同步的方式而对所述电机进行控制的同时使电机断开用离合器卡合的控制,所述旋转变化控制为伴随有旋转轴的旋转变化的控制。控制装置在卡合控制以及旋转变化控制中的某一方的控制的执行中被要求实施另一方的控制的情况下,将另一方的控制的开始时机延迟至一方的控制的执行结束为止,并且在一方的控制执行结束之后开始执行另一方的控制,旋转变化控制为,对自动变速器的变速比进行变更的控制、对设置在旋转轴与自动变速器之间的锁止离合器的状态进行切换的控制、在使发动机断开用离合器卡合了的状态下将发动机的转矩的变化量设为预定值以上的控制中的任意一个。
[0014]根据该结构,能够对卡合控制与旋转变化控制被反复执行的情况进行抑制。由此,能够在电机断开用离合器卡合时使电机的转速高精度地与旋转轴的转速同步。其结果为,能够对电机断开用离合器卡合时所产生的冲击进行抑制。
【附图说明】
[0015]图1为车辆的整体结构图。
[0016]图2为表示由K2卡合控制而引起的MG转速Nm等的变化的一个示例的图。
[0017]图3为表示相对于本发明的比较例的图(其一)。
[0018]图4为表示E⑶的处理顺序的流程图(其一)。
[0019]图5为表示ECU的处理顺序的流程图(其二)。
[0020]图6为表示在K2卡合控制的执行中使变速控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。
[0021]图7为表示在变速控制的执行中使K2卡合控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。
[0022]图8为表示在K2卡合控制的执行中使LU控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。
[0023]图9为表示在LU控制的执行中使K2卡合控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。
[0024]图10为表示相对于本发明的比较例的图(其二)。
[0025]图11为表示相对于本发明的比较例的图(其三)。
[0026]图12为表示在K2卡合控制的执行中使发动机转矩上升控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。
【具体实施方式】
[0027]以下,参照附图对本发明的实施方式进行详细说明。另外,对图中相同或者相当的部分标注相同符号,并且不重复进行其说明。
[0028][车辆的整体结构]
[0029]图1为由本实施方式所实现的车辆I的整体结构图。车辆I具备:发动机10、电动发电机(以下也称之为“MG”)20、电力控制电路(以下称之为“PQJ(Power Control Unit:动力控制单元)”)21、蓄电池22、转矩转换器30、自动变速器40、油压回路45、驱动轮50、发动机断开用离合器KO(以下,也简称为“离合器K0”)、MG断开用离合器K2(以下,也简称为“离合器Κ2”)、ECU(Electronic Control Unit:电子控制单元)100。
[0030]车辆I为使用发动机10以及MG20中的至少一方的动力而行驶的混合动力车辆。
[0031]发动机10的曲轴12经由离合器KO而与旋转轴35连接。MG20的转子经由离合器K2而与旋转轴35连接。旋转轴35经由转矩转换器30而与自动变速器40的输入轴41连接。自动变速器40的输出轴42与驱动轮50连接。
[0032]发动机10为汽油发动机或者柴油发动机等的内燃机。MG20通过从蓄电池22经由PCU21所供给的高电压的电力而被驱动。此外,MG20通过利用从旋转轴35被传递过来的动力(从发动机10或者驱动轮50所传递的动力)而进行旋转,从而发电。蓄电池22蓄积用于向MG20供给的电力。PCU21在MG20与蓄电池22之间实施电力变换。
[0033]转矩转换器30具备栗轮31、涡轮32、定子33、锁止离合器34。锁止离合器34根据来自ECU100的控制信号而被控制为卡合状态(锁止开启控制状态)、释放状态(锁止关闭控制状态)、半卡合状态(弹性控制状态)中的任意一方。
[0034]当锁止离合器34处于卡合状态时,栗轮31与涡轮32会一体地旋转。当锁止离合器34处于释放状态时,由于栗轮31与涡轮32之间的动力传递通过工作油来实施,因此成为能够在栗轮31与涡轮32之间产生转速差(转矩转换器30的滑动)的状态。
