具有铰接尾桁短距起落/垂直起落自由翼飞机的制作方法

文档序号:4144578阅读:310来源:国知局
专利名称:具有铰接尾桁短距起落/垂直起落自由翼飞机的制作方法
技术领域
本发明涉及一种短距起落和垂直起落(STOL/VTOL)飞机,更具体地说涉及一种STOL/VTOL飞机,其具有机身及能够相对于该机身转动的尾舵部分,该尾舵部分与机身以铰接方式相连接,用于使尾舵部分运动到偏离推进系统的推力方向的位置,从而实现STOL飞行和直平飞行之间的转换。


图1显示了美国专利申请No.07/850913提供的STOL/VTOL自由翼飞机10,其申请日为1992年3月13日,其名称为“VTOL自由翼飞机”,该项技术被用作本发明的已知技术。所示飞机包括一机身12、一尾部14和一自由翼16,并具有一个推进系统,它包括一个位于机身前端的发动机18,用于驱动一螺旋浆20。在本说明书中,所谓“自由翼”是指这样一种机翼,它与机身的连接方式使之能够自由地围绕位于其空气动力中心前方的翼展轴线枢动。这种方式使得机翼具有仅仅由作用在机翼上的空气动力来确定的迎角。机翼的转动由掠过机翼表面上的相对气流的风向变化而引起,不需要飞机驾驶员予以干预,使得机翼与机身之间的入角得以改变,从而使机翼与相对气流之间的迎角基本上保持恒定,这就使得飞机在水平飞行中基本上不会出现失速现象。
自由翼16能够自由地围绕位于其空气动力中心前方的翼展轴线22转动或枢转。自由翼16包括左机翼16a和右机翼16b,它们从机身的相对两侧伸展;并被相互连接在一起,以便同时围绕轴线22自由转动。根据上述专利申请,左机翼16a和右机翼16b相互之间的倾角也可以予以调整,其中相关的叙述在本说明书中用作已知技术。飞机10进一步包括位于其尾部14的方向舵24的升降舵26,对它们可以通过已知的方式予以操纵,用于分别控制飞机的偏航和俯仰。另外,尽管图1中显示的推动系统仅仅采用了一个螺旋浆,但本技术领域里的普通技术人员知道也可以采用其它类型的推进系统,例如反向旋转螺旋浆组以及与机身相连接的多发动机结构。在本说明书中,术语“公用推进系统”是指为垂直和水平飞行动作提供所需推力的同一个推进系统,而并不必局限于如单个螺旋浆之类的单推力产生系统,而是可包括多推力产生系统,例如用一对发动机来驱动不同的螺旋浆等,只要所述多推力产生系统用于既为垂直飞行模式提供推力也为水平飞行模式提供推力即可。
下面对VTOL自由翼飞机10的操作过程进行说明。如图1所示,在升空时将飞机10竖向安放在一个导轨系统上。导轨系统可以包括一个导架或者轨道,在飞机10上相配合的导架或轨道随动部件用于当飞机起飞时在预定的有限初始距离内引导飞机的垂直运动。当发动机起动,螺旋浆产生的反冲气流掠过机翼16a、16b上面,飞机10就会从升空导轨系统向上升起。也可以辅之以弹射起飞装置。偏航和俯仰控制分别由方向舵24和升降舵26予以实现。在驾驶员或计算机控制或者由遥控站(图中未示)的遥控下,通过自由翼16a、16b的俯仰角度的差动设置,能够实现滚动控制。在发射的过程中,从机翼16a、16b上掠过的气流在机翼上提供控制飞机10滚转的动力。在垂直发射的最初阶段,机翼16a、16b在发射时能够自由转动,由于来自推进系统的反冲气流而作用在全部控制表面上的动压力能够实现对飞机10的滚转、俯仰和偏航控制。
为了由垂直飞行转变为水平飞行,由驾驶员、计算机或者遥控器发出一个升降舵向下转动的信号,使得机身转向水平方向。通过改变机身的俯仰角度,推力向量也偏离垂直方向,产生一个水平推力分量。随着机身转向水平方向,飞机的水平速度增大,而使得可自由转动的机翼16随相对气流产生相对于机身的转动。相对气流对自由转动机翼16a、16b所产生的作用能够很快地克服由推进系统所产生的气流对机翼的作用,随着水平速度的增大,该气流产生升力。飞机10很快就会转变为自由翼飞行模式下的水平飞行。
如果飞机10在起飞或者垂直飞行过程中丧失推力,就会迅速和自动地以最小的高度损失转为水平飞行模式。当丧失动力时,自由翼16就会顺应新的相对气流,该气流由地面垂直向上的方向到达机翼,从而使机翼处于其前边缘朝下的方向,与此同时机身的方向舵和升降舵的作用下转向相对气流的方向。由于自由翼采用正的俯仰力矩翼片,因此飞机本身会很快转向稳定的水平飞行。
