制造成型的表面拉锁的方法

文档序号:4437177阅读:316来源:国知局
专利名称:制造成型的表面拉锁的方法
技术领域
本发明涉及合成树脂成型并由挤出、连续注射或挤出成型制造的表面拉锁,该拉锁由在其上带有多个啮合元件的基片组成,以及制造该成型表面拉锁的方法和装置。更特别涉及这样的成型表面拉锁,它具有易于与微小尺寸的环路啮合的微小尺寸啮合元件,它提供适当的啮合强度,适当的耐剥落性和高速率的啮合,其具有重复使用的良好耐久性,并且适用于纸尿布或类似物。
在例如美国专利4984339和5441687中揭示了整体成型的表面拉锁,在该拉锁中基片和多个钩形物是用热塑性树脂整体并连续成型的。近年来,这种类型拉锁的应用作为工业材料、车辆或内部装饰品和日用品以及各种卫生用品,例如纸尿布的连接件在不断增长。因此,需要在基片表面形成的各种尺寸和形状的啮合元件以解决上述的各种应用。
因此,正如从上述美国专利说明书中所理解的,对于连续、整体成型的表面拉锁,从成型加工的技术难度来看,用常规的成型装置很难得到精细以及触觉良好的合格成型表面拉锁,这是一个普通常识。假设成型微小尺寸的啮合元件,仅能达到很低程度的强度,因此所得的成型表面拉锁具有很小的实际应用。此外,在以前的整体成型钩形结构中,该链柄具有简单的截面形状并且当啮合元件的尺寸较小时可以很容易地从其底端横向或纵向弯曲啮合元件条。另外,对于简单形状和过分柔软的钩形啮合元件,不能保证适宜的啮合强度以致该啮合元件可以容易地脱离与其配对的环孔。结果,该啮合元件在反复使用后,逐渐变得不能恢复其原来的姿态,这样就降低了在短期内用环孔啮合的速率。进一步,如上述成型的钩形啮合头,由于其简单的形状和非常柔软而使啮合强度很低致使它们容易脱离啮合。因此,为了得到适宜的刚度和适宜的啮合强度,曾认为需要提高各个钩形啮合元件的尺寸,致使所得的啮合元件太硬并减少了每单位面积钩形物的数目(钩形物密度)。结果,成型的表面拉锁变得不能啮合微小尺寸的配对环孔。
为了解决上述问题,于是提出了具有微小尺寸啮合元件的整体成型的表面拉锁,例如,国际公开WO94/23610,美国专利5077870,日本专利未审公开Hei 2-5947(美国专利4894060)。
在国际公开WO94/23610和美国专利5077870中揭示的成型表面拉锁的啮合元件具有蘑菇形而不是钩形。与现有技术钩形啮合元件相比,蘑菇形啮合元件尽管被降低到微小尺寸但可保证与配对环孔啮合所希望的强度。因此蘑菇形表面拉锁适宜于要求充分柔软性的应用。然而,使用具有这种结构的啮合元件,连接链柄和其啮合头的颈部在与配对环孔啮合时被许多环孔缠住,因此会在颈部断裂,并因此而不能耐久重复使用。
在日本专利未审公开Hei 2-5947中揭示的成型表面拉锁具有现有技术公知的普通钩形结构,其中在基片上有许多通常是J形或棕榈树形的啮合元件。然而此成型的表面拉锁可以被廉价地制造并且可以被用于无纺布配对表面拉锁,与通常的纤维束纺布相比,其也可以被廉价地制造。因此这种成型的表面拉锁特别适于应用于各种一次性内衣和纸尿布。在成型的表面拉锁中,考虑到微小尺寸单头啮合元件相对于无纺布的纤维束不能得到适宜的耐剥离性,因此啮合元件的密度被设定得相当大,致力于相对于微小的纤维束提供通常的啮合强度和剥离强度。
由于以上所提及的出版物中所揭示的啮合元件仅仅使啮合元件尺寸很小和密度大或仅仅将啮合元件的形状变为简单的形状,但不能保证在与配对的无纺布啮合过程中所需要的剪切强度和剥离强度。因此,即使钩形啮合元件的密度非常大,当试图使钩形啮合头穿入致密的纤维环时该啮合头下压配对无纺布的很软纤维环,这些环紧紧地无规设置,或它们本身完全失败。结果,该啮合元件变得不能穿入纤维环,因此与普通的表面拉锁相比就无法避免降低的啮合速率。
由于以上的原因,在具有上述微小尺寸啮合元件的成型表面拉锁中,就需要对减小啮合元件的尺寸或对增大啮合元件的密度有所限定。日本专利未审公开Hei 2-5947虽然限定了该啮合元件各个部分的优选参数,其中啮合元件的密度优选是70-100/cm2,啮合元件的高度是0.8-1.1mm,链柄的厚度和啮合头的宽度(垂直于啮合头长度延伸方向的水平宽度)优选是0.46mm,链柄宽度(啮合头在延伸方向的厚度)是0.18-0.30mm,啮合头从链柄伸出的长度优选是0.25-0.37mm或小于1mm,但完全没有记载有关的临界值。