[0035]当锁止离合器34处于半卡合状态时,栗轮31与涡轮32之间的动力传递通过工作油以及锁止离合器34来实施。因此,虽然会产生栗轮31与涡轮32之间的转速差,但该差与锁止离合器34处于释放状态的情况相比而较小。
[0036]自动变速器40为能够选择性地形成变速比(输入轴41的转速相对于输出轴42的转速的比)不同的多个齿轮级的有级式的自动变速器。
[0037]机械式油栗MOP与旋转轴35连接,当机械式油栗MOP通过旋转轴35的动力而进行工作时,将被贮留于油底壳(未图示)的工作油吸入并向油压回路45喷吐。油压回路45将从机械式油栗MOP以及未图示的电动油栗所供给的油压作为原压,并根据来自ECU100的控制信号而分别对离合器KO的控制油压(K0压)、离合器K2的控制油压(K2压)、锁止离合器34的控制油压(LU压)进行调压。
[0038]在车辆I中,设置有用于对加速器开度、车速、发动机10的转速(以下也称之为“发动机转速Ne” )、MG20的转速(以下也称之为“MG转速Nm”)、旋转轴35的转速、涡轮32的转速(以下,也称之为“涡轮转速Nt”)、档位等为了对车辆I进行控制而所需的物理量进行检测的多个传感器(均未图示)。这些传感器将检测结果发送至E⑶100。
[0039]ECU100具备未图不的CPU(Central Processing Unit:中央处理单元)以及存储器。ECU100根据来自各传感器的信息以及被存储于存储器的信息来执行预定的运算处理,并根据运算结果来对车辆I的各设备进行控制。
[0040]例如,E⑶100根据加速器开度等而对发动机10的转矩或者MG20的转矩进行控制。[0041 ] ECU100根据将加速器开度或车速等作为参数而预先规定的变速映射图(变速线图)而自动地对自动变速器40的齿轮级进行切换。另外,也可以在用户对换档杆进行操作而选择了手动变速模式的情况下,根据用户的手动操作来对自动变速器40的齿轮级进行切换。另外,在下文中,也将ECUl 00对自动变速器40的齿轮级(变速比)进行切换的控制简称为“变速控制”。在变速控制中包括:将自动变速器40的齿轮级切换为低车速侧的齿轮级的降档变速控制、与将自动变速器40的齿轮级切换为高车速侧的齿轮级的升档变速控制。
[0042]ECU100根据将加速器开度或车速等作为参数而预先规定的工作模式来将锁止离合器34控制为卡合状态、半卡合状态、释放状态中的任意一种状态。另外,在下文中,也将E⑶100对锁止离合器34的状态进行切换的控制简称为“LU(锁止)控制”。
[0043]并且,E⑶100通过电机行驶模式、混合动力行驶模式、发动机行驶模式中的任意一种行驶模式而使车辆I行驶。
[0044]在电机行驶模式中,ECU100使离合器K2卡合(将MG20连接在旋转轴35上)且使离合器KO释放(将发动机10从旋转轴35上断开),并通过MG20的动力而使旋转轴35旋转。
[0045]在混合动力行驶模式中,E⑶100使离合器K2卡合(将MG20连接在旋转轴35上)且使离合器KO卡合(将发动机10连接在旋转轴35上),并且通过发动机10以及MG20中的至少一方的动力而使旋转轴35旋转。
[0046]在发动机行驶模式中,E⑶100使离合器K2释放(将MG20从旋转轴35上断开)且使离合器KO卡合(将发动机10连接在旋转轴35上),并且通过发动机10的动力而使旋转轴35旋转。在发动机行驶模式中,将MG20从旋转轴35上断开,并使MG20停止。
[0047][K2卡合控制]
[0048]如上文所述,在发动机行驶模式中,MG20从旋转轴35上断开并停止。因此,在发动机行驶模式中,MG转速Nm成为O,从而在MG转速Nm与旋转轴35的转速之间会产生差。另外,由于在发动机行驶模式中,发动机10被连接在旋转轴35上,因此旋转轴35的转速与发动机转速Ne为相同的值。
[0049]在从发动机行驶模式向混合动力行驶模式进行切换时,需要使离合器K2卡合而将MG20连接在旋转轴35上。然而,由于在发动机行驶模式中,如上文所述,在MG转速Nm与旋转轴35的转速之间产生了差,因此在将离合器K2卡合时,MG转速Nm将会朝向旋转轴35的转速而急剧变化,从而有可能会产生由惯性能量而引起的冲击(卡合冲击)。此外,由于因MG转速Nm的急剧变化而使MG20的发电电力或者消耗电力急剧增加从而在蓄电池22中流有过电流,因此蓄电池22可能会发生劣化。