在水平飞行过程中,俯仰、偏航的滚转控制由升降舵、方向舵和差动枢转的机翼16a、16b提供。如果需要,可以在机翼16上设置副翼。
为从水平飞行转为垂直飞行,可以采用相反的步骤。更具体地说,发出一个升降舵上升指令,使机身转向垂直方向,使机头朝上。这样就能降低水平速度,产生垂直推力向量。因此,相对气流发生变化,最终使自由翼和机身都转向垂直方向。如果飞机难以减速,和其朝前或水平速度未能减小到足够的程度,机身就会在升降舵的作用下转动到超过垂直的位置,从而使推力方向起到推力转向器的作用,使飞机的减速超过失速点。作为一种替代方案,也可以采用本申请人提出的另一份美国专利申请No.07/795329所披露的机构,该申请的申请日为1991年12月20日,名称为“可锁定的自由翼飞机”,它被用作本申请的已知技术。更具体地说,在使机身朝上转动之前可以将机翼和机身相互锁定,通过使飞机失速,从而使飞机的水平速度减小为零,然后在失速状态下将机翼释放为自由翼状态,这样就能使飞机位于垂直方向。再一种在由水平飞行模式转变为垂直飞行模式的过程中降低水平速度的方式是在机翼的后部边缘上设置如阻流板或升降舵之类的机翼装置。再一种方式是在机身前端设置鸭式结构,以便为机身转向垂直方向提供杠杆作用。当然该鸭式结构可以缩入飞机的前端,在转变飞行方式时由飞机朝前伸出,产生使机身向上转动的杠杆作用。毋庸赘述,该鸭式结构在任何情况下都既可以是一种自由翼,也可以是一种固定翼。一旦实现垂直或者近似于垂直的飞行,俯仰、滚转和偏航指令就重新将飞机的位置控制到直接位于一网状物之上的位置。当飞机位于网状物之上时,发动机停止,使飞机落进网状物。
由于尾部被固定在机身上,不能相对于机身的纵向轴线和机身的推力轴线运动,因此需要复杂的升空(起飞)和回收(着陆)系统,例如前述用于使飞机起飞的升空轨道系统,以及图6所示的在先申请的使VTOL飞机10着陆的网状回收系统,所述附图及其相应的说明被本申请用作已知技术。作为一种替代方案,对于STOL和VTOL操作来说,需要采用特别长和复杂的起落架,该起落架在如图1所示的垂直飞行模式下由飞机尾部14朝下延伸。这种类型的起落架(例如所谓月式火箭起落架)特别昂贵,仅仅适用于基本上水平的地形。
因此,本发明的一个目的是提供一种自由翼飞机,它具有垂直和短跑道起降功能(STOL/VTOL),不需要外部发射和回收系统。
本发明的另一个目的是提供一种STOL/VTOL自由翼飞机,其推力方向能够在垂直和水平方向之间移动,同时不影响对至少位于尾部的飞行控制表面的相对水平定位,从而能够采用相对简单和较短的起落架。
本发明的自由翼飞机包括一个机身,它具有推进系统,用于在水平飞行模式和短跑道起落(STOL)飞行模式下推动飞机;与机身相连接的自由翼,它能够围绕位于机翼的空气动力中心前方的翼展轴线相对于机身自由枢转;与机身相连接的尾桁,其上形成了水平尾翼表面和垂直尾翼表面,用于提供方向稳定性和偏航控制;用于使机身相对于尾桁转动的机构,该转动的轴线与所述翼展轴线相平行或者相重合。
所述相对转动机构能够使机身的推力方向转动到与尾桁的纵向轴线成90度或接近90度的角度,从而使推进系统产生的推力能够以STOL飞行模式推进飞机。
根据本发明的一实施例,尾桁的前部与机身相连接,而尾翼表面则位于尾桁的朝后延伸的部位上。采用这种方式,当以STOL模式飞行时,尾翼表面位于脱离推进艉流的位置上,由于在水平飞行速度分量较低的情况下作用在尾翼表面上的由相对气流所产生的动压力,从而能够实现方向稳定性和偏航控制。
根据本发明的另一种实施例,所述尾翼表面是不能够相对于尾桁活动的。
本发明的飞机可以进一步包括与机身相连接的起落轮,当机身处于相对于尾桁向上倾斜或者STOL位置时,该起落轮由机身朝下突出。
本发明的飞机进一步包括与所述机身相连接的左右固定机翼中心部分或者根部。所述自由翼包括左右自由翼部件,它们分别由所述左右固定机翼中心部分朝外延伸,并能够相对于所述左右固定机翼中心部分自由转动。
本发明的飞机还可以包括能够使所述左右自由翼中的至少一个以选择控制方式相对于另一个自由翼进行转动的机构,用于在不影响自由翼的自由转动的前提下控制飞机的滚转。
