低碳无碳化物贝氏体钢及其制造方法和其在钢轨中的应用的制作方法

文档序号:4012260阅读:455来源:国知局
低碳无碳化物贝氏体钢及其制造方法和其在钢轨中的应用的制作方法
【专利摘要】本发明公开了一种无碳化物低碳贝氏体钢、制造方法及其在钢轨中的应用,其金相组织为贝氏体和马氏体构成的复相组织,其中的贝氏体组织体积分数为20-50%,无碳化物;该低碳贝氏体钢含有的化学元素及其质量百分比为:0.10-0.22%的C、0.9-1.6%的Si、1.7-2.4%的Mn、0.2-1.0%的Cr、0.01-0.15%的V、小于0.012%的P、小于0.015%的S,余量为Fe及不可避免的杂质。其成本低,综合性能好,符合节能减排的政策要求。
【专利说明】低碳无碳化物贝氏体钢及其制造方法和其在钢轨中的应用

【技术领域】
[0001] 本发明属于合金领域,具体来说一种低碳且无碳化物的贝氏体钢, 申请人:命名其 牌号为20Mn2SiCrV低碳无碳化物贝氏体钢,所得钢种具有高强度、高韧性、高耐磨性等特 点,综合性能优异,能显著提高产品的使用寿命。本发明还涉及其适于工业化的制备方法, 和该种钢在钢轨中的应用。