[0050]因此,ECU100在从发动机行驶模式向混合动力行驶模式进行切换时,不仅单纯地使离合器K2卡合,还在以使MG转速Nm与旋转轴35的转速同步的方式而对MG20的转矩进行反馈控制的同时使K2压增加,从而使离合器K2卡合。以下,将这一系列的控制又称为“K2卡合控制”。
[0051 ]图2为表示基于K2卡合控制的MG转速Nm等的变化的一个示例的图。由于在时刻tl之前处于发动机行驶模式中,因此MG20从旋转轴35被断开并且MG转速Nm为O,从而在MG转速Nm与发动机转速Ne (旋转轴35的转速)之间产生了差。
[0052]当在时刻tl处被要求了向混合动力行驶模式的切换(即离合器K2的卡合)时,ECU100开始实施K2卡合控制。具体而言,ECU100开始实施如下处理,S卩,对MG20的转矩进行反馈控制以使MG转速Nm与发动机转速Ne (旋转轴35的转速)同步的处理(以下也称之为“Nm同步控制”)。
[0053]当通过Nm同步控制而使MG转速Nm与发动机转速Ne的差小于预定值时,E⑶100持续实施Nm同步控制,并使K2压的指示压增加从而开始实施离合器K2的卡合。此时,由于通过Nm同步控制而使MG转速Nm与发动机转速Ne的差变得非常小,因此MG转速Nm不会发生急剧变化。因此,抑制了上述的卡合冲击或过电流的产生。
[0054]当在时刻t2处K2压的实际压上升至指示压从而离合器K2完全被卡合(MG20被连接在旋转轴35上)时,ECUl 00结束K2卡合控制。由此,向混合动力行驶模式的转移完成。
[0055][K2卡合控制(Nm同步控制)的控制性提高]
[0056]如上文所述,本实施方式所涉及的ECU100在执行K2卡合控制时,通过实施Nm同步控制从而对离合器K2的卡合时的冲击进行了抑制。
[0057]然而,当使MG转速Nm与旋转轴35的转速同步的Nm同步控制、与伴随有旋转轴35的转速的变化的控制(以下也称之为“旋转变化控制”)被反复执行时,Nm同步控制的控制精度会下降,从而在将离合器K2卡合时MG转速Nm可能会发生急剧变化。
[0058]作为旋转变化控制,例如相当于上述的变速控制(对自动变速器40的齿轮级进行切换的控制)。当执行变速控制时,自动变速器40的输入轴41的转速变化为通过车速与变速控制后的变速比而被决定的转速。由于自动变速器40的输入轴41经由转矩转换器30而与旋转轴35连接,因此随着自动变速器40的输入轴41的旋转变化,旋转轴35的转速(发动机转速Ne)也会发生变化。因此,在本实施方式中,对作为旋转变化控制而设定了变速控制的情况进行说明。
[0059]图3为表示作为相对于本发明的比较例而在K2卡合控制的执行中执行了变速控制(旋转变化控制)的情况下的MG转速Nm等的变化的一个示例的图。另外,在图3中,示出了作为变速控制而实施了降档变速控制的情况。
[0000]当在时刻til处开始实施K2卡合控制时,通过Nm同步控制而使MG转速Nm朝向发动机转速Ne开始增加。然而,在作为K2卡合控制的执行中(离合器K2卡合前)的时刻tl2处执行了变速控制时,由于作为Nm同步控制的目标值的发动机转速Ne因变速控制而发生变化(增加),因此Nm同步控制的控制精度会下降。即,会变得难以使MG转速Nm与发动机转速Ne同步,从而MG转速Nm与发动机转速Ne的差会变大。其结果为,在将离合器K2卡合时MG转速Nm会发生急剧变化,从而会产生上述的卡合冲击或过电流。
[0061 ]为了抑制这样的问题,E⑶100在正在执行K2卡合控制和变速控制(旋转变化控制)中的某一方的控制的情况下,抑制另一方的控制被执行的情况。在本实施方式中,在K2卡合控制与变速控制中的某一方的控制的执行中被要求了另一方的控制的情况下,使另一方的控制的开始时机延迟至一方的控制的执行结束为止,并且在一方的控制的执行结束之后开始执行另一方的控制。由此,提高了 K2卡合控制(Nm同步控制)的控制性能,从而抑制了上述的卡合冲击或过电流的产生。这一点为本实施方式的最具特征的要点。
[0062]另外,虽然在下文中,对在K2卡合控制与变速控制中的某一方的控制的执行完全结束后开始实施另一方的控制的情况进行了说明,但只要在能够确保K2卡合控制(Nm同步控制)的控制性能的范围内,也可以在一方的控制的执行完全结束之前开始实施另一方的控制。