本发明的飞机还可以包括一个自由翼支持管,该支持管沿着翼展轴线横向穿过所述机身和固定机翼部分,穿入到所述左右自由翼之中,用于将左右自由翼固定支持在机身上。该自由翼支持管可以是由机身和/或固定机翼部分上的轴承予以支持的单个管件,用于当相对气流致使支持管围绕其纵向轴线旋转时使自由翼能够自由转动。在另一种实施例中,所述自由翼支持管包括一对支持管,它们分别由左右自由翼伸入到左右固定机翼中心部分和机身之中,用于连接能够使所述左右自由翼中的至少一个以选择控制方式相对于另一个自由翼进行转动的机构,该机构能够在不影响自由翼的自由转动的前提下实现飞机的滚转控制。
所述尾桁最好包括一个外套管或称横管,它横向地穿过机身和固定机翼中心部分。该尾桁横管能够借助于安装在机身或固定机翼中心部分中的轴承围绕其纵向轴线转动。一对尾桁部件分别固定在所述尾桁横管的相反两端并由这两端朝后延伸,所述尾翼表面在该尾桁部件的远端形成。
在本发明的一种最佳实施例中,所述尾桁横管横向地穿过所述机身的后部,该横管与自由翼的旋转轴线彼此相距一定的距离并位于自由翼旋转轴线的后方。尾桁部件的一部分也由尾桁横管朝前延伸,两对前后起落轮分别以平行和彼此相距一定距离的方式安装在所述尾桁部件上。至少将一对前起落轮安装在尾桁部件的朝前伸出的部分上,以便形成一个能够支在地面上的稳定支架,使得飞机在侧风情况下能够克服偏航或方向不稳定性。
本发明也提供了一种在基本上垂直和水平飞行模式下控制飞机的方法,包括如下的步骤有选择性地使机身的纵向轴线和推力方向基本上处于垂直方向,与此同时使尾翼表面的纵向轴线基本上水平地延伸,脱离机身的运动路径,从而使飞机能够进行STOL或VTOL飞行。当机身的纵向轴线转动到与尾翼表面的纵向轴线彼此相对重合,飞机就能够以普通的水平飞行速度进行正常的直平飞行。
通过下面的详细说明,本技术领域里的普通技术人员就能够认识到本发明的其它目的和优点,而详细说明部分仅仅介绍了本发明的最佳实施例,其目的是给出实施本发明的最佳方式。应该指出的是本发明还具有其它和不同的实施例,在不脱离本发明的实质内容的情况下还能够对本发明作出种种改进,因此附图和详细说明仅仅是解释性的,它们不应对本发明产生限制。
图1是已知专利申请提供的VTOL自由翼飞机的透视图,图示的飞机处于垂直飞行方向;
图2是本发明一种实施例的飞机的顶视图,图示的飞机处于直平飞行模式;图3是如图2所示飞机的侧视图,图示飞机处于直平飞行模式;图4是如图2、3所示的处于直平飞行模式的飞机的透视图;图5是如图2-4所示飞机的前视图;图6是如图2-5所示飞机的顶视图;其中机身处于向上倾斜或VTOL/STOL方向;图7是处于图6所示VTOL/STOL方向的飞机的侧视图;图8是如图6、7所示飞机的后视透视图;图9是如图8所示飞机的前视透视图;图10是用于使尾桁组件相对于机身转动的机构的透视图,其中一部分采用了示意方式,为了清楚起见省略了机身和固定机翼中心部分;图10A是与图6相似的透视图,其中一部分采用了示意方式,机身和固定机翼中心部分位于左右自由翼部分之间,并采用简略的方式来表达如图10所示的转动齿轮机构;图11是另一种用于使尾桁组件相对于机身和固定机翼中心部分转动的机构的透视图,其中一部分采用了示意方式;图12是顶视图,其中部分采用了示意方式,所示飞机与附图2-11所示飞机相似,所不同的是采用了单尾桁而不是分叉式尾桁;图13是本发明的VTOL/STOL自由翼飞机的最佳实施例,图示的机身处于向上倾斜和STOL状态;图14如图13所示飞机的侧视图;图15是如图13、14所示飞机的顶视图16是如图12-15所示飞机的侧视图,所不同的机身处于相对与尾桁组件的直线和水平飞行状态;图17是如图6所示飞机的前视图。