【背景技术】
[0002] 钢材是国家建设必不可少的重要物资,其应用广泛、品种繁多。随着经济建设的发 展,钢材作为结构及功能材料的重要组成部分,人们对其机械及使用性能的要求不断提高。 特种钢的研制与生产成为了钢铁行业的主要发展方向,其中贝氏体钢以其优异性能正逐渐 被各行业认可。
[0003] 铁路的发展在经济发展中占据重要地位,钢轨作为铁路发展的基础显得尤为重 要。由于钢轨承载机车重量并受到碾压和冲击,因此对钢轨的强度、硬度、延伸率、焊接性和 耐冲击韧性要求都较高,特别是重载钢轨,其综合性能要求更高。目前,钢轨用钢可分为如 下几类:珠光体钢、低碳马氏体钢和贝氏体钢。研究表明,珠光体钢性能及加工工艺的研究 已经接近极限,低碳马氏体钢焊接性能不稳定。目前,世界范围内钢轨用钢材主要为珠光体 钢,这种珠光体钢存在的主要问题为冲击韧性偏低,而我国生产的珠光体钢轨轨腰部分冲 击韧性低于8J/cm2。而贝氏体钢各方面性能优异,是今后钢轨材料发展的方向之一。目前, 国外贝氏体钢研究重点为高碳贝氏体,材料的抗冲击性能及韧性受碳含量影响明显。为避 免碳含量对材料强韧性的不利影响,近年来低碳贝氏体钢成为研究的热点。
[0004] 贝氏体钢研究初期,为获得良好的下贝氏体组织,必须进行等温处理,这在生产上 有诸多不便。贝氏体相变理论的研究推动了贝氏体钢开发和应用,采用空冷的贝氏体钢被开 发出来。为了保证钢种的强度和贝氏体转变所需要的合理的淬透性,需要添加适合转变的其 他合金元素,以通过合金化转变成无碳化物贝氏体组织。目前的贝氏体钢主要有如下体系 :
[0005] (I)Mo-B系贝氏体钢,通过在合金中添加Mo和B抑制多边形铁素体的形成。但这 种钢初始转变温度高,韧性差。
[0006] ⑵Mn-B系贝氏体钢,通过Mn与B结合,使贝氏体相变温度降低,细化贝氏体尺寸,改 善强度和韧性。缺点是由于B的化学性质活泼,不易控制,形成B的化合物会降低材料韧性。
[0007] (3)Si-Mn-Mo准贝氏体钢,通过Mn和Mo提高淬透性。
[0008] (4)微合金化空冷贝氏体钢,通过加入Re、Ti、V合金化,使奥氏体晶粒尺寸减小, 显微组织明显细化,改善强韧性。
[0009] (5)含Cu钢,通过加入Cu与B联合作用,进一步抑制贝氏体转变前的先共析铁素 体形成,同时铜可使铌的碳化物高温应变诱导析出加速。
[0010] 在贝氏体钢中,昂贵的Mo、Ni的使用,限制了产品的商业化发展,而B又不易控制 产品质量,也对产品的推广应用造成了限制。另外,不同领域对钢的性能的要求也不同,例 如有的要求较好的焊接性,有的要求较高耐磨性。然而由于合金元素的相互影响,提高某一 性能往往也会对其他性能产生负面影响,这也对贝氏体钢的研制提出了更高的要求。
[0011] 钢轨用钢,对材料的硬度、强度、韧性、焊接性等均有较高要求,是贝氏体钢应用研 究的一个主要领域。
[0012] 目前,钢轨用贝氏体钢大部分采用的都是Si-Mn-Mo体系,除Si、Mn、Mo是必须的合 金元素外,甚至还需要添加有Cr、Nd、V、Ni等。这种合金由于采用Mo、Ni,成本较高,同时由 于钢轨用钢量巨大,因此在铁路上真正推广应用难度很大,限制了其商业化。另外,目前开 发的Si-Mn-Mo贝氏体钢轨材料,经过研究,其金相组织为贝氏铁素体+ (M-A)岛,贝氏铁素 体大多呈板条状特征,所占比例在80%以上。其轨头拉伸性能Rm达到1250-1270MPa,延伸 率12-16%,常温冲击韧性Aku为72-88J/cm2,硬度HB为363-375。("抗拉强度1200MPa贝 氏体钢轨的开发及其在铁路上的应用",陈昕等,《钢铁》。2008年11月第43卷第11期)。
[0013]中国专利文献CN102534403A、CN102021481A,用Nb、V、Ti甚至还有Co、W代替 了Mo、Ni,通过在钢轨轧制温度范围内析出Nb、V、Ti的碳氮化物抑制奥氏体再结晶晶粒 的长大,同时以碳氮化物作为贝氏体相变形核质点,增加形核数量,尽可能多地产生板条 贝氏体,限制M-A岛的尺寸及所占比例。其力学性能为Rm达到1060-1350MPa,延伸率 11-16. 5 %,常温冲击韧性Aku为 28-52J/cm2。
[0014] 申请人:开发的复合辙叉用的心轨,主要合金元素是Si、Mn、Cr、Mo、Ni,附以微量 元素V和Nd,其抗拉强度大于1320MPa,延伸率大于9 %,常温冲击韧性大于75J/cm2,硬 度HRC38-45。合金元素为Si、Mn、Cr、Mo、Ni的曲线和重载贝氏体钢轨,其抗拉强度为 1300-1500MPa,延伸率A彡10%,常温冲击韧性彡75J/cm2,布氏硬度彡380HB。
[0015] 上述贝氏体钢轨,虽然在性能上具有突出的表现,然而由于都采用了Mo、Ni、Nb、Ti 等贵重合金元素,因此都具有成本高的不足,限制了商业化应用。
[0016] 日本开发的贝氏体钢以Mn、Si、Cr为主要合金元素(CN102021481A),选择添加Mo、 Cu、Ni或Ti、V、Nb或者B,其控制方法是由700°C以上的高温以I-KTC/s的速度快速冷却 至IJ500-300°C再自然冷却到常温。其金相组织主要是贝氏体组织,并有可能有微小的回火马 氏体组织,该文献认为马氏体损害钢韧性,因此马氏体组织越少越好。其不足是在提高耐磨 性同时其冲击韧性较低,即使其要控制马氏体组织的出现,但其冲击韧性要明显低于前述 国内的贝氏铁钢轨,因此其只适合作钢轨上端耐磨部分,作轨腰则由于冲击韧性差反而会 降低使用寿命。
[0017] 另外,为提高铁路运力,重载钢轨不仅要求强度和硬度好,还对冲击韧性提出了更 高的要求,现有的贝氏体钢轨材料虽然其冲击韧性比传统的低碳马氏体钢轨有较大提高, 但由于目前贝氏体钢轨材料的高成本,冲击韧性低意味着钢轨寿命短,基于上述种种原因, 目前贝氏体钢由于成本等因素在钢轨上的真正商业化扩广应用受到了较大限制。