基于这样的认识,即在啮合过程中,由于该啮合元件具有普通的形状(即对于微小尺寸并无独特的形状)因此剪切强度和剥离强度都很低,所以确定了这些数值就可以提供剪切方向和剥离方向的总体强度。
假设啮合元件具有普通的J形状,则需要设定啮合头末梢底端和啮合头最高点之间的距离尽可能小,并且需要设定啮合头末梢底端和基片前表面之间的距离和相邻啮合钩形物之间的距离至少比配对环的实际尺寸大几倍。因此,常规啮合元件的参数相对于配对环的尺寸来决定。例如,甚至在成型适用于纸尿布的很软和微小尺寸的啮合元件时,必然要设定啮合头的弯曲部分很大以便提供所需要的啮合强度,并单一地确定啮合头末梢底端和基片正表面之间对于进入环所需要的最小距离。
这意味着,当要保证啮合的预定速率时,要单一地确定啮合元件的高度或厚度,为的是该高度不被设定到较低的数值。因此,假设树脂材料和钩形物重量恒定,除非啮合元件的结构被改进,很难改进啮合过程中剪切方向和剥离方向的强度。此外,由于啮合元件的啮合头最高点从该基片的正面直接上升是弯曲的,因此不可能使该表面拉锁的啮合边表面感觉平滑,此弯曲的形状将会是提高配对环尺寸的原因,并且当该环较小时,将会妨碍啮合头插入该环。此外,即使仅仅将整个啮合元件减小到微小尺寸,当被压时整个环形啮合头也不可避免地被向前弯曲或斜向一边致使该啮合头变得更不能啮合该配对的环,这样就显著地降低了整个表面拉锁的啮合速率。
一般,当如上所述使啮合元件尺寸微小时,基片的厚度必须被降低以保证整个表面拉锁的适当柔软性。然而,如果基片的厚度非常小,当成型的表面拉锁啮合元件在连续成型过程中从模头分离时往往会不均匀延长或容易被撕下,这样就造成不稳定成型。然而如果该成型本身可以无问题地结束,则该成型基片变得更不稳定或起皱,这就使得成型的表面拉锁在商业上不能令人满意。
因此本发明的一个目的是提供一种成型的表面拉锁,它可以牢固地啮合甚至作为无纺布的微小致密的纤维束环,在啮合过程中对各个啮合元件可以保证适宜的耐剪切性和耐剥离性,可以改进啮合边沿表面的手感,与常规的表面拉锁相比可以降低基片正面上啮合元件的厚度,可以防止啮合头从最外侧和向前弯曲,可以保证与配对表面拉锁的环高速率啮合,相对于反复的负荷具有足够的耐久性,并且可以保证基片所希望的柔软性和撕裂强度。
根据本发明的第一方面,这些目的可用成型的表面拉锁实现,它包括基片;和构成根据本发明表面拉锁主要特点的许多啮合元件。它们立在基片的一个表面上,每个啮合元件都由立在基片一表面上的链柄组成,从该链柄上端伸出,用于可分开地啮合配对环的啮合头,该啮合头从链柄延伸以便被弯曲,并有一对从该啮合头顶部相对边缘以相反方向水平方向伸出的突出物,其相对于该啮合头的纵向方向垂直。
在有这些突出物存在下,如果对于包括突出物的啮合头顶部使用相同数量的树脂,首先可以使啮合头的顶表面基本上平展防止生疥疮的手感,其次,相对减少从基片一表面至啮合头最高点的长度,而不改变从基片一表面至啮合头底表面的长度。因此不仅可以使啮合元件微小化还可以仅仅留下基片的正表面平整而不形成任何凹槽。
这些突出物的第三个功能(不像常规的啮合头的功能,常规的啮合头具有基本均匀的尺寸,其中配对环仅仅与此弯曲像钩的啮合头啮合)是配对表面拉锁的各个环可围绕链柄和该突出物之间的颈部缠绕使得不能容易地脱离啮合头,这样就迅速提高了啮合强度。由于这些突出物不像常规的蘑菇型啮合元件(其具有伞形啮合头,该啮合头从链柄顶端向所有方向伸出),仅存在由链柄一个方向延伸的啮合头部分,并允许该环带着轻微的阻力围绕该突出物平滑地移动,同时需要比常规的普通钩形啮合头的分离力稍大并比常规的伞形啮合头的分离力稍小的分离力,因为当一剥离力被施加于表面拉锁上时该啮合头有弹性地变形而竖立。结果,可以保证所需程度的啮合强度,尽管啮合头尺寸微小,不会对啮合元件和环造成任何损害。
