一种复合板材及飞行器的制作方法

文档序号:11169041阅读:546来源:国知局
一种复合板材及飞行器的制造方法与工艺

本发明涉一种复合板材,特别是涉及一种具高刚度、高强度的复合板材及由这种复合板材制成的飞行器。



背景技术:

飞行器包括无人机驾驶飞行器和有人驾驶飞行器,无人机驾驶飞行器简称“无人机”,是利用无线电遥控设备或嵌入式程序操控的不载人飞机。目前应用比较广泛的是旋翼式无人机,其动力来自旋翼的高速旋转所提供的升力,通过控制每个旋翼的不同旋转速度来实现无人机的升降悬停等不同的动作。

如今的无人飞行器的机身材料很多使用单一材料,使飞行器容易受到冲击而损坏,碳纤材料性质脆,容易破裂;玻纤材料结构强度低,在冲击下容易发生变形;凯夫拉材料容易被分解,发生塑化。

早期无人飞行器都没有防护措施,高速旋转的旋翼带来升力的同时也会给附近的生物和建筑带来一定的危害,因此,后来便出现了旋翼保护罩,其中,旋翼保护罩与飞行器的连接方式有直接连接方式和间接连接方式,保护罩给无人机提供了安全保障的同时也给无人机本身增加了一定的负重。目前无人机的保护罩具有动力响应不迅速、不耐撞、易变形、质量大且保护能力有限等缺陷,更重要的一点在于飞行器在收到冲击时,即使保护罩保护了旋翼,但保护罩所受到的刚性冲击会直接传输到机身,对机身造成损坏,甚至损坏机身内部的电子元器件。



技术实现要素:

本发明提供一种高刚度、高强度的复合板材及由这种复合板材制成的飞行器。

为了实现上述目的,本发明提供了一种复合板材,自外而内地包括碳纤层、玻纤层和凯夫拉层。由上述方案可见,自外而内的碳纤层、玻纤层、凯夫拉层的设置,大幅度的降低了飞行器整体上的重量,而且增强了复合板材结构强度,提高了抗冲击的能力,同时外层碳纤维层结构抗紫外线,保护内层高强度的凯夫拉层不受紫外线分解,玻纤层具有较高的弹性模量,可提高保护框的韧性同时防止脆性较大的碳纤维刺伤凯夫拉层。

进一步的方案为,夫拉层包括外凯夫拉层和内凯夫拉层,外凯夫拉层与内凯夫拉层之间设置一层凯夫拉线网层。由此可见,凯夫拉线网层进一步加强了复合板材刚度。

进一步的方案为,碳纤层包括碳纤维布及树脂,或碳纤维丝及树脂;玻纤层包括玻璃纤维布及树脂,或玻纤丝及树脂;凯夫拉层包括凯夫拉布及树脂。由此可见,布的结构增强了复合板材的抗拉能力。

进一步的方案为,碳纤层、玻纤层和凯夫拉层的厚度比例为1:2:7。进一步稳定提高了复合板材的结构强度。

进一步的方案为,飞行器包括机壳和动力单元,机壳由复合板材制成。由此可见,提高了飞行器的抗摔能力,保护机身内部的电子元件。

进一步的方案为,飞行器包括机臂和保护框;保护框包括上线网、下线网和侧壁防护框;动力单元包括驱动旋翼、驱动电机;侧壁保护框的外层由上述复合板材制成,其内层设置有容纳保护气体的密闭层;所述上线网、下线网和所述侧壁防护框组成所述保护框的容纳空间,所述驱动旋翼被置于所述容纳空间之内;所述驱动旋翼安装在所述驱动电机的旋转轴上,所述驱动电机安装在所述机臂上;所述上线网的中部安装在所述机臂上。