【发明内容】

[0018] 有鉴于此,本发明的目的在于提供一种低碳无碳化物贝氏体钢材料,是一种 20Mn2SiCrV低碳贝氏体钢,这种钢不需要添加贵重合金元素Mo、Ni、Nd等,也不需要添加活 泼元素B,因此材料成本低,而且综合性能优于现有钢轨用钢。
[0019] 本发明的另一个目的还在于提供这种20Mn2SiCrV低碳贝氏体钢在钢轨上的应用。
[0020] 本发明第三个目的在于提供一种上述20Mn2SiCrV低碳贝氏体钢在线控冷生产方法。
[0021] 申请人:经过大量的研究惊奇地发现,作为贝氏体钢轨,并非贝氏体组织含量越高 越好,采用本发明的合金元素组成,控制金相组织为下贝氏体与马氏体复合体,且下贝氏体 组织体积分数为20-50%且无碳化物时,得到的贝氏体钢不仅强度、延伸率和硬度优良,而 且能够获得更高的冲击韧性,因此特别适合于钢轨用钢,并且不需要Mo、Ni等合金元素,降 低了成本,易于推广。
[0022] 为实现本发明第一个目的,提供一种20Mn2SiCrV无碳化物低碳贝氏体钢,其 金相组织为贝氏体和马氏体构成的复相组织,无碳化物,其中的贝氏体组织体积分数为 20-50%;该低碳贝氏体钢含有的化学元素及其质量百分比为:0. 10-0. 22%的C、0. 9-1. 6% 的Si、l. 7-2. 4%的Μη、0· 2-1. 0%的Cr、0. 01-0. 15%的V、小于 0· 012%的P、小于 0· 015% 的S,余量为Fe及不可避免的杂质。
[0023] 比较优选的是,含有的化学元素及其质量百分比为:0.14-0. 20%的C、l. 0-1. 4% 的Si、l. 8-2. 3%的Μη、0· 3-0. 8%的Cr、0. 03-0. 12%的V、小于 0· 012%的P、小于 0· 015% 的S,和余量的Fe及不可避免的杂质。
[0024] 本发明的20Mn2SiCrV以C-Mn-Si-Cr为主要合金元素,避免加入Ni、Co、W、Nb元 素,有利于降低合金成本;含有较低的p、S含量,有利于改善钢轨的抗脆断能力。其特殊的 下贝氏体与马氏体的复合金相组织结构,使得晶粒接触面的晶界纹理方向交错,受到冲击 应力时晶界破坏方向不能沿固定方向延展,因此提高了其冲击韧性。
[0025] 一种上述20Mn2SiCrV无碳化物低碳贝氏体钢在钢轨中的应用,这种20Mn2SiCrV 无碳化物低碳贝氏体钢,其抗拉强度大于1250MPa,屈服强度大于900MPa,延伸率大于 10 %,常温冲击韧性Aku大于100J/cm2,布氏硬度HB大小390,具有优异的综合性能,而且 采用的合金元素成本低,制造方法简便易于控制,符合我国节能减排的战略要求,能够满足 我国铁路建设的需要,特别适用于重载铁路线路。
[0026] 本发明还提供了 20Mn2SiCrV低碳贝氏体钢材料的制备方法,该方法包括如下步骤:
[0027] (1)冶炼:经过转炉或电炉冶炼一炉精炼一真空脱气一连铸一轧制一缓冷, 得到含有下述重量百分含量化学元素的连铸钢坯:〇. 10-0. 22%的C、0. 9-1. 6%的Si、 L7-2. 4% 的Μη、0· 2-L0% 的Cr、0. 01-0. 15% 的V、小于(λ012% 的P、小于(λ015% 的S,和 余量的Fe以及不可避免的杂质;
[0028] (2)轧制:将上述连铸钢坯经过加热-开坯-粗轧和精轧;
[0029] (3)在线控冷,将精轧后的钢坯进行在线控冷,将钢坯以I-KTC/s的冷速强制 冷却至200-350°C,然后以0. 01-0. 5°C/s的冷速缓慢冷却至室温,得到含有体积分数为 20-50 %贝氏体组织;
[0030] (4)稳定化处理:将上述贝氏体钢坯在在200-350°C温度下保温6-60小时,稳定显 微组织,消除残余应力。
[0031] 本发明中,由于减少Mo、Nb、B等合金元素,欲获得所需性能的贝氏体,对钢坯中非 金属夹杂物的控制,特别是对[H]、P、S含量的控制较常规贝氏体钢要更加严格,本发明具 体可以采用如下方法:
[0032] (a)在所述冶炼和炉精炼过程采用高铝质/MgO-C耐火材料,以及石灰CaC03/MgC03 渣料,只有满足该条件,才能控制钢坯的非金属夹杂物水平,避免出现单个的大颗粒夹杂;
[0033] (b)所述精炼过程控制钢水的P的质量百分比不高于0. 01%,[H]和[0]含量分 别小于2.Oppm和20ppm;
[0034] (c)所述冶炼中缓冷过程要采用在600-700°C保持24-120小时,只有满足该条件, 才能有效降低钢坯的[H]含量;
[0035] 最终钢坯的非金属夹杂物水平为:A类夹杂小于2. 0,B类夹杂小于1. 5,C类夹杂 小于1. 5,D类夹杂小于1. 5。
[0036] 本发明中,还包括具体采用以下方法消除贝氏体钢轨的微观缺陷以及减小原奥氏 体晶粒的尺寸:
[0037](a)、所述步骤⑵中粗轧和万能精轧采用的轧机吨位在900吨以上,只有满足该 条件,才能有效地消除微观缺陷;
[0038] (b)、所述步骤(2)中万能精轧的终止轧制温度是950-860°C,只有满足该条件,才 能有效地减小原奥氏体晶粒尺寸。终轧温度对产品的性能有一定的关联,冷却速度快慢对 拉伸强度的高低有很大的关系。冷却快,强度大,但冲击(韧性)下降。最后的保温时间要 有合理、科学的时间即可。过长不会无限提高性能。自然冷却性能不好,因为达不到合理的 组织。