[0063]图4为表示ECU100执行变速控制(旋转变化控制)时所实施的处理顺序的流程图。该流程图以预定周期而被反复执行。
[0064]在步骤(以下,将步骤省略记载为“S”)10中,ECU100对是否要求执行变速控制进行判断。在未要求执行变速控制的情况下(在SlO中为否),ECU100结束处理。
[0065]在要求执行变速控制的情况下(在SlO中为是),ECU100在SII中对是否处于K2卡合控制的执行中进行判断。
[0066]在处于K2卡合控制的执行中的情况下(在SII中为是),E⑶100在S12中使变速控制的执行延迟。之后,E⑶100将处理返回至Sll,并持续实施变速控制的执行延迟直至K2卡合控制的执行结束为止。即,ECU1 O为了抑制K2卡合控制和变速控制的重叠执行,从而使已经处于执行中的K2卡合控制优先执行,并且直至K2卡合控制结束为止不会执行变速控制。
[0067]在K2卡合控制的执行结束的情况下或者K2卡合控制原本未被执行的情况下(在Sll中为否),E⑶100将处理转移至S13,并执行变速控制。
[0068]图5为表示ECU100执行K2卡合控制时所实施的处理顺序的流程图。该流程图以预定周期而被反复执行。
[0069]在S20中,ECU100对是否要求执行K2卡合控制进行判断。在未要求执行K2卡合控制的情况下(S20中为否),E⑶100结束处理。
[0070]在要求执行K2卡合控制的情况下(在S20中为是),ECU100在S21中对是否处于变速控制(旋转变化控制)的执行中进行判断。
[0071 ]在处于变速控制的执行中的情况下(在S21中为是),ECU100在S22中使K2卡合控制的执行延迟。之后,E⑶100将处理返回至S21,并持续实施K2卡合控制的执行延迟直至变速控制的执行结束为止。即,ECU1 O为了抑制K2卡合控制与变速控制被重叠执行,从而使已经处于执行中的变速控制优先执行,并且直至变速控制结束为止不会执行K2卡合控制。
[0072]在变速控制的执行结束了的情况下或者变速控制原本未被执行的情况下(在S21中为否),E⑶100将处理转移到S23,并执行K2卡合控制。
[0073]图6为表示在K2卡合控制的执行中使变速控制(旋转变化控制)的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。另外,在图6中,作为变速控制而图示了降档变速控制。
[0074]当在时刻t21处开始实施K2卡合控制时,通过Nm同步控制而使MG转速Nm朝向发动机转速Ne开始增加。
[0075]在K2卡合控制执行中的时刻t22处被要求实施变速控制的情况下,变速控制的开始时机并不是时刻t22,而是被延迟至与K2卡合控制结束的时刻t23相比而较晚的时刻t24。由此,抑制了在K2卡合控制的执行中变速控制被重叠执行的情况。因此,与在K2卡合控制的执行中变速控制被重叠执行的情况相比,由于能够在作为Nm同步控制的目标值的发动机转速N e (旋转轴3 5的转速)稳定的状态下执行Nm同步控制,因此能够提高Nm同步控制的控制性。即,能够在MG转速Nm与发动机转速Ne的差较小的状态下使离合器K2卡合。其结果为,在离合器K2卡合时MG转速Nm不会发生急剧变化,从而能够抑制上述的卡合冲击或过电流的产生。
[0076]图7为表示在变速控制(旋转变化控制)的执行中使K2卡合控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。另外,在图6中,作为变速控制而例示了降档变速控制。
[0077]当在时刻t31处开始实施降档变速控制时,发动机转速Ne朝向降档变速后的同步转速(通过降档变速后的变速比与车速所决定的转速)而开始增加。
[0078]在降档变速控制执行中的时刻t32处被要求实施K2卡合控制的情况下,K2卡合控制的开始时机并不是时刻t32,而是被延迟至降档变速控制结束后的时刻t33。由此,由于抑制了在降档变速控制的执行中K2卡合控制被重叠执行的情况,因此与上述的图6中所说明的情况相同,能够抑制卡合振动或过电流的产生。
[0079]如以上所述,本实施方式所涉及的ECU100在K2卡合控制与变速控制(旋转变化控制)中的某一方的控制正在执行的情况下,抑制另一方的控制被执行的情况。由此,提高了K2卡合控制(Nm同步控制)的控制性,从而能够抑制在离合器K2卡合时产生卡合冲击或过电流的情况。