进一步,在有突出物存在下,可以改进啮合头的形状。即,由于突出物随着上述的环而造成啮合强度的程度增加,因此可以随着啮合头基本上直通地伸出将整个啮合元件弯曲为一般的倒L形而不像常规的钩形啮合头那样朝着基片向下弯曲。这便于插接啮合头贯穿甚至微小的尺寸环,例如作为普通无纺布部分的竖起的短而微小的单纤维束,插入啮合头。
对于微小尺寸和单个纤维束,最好是,每一啮合头相对于水平面倾斜θ角,该角满足方程-5°≤θ≤+45°,每一啮合下表面相对于水平面倾斜θ′角,该角满足方程0°<θ′≤+60°。即使常规的J形或仅仅倒L形啮合元件接受以上限定的倾斜姿态也不能实现与配对环的足够啮合强度。
优选的是,啮合头顶部有基本平展的顶表面,突出物从该表面水平突出,致使表面拉锁的啮合边缘表面被改进以便呈现较少的生疥疮手感。还优选的是啮合头比链柄具有更高程度的刚度致使可以保证与配对环的适宜啮合速率和适宜程度的耐剥离性。
尽管一般该链柄向上立着,但至少该链柄的部分圆周表面可以相对于基片的正表面倾斜。进一步,每个啮合元件可以是有单个啮合头(从链柄以一个方向延伸)的单头结构,或是有两个啮合头(从链柄上端以垂直于啮合头长度方向的方向分支)的双头结构,此两个啮合头分别以两个平行于垂直面的相反方向延伸。该链柄可有这样的宽度,它垂直于啮合头的长度方向,并且比啮合头的宽度大。在此情况下,该链柄较大宽度部分的最高点可被布置在比啮合头较低平面的延伸起点较低或较高的平面。
还优选的是,该链柄在其相对边表面有一对从基片的一个表面隆起的加强肋。每一加强肋连接垂直于啮合头长度方向,相互面对的啮合元件相邻对的链柄。进一步,该基片可以在其某一平面预定数量的位置上有预定数量的凹槽,啮合元件从其底表面立起,每一凹槽都有足够大的宽度以容纳该配对环。当然,尽管凹槽的存在可允许啮合元件微小,但不是必须的。
尽管这些成型表面拉锁可以用普通的注射成型机成型,但优选按以下的方法在以下的装置上连续制造这些拉锁。
根据本发明,用于制造成型表面拉锁(该拉锁有一基片和许多立在基片一个表面上的多个啮合元件,每个啮合元件包括从该基片一个表面隆起的链柄,和一个从该链柄上端伸出的,用于可分开地啮合配对环的啮合头)的装置包括适于被单方向驱动的模头轮,在其圆周表面有许多形成啮合元件的模腔;提供熔融树脂的装置,用于将熔融树脂供入熔融树脂提供装置和模头轮圆周表面(后者是转动的)之间的预定间隙;冷却装置,用于强制冷却附着在模头轮圆周表面并根据模头轮的转动以弧形运动的初级中间体表面拉锁;和引出装置,用于连续地从模头轮的圆周表面拔出该初级中间体表面拉锁,该拉锁在根据模头轮的转动而运动时被固化;和布置在引出装置下游的加热和加压装置,从而面对初级中间体表面拉锁啮合头顶部的运动通道,该啮合头的顶部被从其上面加热和加压形成一对突出物,该突出物从啮合头的顶部横贯顶部运动通道伸出。
每一形成啮合元件模腔都有一个在模头轮圆周表面张开并朝着模头轮的轴线基本上径向延伸的形成链柄模腔,和一个形成啮合头模腔,其从该形成链柄模腔的上端圆周方向延伸。该冷却装置包括布置在模头轮内部的冷却水套和布置在模头轮外部的冷却水浴用于强制冷却模头轮的圆周表面部分和成型的表面拉锁,该装置被装在模头轮的圆周表面并随着模头轮的转动从外面运动。进一步,该加热和加压装置可以是有水平轴线的辊或垂直于初级中间体表面拉锁运动通道延伸的板,并且可以包括温度调节装置和压力控制装置。
为了用所说的装置连续制造具有以上结构的成型表面拉锁,熔融树脂在预定的树脂压力下被连续地朝着旋转模头轮的圆周表面从注射注嘴注射致使部分熔融树脂被注射到模头轮的形成元件模腔内并沿着模头轮的圆周表面被成形为基片,从而形成与基片组成的多个啮合元件。结果,初级中间体成型表面拉锁被连续成型。
当基本上沿着模头轮圆周表面的一半运动时,此初级中间体表面拉锁被安装在模头轮中的冷却水套强制冷却并且,同时,初级中间体表面拉锁被移进和穿过一冷却水浴(其中循环低温冷却水),并因此被快速冷却促进固化。由于在成型的表面拉锁开始结晶之前该初级中间体成型的表面拉锁被此快速冷却固化,因此可以使整个基片和所有的啮合元件足够软。因此该成型的表面拉锁更适于用在内衣、纸尿布中的拉锁,它们需要充分程度的柔软性。
当已固化的基片从模头轮圆周表面被一对引出辊分离时,该各个冷却并固化的啮合元件,当它们弹性变形为直线形时,被依次平滑地从形成啮合元件模腔拔出。在那时,假定与形成啮合头模腔相比啮合元件稍微显出钩形姿态,优选每个啮合元件不恢复到其原来形状。