有上述方案可见,侧壁保护框材料结构进一步降低了飞行器的重量。密闭层内冲入预定压力的保护气体。减轻飞行器整体的重量且能削弱传播中的冲击力。飞行器的保护框将驱动旋翼保护于其的容纳空间之内,当飞行器受到刚性冲击的时候,例如摔在地上,冲击力由下网线通过侧壁防护框传送到上线网或者由侧壁防护框传送到上线网,冲击力再通过上线网传到驱动单元或机臂上;经过多段传递,明显的减弱了刚性冲击对机身和动力单元的影响,由于驱动旋翼悬空于保护框的容纳空间之内,大幅度的减弱了冲击力对动力单元的损害。

进一步的方案为,机臂的外端安装有位于上侧的安装座和位于下侧的安装板,且上线网的中部固定在安装座和安装板之间,驱动电机固定在安装座的上侧且驱动电机与机臂直接连接,降低了保护框带来的旋转惯量,另外,由于机臂直接与驱动电机连接,在同一状况下,这种结构能明显的提高动力单元对飞行器的响应速度。

另一个进一步方案为,驱动电机固定在安装板下侧的保护框的容纳空间内。可进一步的降低所受冲击对驱动旋翼、驱动电机和机身的影响,有利于电机的散热、安装、维修和更换。

进一步方案为,下线网的下侧安装有脚架。进一步加强下线网在保护框的缓冲作用,提高脚架的缓冲能力,提高飞行器的抗摔能力。

进一步的方案为,上线网和下线网分别由纵向线和横向线构成,纵向线和横向线具有预紧力。在飞行器受到冲击之前,上、下线网的预紧力增强了拉线与侧壁防护框之间的可靠性和紧密性;在飞行器受到冲击时,例如保护框的一侧受到力的冲击,在侧壁防护框上产生一种竖向的力,使侧壁防护框有挤压变形的趋势,但保护框线网具有的预紧力,使侧壁保护框产生一种横向的力来抵消竖向的力,保证了保护框在冲击力作用下不变形,提高保护框整体的刚性强度,增强对动力单元和机身的保护能力,即通过预紧力来提升垂直于网面方向的抗冲击能力。优选的,上述预拉力在18磅到30磅之间。这样可有效提高保护框的刚度和缓冲能力,降低了保护框本身的重量要求和强度要求,降低成本。

附图说明

图1复合板材第一实施例结构示意图;

图2复合板材第二实施例增加凯夫拉网层示意图;

图3飞行器第一实施例立体图;

图4飞行器第一实施例中的机臂、保护框和动力单元剖切示意图;

图5飞行器第二实施例结构示意图;

图6飞行器第二实施例脚架结构示意图。

具体实施方式

下面结合具体实施例并对照附图对本发明进行说明。

复合板材第一实施例

如图1所示,本发明提供了一种复合板材100,包括碳纤层、玻纤层和凯夫拉层,作用于飞行器的机身机壳;板材自外至内的排列为碳纤层101、玻纤层102和、凯夫拉层103。由上述方案可见,多层结构,碳纤层101、玻纤层102、凯夫拉层103的设置,其厚度比例为1:2:7。大幅度的降低了飞行器整体上的重量,而且增强了复合板材结构强度,提高了抗冲击的能力,同时外层碳纤维层结构抗紫外线,保护内层高强度的凯夫拉层不受紫外线分解,玻纤层具有较高的弹性模量,可提高保护框的韧性同时防止脆性较大的碳纤维刺伤凯夫拉层。整体上提高了机壳的抗摔能力,保护机身内部的电子元件。

复合板材第二实施例

如图2所示,复合板200自外而内包括碳纤层201、玻纤层202和凯夫拉层203,其中凯夫拉层203包括外凯夫拉层2031和内凯夫拉层2032,外凯夫拉层2031和内凯夫拉层2032之间设置一层凯夫拉线网层204。由此可见,凯夫拉线网层104进一步加强了复合板材100刚度。

优选的,碳纤层201包括碳纤维布及树脂,或碳纤维丝及树脂;玻纤层202包括玻璃纤维布及树脂,或玻纤丝及树脂;凯夫拉层203包括凯夫拉布及树脂。显然,布的编织结构可增强复合板材200的抗拉能力;丝状混合的结构可增强复合板材200的韧性,提高其抗冲击能力。