[0080]另外,在上述的实施方式中,例如也能够以如下方式实施变更。
[0081]〈改变例1>
[0082]在上述的实施方式中,对作为旋转变化控制(伴随有旋转轴35的转速的变化的控制)而设定为变速控制(对自动变速器40的齿轮级进行切换的控制)的情况进行了说明。
[0083]然而,由于即使通过实施LU控制(对锁止离合器34的状态进行切换的控制),转矩转换器30的滑动量(栗轮31与涡轮32之间的转速差)也会发生变化,从而旋转轴35的转速会发生变化。因此,作为旋转变化控制也可以采用如下的方式,即,代替变速控制而设定为LU控制、或者除了设定为变速控制之外还设定为LU控制。即,也可以在K2卡合控制与LU控制中的某一方的控制正在被执行的情况下,抑制另一方的控制被执行的情况。
[0084]图8为表示在本改变例所涉及的ECU100在K2卡合控制的执行中使LU控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。另外,在图8中,例示了在LU控制中将锁止离合器34的状态从卡合状态切换为释放状态的情况。
[0085]当在时刻t41处开始实施K2卡合控制时,通过Nm同步控制而使MG转速Nm朝向发动机转速Ne开始增加。
[0086]在K2卡合控制执行中的时亥Ijt42处被要求实施LU控制的情况下,LU控制的开始时机并不是时刻t42,而是被延迟至与K2卡合控制结束的时刻t43相比而较晚的时刻t44。由此,由于抑制了在K2卡合控制的执行中LU控制被重叠执行的情况,从而与上述的图6中所说明的情况同样地,能够抑制卡合冲击或过电流的产生。
[0087]图9为表示在LU控制的执行中使K2卡合控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。另外,在图9中,也例示了在LU控制中将锁止离合器34的状态从卡合状态切换为释放状态的情况。
[0088]当在时刻t51处开始实施LU控制时,随着锁止离合器34被切换为释放状态从而转矩转换器30的滑动被容许,进而发动机转速Ne与涡轮转速Nt相比也开始增加。
[0089]在LU控制执行中的时刻t52处被要求实施K2卡合控制的情况下,K2卡合控制的开始时机并不是时刻t52,而是被延迟至LU控制结束后的时刻t53。由此,由于抑制了在LU控制的执行中K2卡合控制被重叠执行的情况,因此,与在上文所述的图6中所说明的情况同样地,能够抑制卡合冲击或过电流的产生。
[0090]〈改变例2>
[0091 ] 并且,作为旋转变化控制,也可以替代上述的变速控制以及LU控制的至少一方而设定为发动机转矩上升控制。在本改变例中,发动机转矩上升控制是指,以根据加速器开度的增加等而使发动机10的转矩的增加量成为预定值以上的方式使发动机10的转矩增加的控制。
[0092]在锁止离合器34被释放了的状态(LU关闭中)下,有可能会由于发动机转矩上升控制的执行而使发动机转速Ne急剧增加。
[0093]图10为,表示作为相对于本发明的比较例,在LU关闭中,在K2卡合控制的执行中执行了发动机转矩上升控制的情况下的MG转速Nm等的变化的一个示例的图。当在时刻t61处开始实施K2卡合控制时,通过Nm同步控制而使MG转速Nm朝向发动机转速Ne开始增加。然而,当在作为K2卡合控制的执行中的时刻t62处随着加速器开度的增加而使发动机转矩上升控制被执行时,转矩转换器30的滑动量会增加并且发动机转速Ne会急剧增加,从而MG转速Nm与发动机转速Ne的差会变大。其结果为,在将离合器K2卡合时MG转速Nm会发生急剧变化,从而可能会产生上述的卡合冲击或者过电流。
[0094]此外,即使在锁止离合器34被卡合了的状态(LU开启时)下,当通过发动机转矩上升控制的执行而使得驱动轮50相对于路面而打滑时,发动机转速Ne也可能会急剧增加。
[0095]图11为,表示作为相对于本发明的比较例,在LU开启中,在K2卡合控制的执行中执行了发动机转矩上升控制的情况下的MG转速Nm等的变化的一个示例的图。当在时刻t71处开始实施K2卡合控制时,通过Nm同步控制而使MG转速Nm朝向发动机转速Ne开始增加。然而,当由于在作为K2卡合控制的执行中的时刻t72处随着加速器开度的增加而执行了发动机转矩上升控制从而驱动轮50相对于路面而打滑时,发动机转速Ne会急剧增加,并且MG转速Nm与发动机转速Ne的差会变大。其结果为,在将离合器K2卡合时MG转速Nm会发生急剧变化,从而可能会产生上述的卡合冲击或过电流。