特别是,如果该啮合头相对于模头轮的转动方向以向前和反向方向延伸,由于拔出方向的不同向前的啮合头呈现比反向啮合头更高的站立姿态。考虑到该链柄用随后的加热和加压工序加工以前保持啮合元件形状拔离模头轮时的姿态,向前和向后啮合头相对于链柄的弯曲角度差直接影响到剥离强度的差。但在加热和加压工序后,该弯曲角度的差变小,而该向前啮合头的剥离强度相比于反向啮合头而被特别地提高。
即,一般的颠倒L形啮合元件(其中向前啮合头被变形)与其中反向啮合头弯曲角度变形较小的啮合元件相比,在形成突出物之后显著提高剥离强度。随着在观察中此物理性能变化,如果模头轮圆周表面中形成反向啮合头模腔的弯曲角度被预先设定在大于形成向前啮合头模腔的弯曲角度,对于具有向前啮合头的啮合元件和具有反向啮合头的啮合元件都可以保证基本相同的剥离强度。
当形成向前啮合头模腔和形成反向啮合头模腔之间弯曲角度的差被预先给定时,形成向前啮合头模腔的弯曲角度被设定为小于形成反向啮合头模腔的弯曲角度致使从模头轮拔出的向前和反向啮合头相对于基片倾斜呈现基本相同的角度。优选的是,形成向前啮合头模腔的弯曲角度是-5°~80°,而形成反向啮合头模腔的弯曲角度是10°~90°。
为了使在加热和加压工序之后向前和反向啮合头间的形状不产生差别,还优选的是在形成向前和反向啮合头模腔之间,除了设定上述的弯曲角度以外,赋予从模头轮圆周表面形成链柄模腔的开口至形成啮合头模腔相对于径向延伸形成链柄模腔的弯曲起点一长度差。在模头轮圆周表面形成链柄模腔的开口与形成啮合头模腔从形成链柄模腔在模头轮的转动方向延伸的弯曲起点之间的距离,和形成链柄模腔在模头轮圆周表面的开口与形成啮合头模腔从形成链柄模腔相对于模头轮转动方向反向延伸弯曲起点之间的距离,的比值优选是大约1∶1.01~1∶1.50,更优选1∶1.15。
当其相对面边缘被一裁边单元切掉后,此初级中间体表面拉锁就被移动穿过用作加热和加压装置的上辊和底辊之间。在此期间,啮合头的顶部被上加热辊加热和加压,这使啮合头的顶部变形朝着下游面从其链柄至其末梢端轻微弯曲啮合头并形成基本平展的顶表面和一对从该平顶表面相对边以相反方向伸出的横向突出物。结果,得到在基片上有许多上述形状啮合元件的表面拉锁。
该穿过加热和加压装置的成型表面拉锁在正常的环境温度下缓慢冷却,而不用独立的冷却装置强制冷却,随后该冷却的表面拉锁被收卷到辊中从而结束制造。当该被加热和变形的啮合元件顶部被缓慢冷却而成为固化态时,在被加热部分发生结晶致使该啮合头与链柄相比提高了刚度。特别是,由于该啮合头与基片和啮合元件相比提高了刚度(它们被快速冷却而延迟结晶从而变得柔软性极佳),因此即使该啮合头尺寸微小且柔软性非常高,也可以保证啮合头的适宜刚度,这样就保证了在剥离方向,甚至与单头结构啮合元件,所需要的强度。


图1是根据本发明第一结构实施例的成型表面拉锁的局部侧视图;图2是该第一结构实施例的成型表面拉锁的平面视图;图3是该第一结构实施例的成型表面拉锁的正视图;图4A和4B是第一结构实施例的改进成型表面拉锁的局部侧视图和正视图;图5是根据本发明第二结构实施例成型表面拉锁的局部侧视图;图6是第二结构实施例成型表面拉锁的平面图;图7是第二结构实施例的成型表面拉锁的正视图;图8A和8B是第二结构实施例的改进成型表面拉锁局部侧视图和正视图;图9是第二结构实施例另一改进的成型表面拉锁的侧视图;图10是第二结构实施例最后提及的改进的成型表面拉锁的正视图。
图11是用于制造成型的表面拉锁的注射成型模头的部分截面透视图;图12是形成啮合元件模腔中间形状一实施例的放大比率,局部分解透视图;图13是使用注射注嘴的连续制造成型表面拉锁的装置的图解结构总视图;图14是一放大的截面图解视图显示了该装置的成型初级中间体表面拉锁工位;