【专利附图】

【附图说明】
[0039] 图1为本发明的20Mn2SiCrV低碳贝氏体钢金相组织照片,图中标尺为10μm。

【具体实施方式】 [0040]
[0041] 下面结合具体实施例,对本发明作进一步说明,以助于理解本发明的内容。、
[0042] 步骤1钢材料的制备
[0043] 经过转炉或电炉冶炼一炉精炼一真空脱气一连铸一缓冷获得钢坯,含有的化学元 素及其重量百分比为 〇· 10-0. 22%的C、0. 9-L6%的Si、L7-2. 4%的Mn、0. 2-L0%的Cr、 0.01-0. 15%的V、小于0.012%的P、小于0.015%的S,和余量的Fe以及不可避免的杂质;
[0044] 冶炼和精炼过程采用高铝质/MgO-C耐火材料,以及石灰CaC03/MgC03渣料;
[0045] 精炼过程钢水的P的质量百分比不高于0. 01 %,[H]和[0]含量分别小于2.Oppm 和 20ppm;
[0046] 缓冷过程采用在600-700°C保持24-120小时。
[0047] 步骤2贝氏体钢轨的制造
[0048] 将步骤1制得的贝氏体钢坯轧制成钢轨,钢坯加热温度为:1150-1250°C,开坯温 度为1100-1200°C,采用吨位为900吨以上的轧机粗轧,吨位为900吨的万能轧制精轧,终止 轧制温度为860-950°C;
[0049]钢轨的轨型:50kg/m,60kg/m,68kg/m,75kg/m。
[0050]将上述热轧后的钢轨以I-KTC/s的冷速强制冷却至200_350°C,然后以 0. 01-0. 5°C/s的冷速缓慢冷却至室温;
[0051] 将上述钢轨在200-350°C保温6-60小时,稳定显微组织。
[0052] 热处理后的钢轨性能为:抗拉强度1200_1500MPa,屈服强度900_1150MPa,延伸率 大于10%,常温冲击值Aku 100-200J/cm2,布氏硬度大于HB390。
[0053]下面表中给出了具体不同条件下的具体实施例以及机械性能。
[0054]