[0096]因此,也可以在K2卡合控制与发动机转矩上升控制中的某一方的控制正在被执行的情况下,抑制另一方的控制被执行的情况。
[0097]图12为,表示在本改变例所涉及的ECU100在K2卡合控制的执行中使发动机转矩上升控制的执行延迟的情况下的MG转速Nm等的变化的一个示例的图。另外,在图12中,例示了锁止离合器34被释放了的情况。
[0098]当在时刻t81处开始实施K2卡合控制时,通过Nm同步控制而使MG转速Nm朝向发动机转速Ne开始增加。
[0099]在K2卡合控制执行中的时刻t82加速器开度增加并被要求实施发动机转矩上升控制的情况下,发动机转矩上升控制的开始时机并不是时刻t82,而是被延迟至K2卡合控制结束的时刻t83。由此,由于抑制了在K2卡合控制的执行中发动机转矩上升控制被重叠执行的情况,因此与上述的图6中所说明的情况同样地,能够抑制卡合冲击或过电流的产生。
[0100]另外,作为旋转变化控制,也可以采用如下的方式,S卩,代替上述的发动机转矩上升控制或者除了发动机转矩上升控制之外还设定为如下控制,即,以根据加速器开度的下降等而使发动机10的转矩的下降量成为预定值以上的方式使发动机10的转矩下降的控制(发动机转矩下降控制)。
[0101]〈改变例3>
[0102]在上述的实施方式以及改变例1、2中,以在发动机10被连接于旋转轴35上的状态(离合器KO被卡合了的状态)下实施K2卡合控制作为前提。
[0103]然而,也可以在将发动机10从旋转轴35上断开了的状态(离合器KO被释放了的状态)下实施K2卡合控制。在该情况下,作为旋转变化控制而能够设定为变速控制以及LU控制。即,即使在将发动机10从旋转轴35上断开了的状态下,也能够通过变速控制以及LU控制而使旋转轴35的转速发生变化。因此,在假设将发动机10从旋转轴35上断开了的状态下实施K2卡合控制的情况下,作为旋转变化控制而能够设定变速控制以及LU控制。
[0104]应该认为本次所公开的实施方式中的所有的要点均为示例而并非限制性的内容。本发明的范围并非通过上述所说明的内容来表示,而是通过专利权利要求书来表示,并且包括与专利权利要求书等同的含义以及范围内的全部变更。
[0105]符号说明
[0106]I车辆;10发动机;12曲轴;21PCU; 22蓄电池;30转矩转换器;31栗轮;32涡轮;33定子;34锁止离合器;35旋转轴;40自动变速器;41输入轴;42输出轴;45油压回路;50驱动轮;100E⑶;KO发动机断开用离合器;K2MG断开用离合器;MOP机械式油栗。
【主权项】
1.一种混合动力车辆的驱动装置,所述混合动力车辆具备发动机以及电机, 所述混合动力车辆具备: 旋转轴; 发动机断开用离合器,其被设置在所述旋转轴与所述发动机之间; 电机断开用离合器,其被设置在所述旋转轴与所述电机之间; 自动变速器,其被设置在所述旋转轴与驱动轮之间; 控制装置,其能够执行卡合控制和旋转变化控制,所述卡合控制为,在以使所述电机的转速与所述旋转轴的转速同步的方式而对所述电机进行控制的同时使所述电机断开用离合器卡合的控制,所述旋转变化控制为,伴随有所述旋转轴的旋转变化的控制, 所述控制装置在所述卡合控制以及所述旋转变化控制中的某一方的控制的执行中被要求实施另一方的控制的情况下,使所述另一方的控制的开始时机延迟至所述一方的控制的执行结束为止,且在所述一方的控制的执行结束之后开始执行所述另一方的控制。2.如权利要求1所述的混合动力车辆的驱动装置,其中, 所述旋转变化控制为,对所述自动变速器的变速比进行变更的控制、对被设置在所述旋转轴与所述自动变速器之间的锁止离合器的状态进行切换的控制、在使所述发动机断开用离合器卡合了的状态下将所述发动机的转矩的变化量设为预定值以上的控制中的任意一个。
【文档编号】B60W10/11GK106004853SQ201610165409
【公开日】2016年10月12日
【申请日】2016年3月22日
【发明人】佐藤俊, 堤贵彦, 马场正幸, 杉村敏夫
【申请人】丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1