图15是一分解透视图显示了用于该装置的模头轮模腔的实施例;图16显示了啮合头用加热和加压工具进行加工的方式,这是本发明的一个特征部分;图17A和17B是局部侧视图,显示了加热和加压工序之前,向前和反向啮合元件(有以模头轮转动方向延伸的向前啮合头和相对于模头轮转动方向相反延伸的反向啮合头)实施例的各个形状;图18A和18B是局部侧视图,显示了加热和加压工序之后,向前和反向啮合元件的各个形状;图19是一标绘图,显示了加热和加压工序之前和之后,成型表面拉锁剥离强度测试的结果;图20是一透视图,显示了形成啮合元件模腔的优选实施例形状;图21是一视图,显示了连续制造成型表面拉锁装置(使用了根据本发明装置第二实施例突出物形成工位)的图解结构;和图22是一视图,显示了连续制造成型表面拉锁装置(使用了根据该装置第三实施例改进的突出物形成工位)的图解结构。
现在参考附图详细叙述本发明的优选实施例。图1是根据本发明第一结构实施例的成型表面拉锁(它是本发明具有代表性的一个拉锁)的局部侧视图。图2是该第一结构实施例的成型表面拉锁的平面视图。图3是该第一结构实施例的成型表面拉锁的正视图;如图1至3所示,该成型表面拉锁包括基片1,和立在该基片1正表面上的多个倒L形啮合元件2。在图示例中,啮合元件2的啮合头22在相同行的相同方向延伸,而每对相邻行中啮合元件2的啮合头22在相反方向延伸。每行的各个啮合元件2在结构上是独立的,而在每行的啮合元件2的基片1都有相同的结构;因此以下叙述的表面拉锁SF被限定于其局部结构。
在此实施例中,基片1在其正面(从其底表面多个啮合元件2以预定的间距直立而它们的啮合头22以相同的方向延伸),有预定数量的连续直凹槽序列1a。每个啮合元件2有一从每一凹槽1a底表面站立的链柄21而啮合头22从链柄21上端以啮合元件行的方向弯曲和站立。进一步,根据图示的例子,在每对相邻啮合元件2中的啮合头22以相反方向延伸。凹槽1a并不限于以上的形状,另一方面沿每啮合元件行的凹槽1a可优选相互独立配置。在另一可替换的形式中,沿每对相邻啮合元件行的各个凹槽可以在基片1的正表面上以交错排列的图案设置;在此情况下,如果忽略加强肋23,尽管改进了该基片的柔软性,该加强肋(以后叙述)从基片1的正表面,在一行中每对正和反啮合元件2之间的中间体部分的一面上伸出,就可以保证预定程度的撕裂强度。
在本实施例中的表面拉锁SF有这样的基本结构,尽管啮合头22末梢端底表面和链柄21基端(凹槽1a的底表面)之间的距离H与常规的相同,啮合头22末梢端底表面和基片1正表面无凹槽区域之间的距离H’与距离H,即,啮合元件2的实际高度,和凹槽1a的深度之间的差相同。这意味着尽管立在基片1上的啮合元件2的实际高度H与常规的相同,但在基片1正表面上啮合元件2的外观高度H′比实际高度H短凹槽1a的深度。由于在正表面上有这些凹槽1a,尽管基片1的外观厚度与常规的相同,仍可显著改进其柔软性。当该表面拉锁SF成型后被剥离模头时也可使其不被过分延长或撕扯。结果,可以得到在基片1中无皱纹的实践中充分耐用的高质量产品。
当具有上述结构的本实施例的表面拉锁SF的啮合元件2与配对环3啮合时,环3的末梢端在啮合头22下当被凹槽1a引导时会到达啮合元件2的链柄21的底端,致使啮合头22平滑地穿过该环被插入。
关于图示例的参数,基片各个凹槽1a的深度是大约0.05mm,而其宽度等于链柄的宽度。因此,啮合元件2的底端被布置在各个凹槽1a的底表面,而啮合元件2的上部从链柄21的0.05mm高的点至啮合头22顶部22a伸出到基片1的正表面之上。
在此实施例中,啮合元件2在凹槽1a底表面之上的实际高度H是大约0.35mm,而啮合元件2在基片1正表面之上的表观高度H′是0.30mm。链柄21在垂直于啮合元件行方向的宽度是0.15mm,等于啮合头22在相同方向的宽度。进一步,基片1的厚度是0.30mm,而在基片1正表面上,啮合元件2以0.8mm的间距沿着每一啮合元件行排列并与相邻啮合元件行的那些啮合元件间隔0.45mm距离。所显示的这些数值仅仅作为最佳的例子,而不意味着被限定于图示的例子并且可相对于配对环自由地作出多种改变。
作为根据本发明啮合元件2的特性,啮合头22的整个顶部22a限定了一个基本椭圆的平展表面,该表面有一对从啮合头22相对边以相反方向水平伸出的突出物22a′,如从图2上边所见。该椭圆的长直径在啮合头22的纵向延伸,而短直径在啮合头22的横向延伸。在此实施例中,每一突出物22a′的长度是大约0.05mm,啮合头22顶部22a的整个宽度在啮合元件行横向方向是0.25mm,它比啮合头22或链柄21余下部分的宽度长0.10mm。突出物22a′的存在显示了以下各种有用功能,这些功能从常规的啮合头是无法指望的。