飞行器第一实施例

如图3、图4所示,飞行器10主要包括了机身1、机臂2、保护框3、动力单元4和安装座5。其中保护框3包括了上线网31、侧壁防护框32和下网线33;动力单元4包括了驱动旋翼41、驱动电机42;安装座5包括了安装座51、安装板52和动力安装座53。上线网31、侧壁防护框32和下线网33组合,围成动力保护框3的一个容纳空间34;驱动旋翼41被置于容纳空间34之内且不与四周接触。驱动旋翼41安装在驱动电机42的旋转轴上,驱动电机42置于动力安装座53内,且驱动电机42和动力安装座53同时安装在安装座上。上线网31安装在安装座51与安装板52中间,通过安装座51与安装板52的装配紧紧将上线网31固定。保护框3的通过上线网31的中部安装在机臂2上。

由此方案可见,保护框3将驱动旋翼41保护于其的容纳空间34之内,当飞行器10受到刚性冲击的时候,例如摔在地上,冲击力由下网线33通过侧壁防护框32传送到上线网31又或者由侧壁防护框32传送到上线网31,冲击力再通过上线网31传到驱动单元4和机臂2上;由于经过多重传递,明显的减弱了刚性冲击对机身1和动力单元4的影响,由于驱动旋翼41悬空于保护框3的容纳空间34之内,大幅度的减弱了冲击力对动力单元4的损害,同时减弱了冲击力对机身1的损害。另外,由于机臂2直接与动力单元4连接,在同一状况下,这种结构能明显降低了动力单元的旋转惯量,提高动力单元4对飞行器10的响应速度。

优选的,侧壁防护框使用上述复合板材制成,在复合板材内部设置密闭层,密闭层里预先充入限定压力的保护气体,如使用氮气、氩气或氦气充当保护气体,既可以减轻飞行器整体的重量,且能削弱传播中的冲击力。

更优的,上线网31的拉线穿插于侧壁防护框32的上端面,线与线之间横竖相交形成网格结构且有预紧力;下线网33的拉线穿插于侧壁防护框32的下端面,线与线之间横竖相交形成网格结构且有预紧力。在飞行器10受到冲击之前,上线网31和下线网33的预紧力增强了拉线与侧壁防护框32之间的可靠性和紧密性,在飞行器10受到冲击时,例如保护框3的一侧受到力的冲击,在侧壁防护框32上产生一种竖向的力,使侧壁防护框32有挤压变形的趋势,但保护框的线网具有的预紧力,使侧壁保护框32产生一种横向的力来抵消竖向的力,保证了保护框3在冲击力作用下不变形,提高保护框整体32的刚性强度,增强对动力单元4和机身1的保护能力,即通过预紧力来提升垂直于网面方向的抗冲击能力。优选的,上述预紧力在18磅到30磅之间。这样可有效提高保护框3的刚度和缓冲能力,降低了保护框3本身的重量要求和强度要求,降低成本。

飞行器第二实施例

本实施例与第一实施例的区别在于下线网的结构。

如图5所示,下线网332中部设置一个支撑环8,侧壁防护框322和支撑环9上加工有穿线用的线孔(未显示),拉线纵横交织贯穿于侧壁防护框322和支撑环9之间,形成下线网332,拉线与孔洞接触地方都有垫圈套(未显示),垫圈套与下线网332及侧壁防护框架322之间密封完全,防止气流穿过框架上的小孔洞形成抖动。设置支撑环9有利于飞行器驱动旋翼412的安装。

优选的,如图6所示,在支撑环82设置有安装结构,脚架9通过安装结构安装在支撑环82上。既把驱动旋翼413完全包围起来,还为飞行器提供降落的支撑机构,当受到刚性冲击时,冲击力顺着脚架9经过下线网332传送到侧壁防护框322上,再传递下去,进一步对刚性冲击进行缓冲处理,保证机身及动力单元。显然,脚架9还可以直接成型在支撑环82上。

优选的,为进一步减轻飞行器整体的重量,可使用保护框完全取代脚架,充当脚架的作用。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1