图2-11显示了本发明的自由翼飞机100的一实施例,它能够实现短跑道起飞和降落(STOL)以及直线水平飞行,当采用下面所述的微小改进之后还能够实现垂直起飞和降落(VTOL)。该自由翼飞机100具有一机身102,其前端安装了一包括一发动机106的一推进系统104,该发动机用于旋转一螺旋桨108。一自由翼110与机身102相连接,该自由翼110能够围绕位于其空气动力中心前方的翼展轴线112旋转或枢转。自由翼110包括左机翼114和右机翼116,它们分别由在机身102的相对两侧所形成的固定机翼根部或中心部分117向外伸展,左右机翼以下面所述的独特方式联接在一起,以便一起围绕其翼展轴线112枢转。左右机翼114、116相互之间的俯仰角度可以如美国专利申请No.07/850913所述的那样予以调整,也可以采用升降副翼(图中未示)来提供升降舵和副翼控制。飞机100还包括一个尾部118,根据本发明的一个独特的特征,该尾部118安装在一个尾桁组件120上,该尾桁组件可枢转地连接或者铰接于机身102,以便相对于机身102转动,使之对准或偏开推进系统104的推力方向T,实现STOL/VTOL动作和直平飞行。
更具体地说,请特别参见图2、9、10、10A,机身102的固定机翼中心部分117包括左右固定机翼根部122、124,它们与机身102两侧以刚性和不可转动的方式固定相连,以便能够与机身一起相对于翼展轴线112转动。上述翼展轴线112由外套管126确定(图10和10A),该外套管126在垂直于飞机纵向轴线的方向上横穿过机身102和固定机翼中心部分122、124。外套管126的相对两端128、130终接于固定机翼中心部分122、124的前端外侧边缘128a、130b,最好与上述两个边缘相齐平,以便与向后延伸的尾桁组件120的一对平行尾桁134(图10)的前端132刚性相连(例如通过焊接)。每一个尾桁134的后端136(图2、3)支承着尾部118的水平和竖直平衡部件138、140,后面将对它们作详细的说明。外套管126界定了尾桁组件120的最前部以及其枢转轴线,在本实施例中该轴线与翼展轴线112相重合。
自由翼116通过连接管142与机身102相连接,该连接管142确定了翼展轴线112,并穿过尾桁横管(亦即外套管)126同轴地延伸。这样,连接管142就能够在外套管126中围绕翼展轴线112转动,其相对两端部分别由固定机翼中心部分122、124向外伸出,进入左右自由翼114、116之中,从而形成了自由翼组件110的翼展轴线112,使得左右机翼能够一起转动。由此可见,左右机翼114、116由内管142连接在一起并予以支承,而内管142在穿过固定机翼中心部分122、124的外套管126中延伸,因此不论机身102和固定机翼部分的姿势如何,左右机翼114、116都能够同时围绕翼展轴线112自由地转动。
在另一种方式中,将自由翼114、116连接于机身102的单根内管142可以用左内管和右内管(图中未示)来代替,它们在机身102中与一机翼俯仰角度调节机构连接在一起,用于调节左右机翼114、116相互之间的俯仰角度。美国专利申请No.07/825913披露了这样的机构,该专利申请在此用作已知技术。如本技术领域里的普通技术人员所知,例如通过将外套管126制成两个不同的部分(图中未示),可使左右内管与分别与尾桁134相连接的机翼俯仰角度调节机构相连接,以便在两段外套管之间为机翼俯仰角度调节机构留有余地。
图10和10A最为清楚地显示了一种用于使被铰接的尾桁组件120相对于机身102枢转的机构实例。在此,以翼展轴线112作为其转动轴线的固定蜗轮150安装在尾桁组件120的外套管或称横管126上,与蜗杆152相啮合,蜗杆152的旋转轴线可平行于机身102的纵向轴线。上述蜗杆152可以由一个由驾驶员控制的电机装置M来驱动,通过从动蜗轮150的旋转,有选择性地转动横管126,从而使尾桁组件120也产生转动。
在另一种方式中,上述蜗轮蜗杆机构150、152也可以用伞形齿轮机构或者齿轮齿条机构来替代。当采用齿轮齿条机构时,将齿轮安装在横管126上,将齿条安装在机身102中,以便通过纵向传动使齿轮产生转动,从而使尾桁组件120产生转动。