【权利要求】
1. 一种无碳化物低碳贝氏体钢,其金相组织为贝氏体和马氏体构成的复相组织, 其中的贝氏体组织体积分数为20-50%,无碳化物;该低碳贝氏体钢含有的化学元素及 其质量百分比为:〇· 10-0. 22% 的 C、0. 9-1. 6% 的 Si、l. 7-2. 4% 的 Mn、0. 2-1. 0% 的 Cr、 0. 01-0. 15%的V、小于0. 012%的P、小于0. 015%的S,余量为Fe及不可避免的杂质。
2. 如权利要求1所述的无碳化物低碳贝氏体钢,其特征在于含有的化学元素及其 质量百分比为:〇· 14-0. 20 % 的 C、l. 0-1. 4 % 的 Si、l. 8-2. 3 % 的 Μη、0· 3-0. 8 % 的 Cr、 0. 03-0. 12%的V、小于0. 012%的P、小于0. 015%的S,和余量的Fe及不可避免的杂质。
3. 权利要求1所述20Mn2SiCrV无碳化物低碳贝氏体钢在钢轨中的应用。
4. 一种权利要求1所述无碳化物低碳贝氏体钢的生产方法,该方法包括如下步骤: (1) 冶炼:经过转炉或电炉冶炼一炉精炼一真空脱气一连铸一轧制一缓冷,得到含有 下述重量百分含量化学元素的连铸钢坯:〇. 10-0. 22%的C、0. 9-1. 6%的Si、l. 7-2. 4%的 Μη、0. 2-1. 0%的 Cr、0. 01-0. 15%的 V、小于 0. 012%的 P、小于 0. 015%的 S,和余量的 Fe 以 及不可避免的杂质; (2) 轧制:将上述连铸钢坯经过加热-开坯-粗轧和精轧; (3) 在线控冷,将精轧后的钢坯进行在线控冷,将钢坯以1-10°C /s的冷速强制冷却至 200-3501:,然后以0.01-0.51:/8的冷速缓慢冷却至室温,得到含有体积分数为20-50%贝 氏体组织; (4) 稳定化处理:将上述贝氏体钢坯在在200-350°C温度下保温6-60小时,稳定显微组 织,消除残余应力。
5. 如权利要求4所述的生产方法,其特征在于:在所述冶炼和炉精炼过程采用高铝质/ Mg〇-C耐火材料,以及石灰CaC03/MgC03渣料。
6. 如权利要求4所述的生产方法,其特征在于:所述精炼过程控制钢水的P的质量百 分比不高于〇· 01 %,Η和0含量分别小于2. Oppm和小于20ppm。
7. 如权利要求4所述的生产方法,其特征在于:所述缓冷过程采用在600-700°C保持 24-120 小时。
8. 如权利要求4所述的生产方法,其特征在于:所述步骤(2)中粗轧和万能精轧采用 的轧机吨位在900吨以上。
9. 如权利要求4所述的生产方法,其特征在于:所述步骤⑵中万能精轧的终止轧制 温度是 950-860°C。
【文档编号】E01B5/02GK104278205SQ201410444533
【公开日】2015年1月14日 申请日期:2014年9月3日 优先权日:2014年9月3日
【发明者】白秉哲, 张绵胜, 张志强, 张志勇 申请人:北京特冶工贸有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1