对于第一功能,可以在啮合头22顶部22a上限定基本上平展的表面,对表面拉锁很少有生疥疮的手感,或是平滑手感。对于第二功能,假定对于啮合头22的顶部22a(包括突出物22a′)的树脂数量与常规的相同,可以使啮合头22从基片1正表面至其顶点的高度相当短而不改变啮合头22在基片1正表面之上的高度。因此不仅可以使啮合元件2微小化还可以保留基片1的正表面平整,(如图4A和4B中所示)而不形成图1到3的任何凹槽。
对于第三功能,这些突出物22a′不仅具有与常规的具有基本均匀尺寸的啮合头仅仅啮合环的功能,而且还具有用突出物22a′背端22a′-1抓住表面拉锁各个配对环3的功能,致使其不易从啮合头22脱离,这样就明显提高了啮合强度。由于这些突出物22a′不像常规的蘑菇型啮合元件(其有伞形啮合头,从链柄21上端的所有方向伸出),仅仅存在一对在链柄21一个方向延伸的啮合头22,因此即使环3被啮合头22(基本上以直线延伸,如上所述)相对突出物22a′的背端22a′-1抓住,也允许该环3围绕突出物22a′平滑运动,因为当一剥离力作用在表面拉锁上时,啮合头22弹性变形而立起。这样就实现了平滑地分离。如此,用比常规普通钩形啮合头分离力大而比常规伞形啮合头分离力小的一分离力就可实现分离。结果,尽管在如此的微小尺寸中,尽管啮合头22的尺寸微小,仍可以保证所需要的啮合强度,而不对啮合元件2或环3造成任何损害。
进一步,在有突出物22a′存在下,如上所述可以改进啮合头22的形状。即,因为如上所述突出物22a′造成与该环的啮合强度的提高,因此可以将整个啮合元件2弯曲为一般的倒L形而啮合头22基本直线延伸不像常规的钩形啮合头那样朝着基片1向下弯曲。这使得啮合头22容易穿过即使微小尺寸的配对环,例如作为普通无纺布部分的短且微小的单纤维束硬毛而插入。
当然,本发明包括啮合头22的其它形状,全缘形状,它极其类似于具有弯曲形状的普通形状,其中末梢端稍微向基片的正表面弯曲。然而对于微小尺寸和单纤维束,在啮合头22的垂直厚度是均匀的情况下,优选每个啮合头22的顶部形状直线延伸且啮合头22相对于平行于基片1的正表面的平面,即,水平面,倾斜-5°~+45°的θ角,优选+10°~+30°的θ角。进一步,啮合头22的底表面相对于基片1的正表面倾斜0°~+60°的θ′角以便促进啮合头22插入微小尺寸的单纤维束。即使用这样的结构,也不能相对于配对环3得到适宜的啮合强度。用常规的J形或仅仅倒L形啮合头,只要它是单头的,就不能指望适宜的啮合强度,这从,例如日本专利未审公开Hei2-5847(美国专利4884060)中是显然的。
还优选的是,链柄21在其相对的侧表面有一对从基片1正表面渐高的加强肋23,形成垂直于啮合元件行方向的线。每一加强肋23连接啮合元件2相邻对链柄21的侧表面。当然,每一加强肋23可相互独立地从每一啮合元件2链柄21的侧表面伸出。进一步,加强肋23的形状,其在基片1正表面以上的高度,以及其在啮合元件行方向的宽度可以任意设定。例如,如果至少一个链柄21的正表面和背表面相对于垂直面倾斜,加强肋23可越过与该链柄2的中心线平行的倾斜表面升高并终止于基本上等于啮合头22最高点高度的顶点或达不到沿啮合元件2轴线的啮合头22的最高点。该加强肋23用于帮助提高特别是微小尺寸链柄21的刚度。进一步,如果啮合元件行的每对相邻啮合元件2都用如本实施例中的加强肋23连接,就可有效地防止基片1被或纵向或横向地撕裂啮合元件行。
图5至7显示了根据本发明第二结构例的改进啮合元件2。根据该第二结构例,在第一实施例中相邻啮合元件行中每对相互反向的啮合元件2在其相对的侧表面以复合的或双头的结构被连接到一起。此复合的啮合元件2在单链柄21上有两个啮合头22。在此双头结构中,两个直线延伸的啮合头22(每个都与第一实施例的啮合头有相同的形状),沿着啮合元件行从单个链柄21的上端,以相反方向通过横向分离啮合元件行的链柄21的上端而被分支。