在再一种方式中,如图11所示,在机身102的固定机翼根部122、124上或者其中分别安装了一对螺杆160,与一对螺纹套环162以螺纹方式相配合。螺杆160分别在左右固定机翼中心部分中纵向延伸,并在其相对的两端以轴向固定连接的方式支持枢轴(图中未示)。上述螺杆160以普通技术人员所知的方式围绕其纵向轴线旋转,从而使螺纹套环162能够在相应的螺杆上移动。连杆164的两端分别与相应的套环162和尾桁杆134相铰接,用于将套环162的纵向移动转变为尾桁组件120相对于机身102的转动。为了简单起见,省略了对将上述齿轮机构安装在机身102之中和/或固定机翼部分122、124之中,使得尾桁组件120以能够以可转动的方式与机身102相连接的详细说明,然而这些对于本技术领域里的普通技术人员来说是显而易见的。
下面将对本发明的STOL自由翼飞机100的操作进行说明。
参照图2-5,所示的STOL飞机100处于直平飞行状态。假设驾驶员或者遥控人员希望飞机100以STOL自由翼飞行模式着陆,则操纵蜗轮蜗杆机构150、152(或者其它替代实施形式),使尾桁外套管126如图3、4中的箭头A所示以反时针方向在翼展轴线112上沿着内管142(构成了自由翼支持管)旋转。实际上,当尾桁被“升起”时,由于因直平方向的飞行而作用在飞机水平控制表面138上的动态压力,尾桁仍然保持为水平或者直平飞行模式,是机身102和推进系统104的推力方向T朝着垂直方向转动,使得其前端指向上方,这一点从图6-9中能够最清楚地看出。当机身102和推力方向T转向垂直方向时,飞机的水平速度逐渐减小,垂直推力分量逐渐变大。这样,飞机100的飞行就变慢,可以逐渐地降落到地面或者在该位置继续飞行(水平飞行或者爬升)。在这一转变的过程中,自由翼114、116始终独立地响应于相对气流的变化,或者是在保持足够水平速度的情况下继续提供升力;或者是随着垂直推力向量的增大而“顺桨”,提供足够的推力控制。在转变过程中的任何时刻,飞机都不会由于铰接尾桁组件120以上述独特方式所进行的转动而失速。
本发明的特征之一是整个尾桁组件120和尾部118能够摆动或转动,而偏离与机身102的直平对准和偏离推进系统104的推力方向T,其优点是使得飞机100能够在低速飞行或STOL模式下起飞着陆,同时还保留了自由翼飞行的优点以及下述的其它优点。第一,通过上述方式使尾翼表面138、140位于铰接尾桁组件120上,可以采用一个相对较短的与机身102和固定机翼中心部分122、124相连接的起落架160(参见图9和10A),因为机身长度相对于飞机100处于图2-5所示的正常直平飞行模式时的整个长度要短(例如小于50%)。这样的结构也使得本发明能够采用与机身102相连接的可缩回式前起落架机构(图中未示出)。第二,通过使尾舵表面138、140位于尾桁组件120的远端,这些尾翼表面实际上由机身102、122、124和机翼110的复合重心向外伸出,其结果是即使在很低的水平或朝前速度下也能够改善方向稳定性和偏航控制。
由于当飞机如图6-11所示处于STOL飞行模式时,尾翼表面138、140不会受到由螺旋桨108的艉流所产生的任何动压力的影响,所以可以理解的是在VTOL飞行过程中与STOL飞行过程有所不同,在特别低或者零水平速度下会出现方向稳定性和偏航控制性能下降的问题。固定机翼中心部分122、124仍然位于艉流之中,作用在其上的动压力在某种程度上趋于有利地提供方向稳定性和偏航控制性。可以采用副翼162(仅在图10a中示出了该副翼的一种实例)来进一步改善稳定性和控制性,该副翼162由机身102或者固定机翼中心部分122、124向外突出,以便形成用于进一步改善稳定性和控制性的附加表面。如本技术领域里的普通技术人员所知,这样的副翼162可以始终由机身或者固定机翼部分突出,也可以采取能够缩回的方式安装在机身或固定机翼部分上,仅仅在VTOL飞行过中才由机身上突出出来产生作用。
在如图2-5所示的水平飞行模式过程中,固定机翼根部或中心部分122、124与左右自由翼部分114、116一起产生升力,从而也起到了机翼的作用。当尾桁组件120被“升起”时,上述固定机翼中心部分122、124起到了一种气动止动器的作用(见图7所示的位置),能够迅速地降低飞机的速度,使之进入低速飞行状态。