因此,在此实施例中,如果对啮合元件2使用与实施例1中同样数量的树脂,两个具有与第一实施例中啮合头共同宽度的啮合头22从单个链柄21的上端以相反方向伸出并以两个平行的垂直平面延伸。因此,据此双头结构发现,与第一实施例相比基本上可双倍提高啮合头22的密度,而不提高啮合元件2的密度,致使与配对环3的啮合速率也必然提高。
进一步,在此情况下,每个复合啮合头2包括大宽度部分21a,其从链柄21的基部连续升高到每个啮合头22且与啮合头22相比具有双倍厚度。这意味着如果每个被再分的啮合头22树脂的量等于第一实施例单个啮合头22的树脂的量,即,每个被再分的啮合头22与图1至3中所示的啮合头具有相同的参数和相同的形状,而对比于第一实施例的单啮合头22链柄21部分使用了双倍数量的树脂,这样就造成链柄21大宽度部分21a的刚度被提高。进一步,如果本实施例的双头啮合元件2有一对在链柄21相对侧表面上整体形成的加强肋23,就可以显著降低啮合元件2完全失败的速率由此实现与配对环3的可靠啮合和分离。
在图5至7所示的啮合元件2的第二结构中,两个啮合头22的分叉点(可从啮合元件2的侧面看到)被设置在高于啮合头22底表面的水平。分叉点的高度可以任意设定;例如,两个啮合头22可以在链柄21的半路如图8A和8B所示,在低于啮合头22底表面的位置分支。
图9和10显示了第二结构例的改进双头啮合元件2。此改进不同于第二结构例,其普通的不规则四边形大厚度部分21a跨越整个宽度并从基片1的正表面升高到两个啮合头22的分叉点。用此不规则四边形大厚度部分,可以保证在链柄21的基部或底部刚度被提高,而不会损害链柄21上部的柔软性,因此可使链柄21的基部不易弯曲,这样就保证了与配对环3的适宜啮合速率。
尽管在图中没有图解,然而具有宽度等于单链柄22宽度的一对啮合头22可在共同的垂直平面内以相反方向延伸,只要单链柄21甚至其本身具有适宜的刚度就行。
具有这种结构的本发明成型表面拉锁SF可以或者用普通注射成型机间歇式或者用例如美国专利4984339和5441687中揭示的装置连续地制造。
图11图解显示一用于表面拉锁SF的注射成型模头,图12以放大比例显示用于各个啮合元件成型模腔内部形状的例子。该注射成型机的其余部分与相同类型常规注射成型机的其余部分相同,因此以下的说明仅限于成型模头和形成啮合元件模腔。
在图11中,参考号4表示由动模头41和固定模头42组成的注射成型模。当成型模4闭合时,使动模头41的垂直分离表面与固定模头42的垂直分离表面接触,同时,将动模头41的形成啮合元件模板43放入固定模头部分42中从而在固定模头42扁平模腔表面和动模头41形成啮合元件模板43之间限定形成基片间隙。形成啮合元件模板43是由许多不同的板43a-43c组成的,它们一个落一个地紧挨着放置限定多个形成啮合元件模腔44。在板43a-43c相互紧挨着放置情况下,动模头41朝着或远离固定模头42运动从而关闭或打开模4;当模头4被打开时,各个板43a-43c是可相互分离的。
43a-43c这些板当中,中央板43b有许多形成啮合元件模腔44b,每一个都用于形成啮合元件2的链柄21和啮合头22,而每个相邻的两板43a,43b都有一个形成突出物模腔44a,用于形成两个突出物22a′(构成啮合头22的顶部部分22a)的相应的一个,和一个形成加强肋模腔44c,用于形成两个加强肋23的相应的一个。根据图解例,形成突出物模腔44a是一凹槽,其轮廓是沿长直径分为两半的半个椭圆。当这三块板43a-43c被相互紧挨着放置时,在动模头41的形成啮合元件模板43中限定多个形成啮合元件模腔44,随后熔融树脂60从注射注嘴45被注入模腔44。这样就成型了成型的表面拉锁SF,其在基片1上有许多啮合元件2,如图4A和4B所示。
图13图解显示用于连续成型本发明表面拉锁SF的装置的一般结构,图14按放大比例显示该装置的一个成型工位。在图13和14中,参考号6是一注射注嘴,其尖梢有一弧形表面,与模头轮5(后面叙述)的圆周表面互补,以便从模孔6a连续地注射熔融树脂。注嘴6是一T型模头,它相对于模头轮5的圆周表面对面设置并对应于基片1的厚度带有一间隙,恒定数量的熔融树脂60以片的形式从模孔6a在预定树脂压力下被连续注射。在此实施例中,该注嘴6有单个中央注道6b。该熔融树脂60被例示为聚丙烯,低密度聚乙烯(LDPE),聚酯弹性体,或尼龙。