下面给出了根据本发明上述实施例的一种单人(驾驶员)飞机100的具体参数指标尾桁120的摆动角度为0-100度;前起落架160能够缩回;自由翼114、116上设置了副翼;所有的燃料(351b)装载在固定机翼部分122、124中;整体毛重量为2201b;发动机功率为50马力,转速大约为532转/分;翼展为166英寸(13.8英寸);自由翼114、116的表面积为14.7平方英尺;固定机翼122、124的表面积为7.48平方英尺;基准表面积Sr为24.3平方英尺;水平尾翼138的表面积为4.45平方英尺;垂直尾翼140的表面积为3.4平方英尺;粘湿表面积为大约89平方英尺。
图7、9最清楚地表示了本发明的飞机100所能采用的三轮起落架160。其中,前起落轮170固定在一个可伸缩(套筒式地可伸长/可收缩)支杆172的下端,而该支杆172则连接在机身102的下表面上。在图7中,支杆172处于伸出的位置,机身102处于STOL模式下的倾斜位置。一对主起落轮174安装在固定机翼部分122、124的尾部外侧,用于和前起落轮170相配合形成一种三点稳定结构。
携带前起落轮170的上述可伸缩的支杆172可以以能够转动的方式安装在机身102上,主起落轮174也可以采用同样的方式,以便调整其位置,实现在常规直平飞行模式下的起飞和降落。根据本发明的上述替代实施例,安装上述三轮式起落架的具体方式对于本技术领域里的普通技术人员来说是显而易见的。
为了从垂直飞行(起飞或者飞行时)转变为水平飞行,只需采用相反的步骤即可,亦即由驾驶员或者遥控者操纵蜗轮蜗杆机构或齿轮机构150、152,使尾桁组件120由图7所示位置转变到图3所示的位置。假设飞机100处于起飞过程中,一开始通过推进系统104使飞机100从跑道或者平台上升起。随着尾桁组件120在与箭头A所示相反的方向上“下降”,机身102就会朝着水平方向转动,使得飞机的水平速度增大。这进一步使得能够自由转动的机翼110在相对气流的作用下相对于机身102转动。作用在自由转动机翼110上的相对气流能够很快地克服由推进系统104送到固定机翼中心部分122、124上的气流所产生的阻止作用,机翼110随着水平速度的增大而产生升力。这样,飞机100很快就转变为水平飞行,其自由翼处于直平模式。
在例如图12所示的另一种实施例中,可以将分叉的尾桁组件120替换为单个的尾桁164,尾翼表面138′、140′安装在该尾桁164上。在这一实施例中,水平尾翼138′相对于尾桁164可以是固定的,而垂直尾翼140′则能够象一个全浮动尾舵那样相对于桁架予以控制,以便实现偏航控制。然而,采用分叉尾桁组件120的优点在于能够使尾翼表面138和140位于机身102的外侧,从而即使在非常低的水平或向前速度下也能够改善作用在尾翼表面上的动压力条件。
在图7所示的STOL/VTOL或者倾斜状态下,不论是在起飞还是在降落过程中,在作用于垂直尾翼表面140上的侧风的作用下,机身102都有一种围绕其纵向轴线枢动或转动的趋势。产生这一缺点的原因主要是由于前轮170位于在水平方向上接近主起落轮174的位置上,因此三轮起落架不能平衡由作用在尾桁组件120悬臂尾端118的尾翼表面140上的侧风所产生的力臂。
为了克服如图2所示实施例的飞机100在侧风条件下的潜在不稳定性,本发明提供了如图13-17所示的优选实施例。其中,飞机200的特点在于其起落架机构具有两对起落轮202、204,它们以彼此前后排列的方式安装在尾桁组件220的前部,所述前部由安装在机身227上的尾桁外套管226或接近该部位的位置朝前突出。更具体地说,外套管226可以安装在轴承上(图中未示),横向地穿过机身227和固定机翼中心部分222、224,并能够借助于与图2所示齿轮机构相同或相似的由驾驶员或者遥控者控制的齿轮机构围绕其纵向轴线229(与机身的纵向轴线相垂直)转动,从而使得尾桁组件220如同上面所述那样相对于机身227转动。为了便于解释,如图14所示,最好使尾桁的转动轴线(确定了机身227在STOL和直平飞行模式之间的转动轴线)从机身的后部穿过,以便即使当机身倾斜到最接近于垂直方向的位置时也能够确保机身的最后端处于高于起落轮202、204的位置上。这意味着用于实现机身227与尾桁组件220之间的相对转动的机构最好能够克服机身前部的重量,将机身的前部由图16所示的直平位置“拉起”到如图14所示的向上倾斜或STOL/VTOL位置。本实施例采用了与图11所示的螺杆和螺纹套环相似的机构,它包括一对铰接支杆250,其上端252与机身227的下侧表面相铰接,下端与螺纹套环254相枢接,所述螺纹套环254分别与一对螺杆256以螺纹方式相连接。作为一种举例,螺杆256可以安装在由尾桁套管226朝前延伸的桁架234上或者之中,用于当螺杆转动时使套环产生纵向运动,其中螺杆的转动方式与图11所示实施例中螺杆160的转动相似。以这种方式,当螺杆256旋转,使螺纹套环254朝前移动时,支杆250就能够使得机身227围绕尾桁套管226转动,从而使机身227处于向上倾斜或者STOL模式。相反,螺纹杆256的反向旋转致使螺纹套环254朝后移动,使得支杆250缩回,从而使机身227下降到如图16所示的位置。
采用上述结构,在图14所示的STOL/VTOL(向上倾斜)形式和图16所示的直平形式之间的空气动力转换方式与上面结合图3所示实施例所述的方式相同。
在这一优选实施例中,左右自由翼114、116通过一个外套管290(它确定了翼展轴线112)安装在固定机翼中心部分222、224上,该外套管290的位置与桁架套管226在机身227上的安装位置相距一定的距离,前者位于后者的前上方(参见图14)。一对后起落轮204分别安装在桁架234的靠近尾桁套管226的位置上,而一对前起落轮202则分别安装在桁架234的靠近尾桁套管226的位置上,而一对前起落轮202则分别安装在桁架234的由尾桁套管226朝前突出的部位234A上。通过这种方式,由于四轮起落架结构为机身227围绕其纵向轴线向上倾斜的偏转运动提供了阻力,因此这种起落架改善了飞机的侧风起飞性能。这种结构的优点还在于能使桁架组件220和水平尾翼表面238降低,使之更接近位于直平飞行模式时的机翼前视平面(对比图17和图6)。由于采用这种方式能够减少由自由翼110所产生的下冲气流对水平尾翼表面的影响,亦即减少紊流产生的影响,因而能够改善飞行性能。此外,通过使桁架组件220的位置更加接近并平行于地面,从而降低了尾翼表面240的高度,因而能够在高风速条件下的着陆过程中防止飞机出现颠覆。
本技术领域里的普通技术人员可以看出本发明能够实现前面所述的所有目的。通过阅读本说明书,普通技术人员将能够对本发明作出种种改进以及等同代换,因此本发明的保护范围应以如下的权利要求书的内容及其等同物为准。
权利要求
1.一种飞机,包括A、机身,具有用于以水平飞行模式和短跑道起飞或者降落(STOL)飞行模式推动飞机的推进系统;B、与所述机身相连接的自由翼,能够围绕一个翼展轴线相对于所述机身进行自由转动;C、与所述机身相连接的尾桁,在该尾桁上形成了水平尾翼表面和垂直尾翼表面,用于提供方向稳定性和偏航控制;D、一个使所述机身相对于所述尾桁转动的机构,该转动的轴线与所述翼展轴线相平行或者相重合,该转动与所述自由翼围绕翼展轴线的转动彼此独立。
2.根据权利要求1所述的飞机,其中所述机构能够使机身的推力方向与尾桁的纵向轴线形成大约90度的角度,使得所述推进系统所产生的推力能够以STOL模式推动飞机。
3.根据权利要求1所述的飞机,其中所述尾桁的前部与机身相连接,而尾翼表面位于尾桁的朝后延伸的部分,所述尾翼表面在STOL飞行模式下位于推进系统产生的艉流之外,在水平飞行速度分量的作用下由相对气流在尾翼表面上产生动压力,从而提供方向稳定性和偏航控制。
4.根据权利要求1所述的飞机,其中所有的尾翼表面都不能够相对于尾桁活动。
5.根据权利要求1所述的飞机,进一步包括与所述机身相连接的起落轮,在机身相对于尾桁处于向上倾斜或者STOL状态下该起落轮能够伸出到机身的下方。
6.根据权利要求1所述的飞机,进一步包括与所述机身固定连接的左右固定机翼中心部分或者根部,所述自由翼包括左右自由翼部件,它们分别由所述左右固定机翼中心部分朝外延伸,并能够相对于所述左右固定机翼中心部分自由转动。
7.根据权利要求6所述的飞机,进一步包括能够使所述左右自由翼中的至少一个以选择性控制方式相对于另一个自由翼进行转动的机构,用于在不影响自由翼的自由转动的前提下为实现滚转控制而调整其俯仰角度。
8.根据权利要求6所述的飞机,进一步包括一个自由翼支持管,该支持管沿着翼展轴线横向穿过所述机身和固定机翼部分,穿入到所述左右自由翼之中,在所述机身上为左右自由翼形成支撑。
9.根据权利要求8所述的飞机,其中所述自由翼支持管是一个采用轴承由机身和固定机翼部分中的至少一个予以支持的管件,使得自由翼随相对气流导致该管件围绕其纵向轴线的自由旋转而绕枢轴自由转动。
10.根据权利要求8所述的飞机,其中所述自由翼支持管包括一对管件,它们分别由左右自由翼伸入到左右固定机翼中心部分之中,并进一步包括能够使所述左右自由翼中的至少一个以选择控制方式相对于另一个自由翼进行转动的机构,用于在不影响自由翼的自由转动的前提下通过所述一对管件的配合为实现滚转控制而调整其俯仰角度。
11.根据权利要求8所述的飞机,其中所述尾桁包括一横管,它横向地穿过机身和固定机翼中心部分,并能够借助于安装在机身和固定机翼中心部分中的至少一个上的轴承围绕其纵向轴线转动,一对尾桁部件分别固定在所述横管的相对两端并由这两端朝后延伸,所述尾翼表面在所述尾桁部件的远端形成。
12.根据权利要求11所述的飞机,其中所述自由翼支持管以同轴方式穿过所述尾桁横管,并能够相对于所述尾桁横管自由转动,该自由翼支持管和该尾桁横管具有与翼展轴线相重合的相同旋转轴线。
13.根据权利要求11所述的飞机,其中所述的尾桁横管横向地穿过所述机身的后部,该套管与自由翼的旋转轴线彼此相距一定的距离并位于自由翼旋转轴线的后方。
14.根据权利要求13所述的飞机,其中所述尾桁部件部分由尾桁横管朝后延伸,两对前后起落轮分别以前后排列彼此间隔的方式安装在所述尾桁部件上。
15.根据权利要求14所述的飞机,其中至少将一对前起落轮安装在尾桁部件的朝前伸出的部分上。
16.根据权利要求15所述的飞机,其中所述使机身相对于尾桁转动的机构包括至少一对支杆,其第一端以能够转动的方式固定在机身或固定机翼中心部分中的一个上,其相反一端以能够转动的方式与一对螺纹套环相连接;至少一对安装在所述尾桁部件上的螺杆,它们能够分别围绕纵向轴线旋转,使所述螺纹套环能够沿着所述螺杆纵向来回移动,从而使所述支杆升起或者下落,以便实现机身与尾桁的相对转动。
17.根据权利要求16所述的飞机,其中所述支杆与机身的固定机翼中心部分中的至少一个相连接的连接点在前部位于尾桁横管上,以便使得机身前部能够围绕其穿过尾桁横管的机身转动轴线朝上和朝下转动。
18.根据权利要求17所述的飞机,其中所述支杆与机身和固定机翼中心部分中的至少一个相连接的连接点位于翼展轴线的前部。
19.根据权利要求1所述的飞机,进一步包括由机身突出的辅助飞行控制表面,当尾桁相对于机身推力方向转动90度时通过推进系统产生的艉流的作用来实现方向稳定性和偏航控制性,以便使得飞机在水平飞行速度基本上为零的情况下能够以VTOL模式起飞和降落。
20.一种在基本上垂直和水平飞行模式下推动飞机的方法,包括如下的步骤a、采用一对根据作用在机翼和机身上的空气动力能够相对于机身自由转动的机翼,在所述两种模式中一种下推动飞机;b、相对地转动机身,使得(1)当飞机处于直平飞行模式时,机身的纵向轴线基本上对准由机身朝后延伸的尾翼表面;(2)当飞机处于垂直飞行模式时,机身及其纵向轴线基本上垂直于所述尾翼表面。
全文摘要
一种VTOL/STOL自由翼飞机(100)包括一自由翼(110),其翼翅对置于机身(102)的两侧,并分别与彼此临近的固定连接于机身的固定翼或中心根部(117)相连接,可绕一翼展轴线(112)自由转动。可转动地连接于机身(102)的一尾桁组件(120)的尾部远端设有水平和竖直尾翼表面(138、140)。由驾驶员或遥控器操作者控制齿轮机构(150)或螺杆机构(160),从而可选择性地使机身和尾桁组件相对枢转,使机身倾斜或朝向上而实现VTOL/STOL飞行。
文档编号B64C29/02GK1118591SQ94191348
公开日1996年3月13日 申请日期1994年1月21日 优先权日1993年1月22日
发明者埃尔伯特·拉特安, 休·J·施米特科 申请人:自由翼飞机公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1