模头轮5的圆周表面用作成型表面拉锁SF的成型表面。如上所述,在注射注嘴6的头部弧形表面和模头轮5之间提供一间隙并使模头轮5的轴线平行于模孔6a。模头轮5是内有水冷套的中空转鼓,它由多个未图示的环形板沿其轴线以层制品形式一个压一个地固定放置而构成,如图14中所示。
在此实施例中,如图14所示,模头轮5有许多围绕其圆周表面成数排延伸,并在平行于模头轮5转动轴线的方向以预定间距配置的形成啮合元件模腔51。在每相邻对形成啮合元件模腔51行之间,有围绕模头轮5圆周表面形成的,具有深度为Δh的环形凹槽51d和许多普通三角形的形成加强肋模腔51c,其深度大于凹槽51d的深度,并在平行于模头轮5转动轴线方向与形成啮合元件模腔51c排列成一直线。该环形槽51d限定一模腔用于成型基片1的正表面。每个形成啮合元件模腔51都由一个形成链柄模腔51a(从模头轮5的圆周表面延伸),和一个形成啮合头模腔51b(从形成链柄模腔51a的一末端直线延伸并相对于形成链柄模腔51a倾斜85°)组成。
具有这种结构的模头轮5由已知的未示驱动单元驱动以图14中的箭头方向转动。形成啮合头模腔51b相对于形成链柄模腔51a的弯曲角是依据预测啮合头22的变形(当啮合头22的头部22a被加热和加压装置8(后面叙述)从上面加热和加压时产生)而确定的。
仍是在此实施例中,大体上模头轮5的底部被浸入配置在模头轮5之下的冷却水浴7b中。一对引出辊10,11配置在下游并在冷却水浴7b的向上对角上。一裁边单元12也进一步配置在引出辊10,11下游,用于切割初级中间体成型表面拉锁SF′(它是最终产品成型表面拉锁SF的毛坯)的边缘。在裁边单元12的再下游,提供了一对立式加热和加压辊8a,8b(构成加热和加压装置,它是本发明的最特征部分),用于形成啮合头22的突出物22a′。设置在裁边单元12和加热与加压辊8a,8b之间位置的是一张力控制单元13,用于调节初级中间体表面拉锁SF′的张力。
在上辊8a内,配置了未图示的加热源致使辊8a的表面温度被设定在树脂软化温度。进一步,上辊8a圆周表面的底端被配置在稍低于通过初级中间体成型表面拉锁SF′的啮合头22′的水平面的平面,如图16中的放大比例所示。上辊8a的装配位置根据所要求的根据本发明啮合元件2的啮合头22顶部22a突起的突出物22a′的尺寸来确定。另一方面,底辊8b的上表面被配置在初级中间体表面拉锁SF′的基片1背表面位移的水平面中。在此情况下,如图13中所示,上辊8a的垂直位置可用已知的辊水平调节器9a调整(图13),上辊8a的加热温度可根据树脂材料的种类用已知的温度控制单元9b任意调节(图13)。虽然上辊和底辊8a,8b可以相互同步转动而被强制驱动,然而至少上辊8a被实施连接到驱动源,例如未图示的电机进行转动。底辊8b可由具有较低摩擦力的平顶表面的平面取代。
在本发明者的指导下进行的试验显示当各个冷却并固化的啮合元件2被依次抽出普通倒L形的形成啮合元件模腔51时(其中各个形成啮合头模腔51a从对应的形成链柄模腔51b以模头轮5的转动方向或以其反方向延伸),从模腔51(与模头轮转动方向同向)拔出和从模腔51(与模头轮转动方向相反)拔出的啮合元件2的变形程度在很大程度上是不同的。
图17A和17B显示了变形程度的差别,其中箭头表示模头轮5的转动方向。如图17A和17B中所示,以模头轮5的转动方向延伸的啮合头22′(在下文称作正向啮合头)呈现比以模头轮5的反转动方向延伸的啮合头22′(在下文称作反向啮合头)稍高的站立姿态,并且在从模腔51中被拔出后不能充分恢复其原来的形状,因此其相对于链柄21′的弯曲程度太小以及其弯曲角必然小。因此,为了协调正向啮合头22′与反向啮合头22′的弯曲角,需要预先在模头轮5的圆周表面设定不同于反向形成啮合元件模腔51弯曲角的正向形成啮合元件模腔51弯曲角。
为了用具有上述结构的制造表面拉锁的装置来成型本发明的表面拉锁SF,当熔融树脂60在预定的树脂压力下,从注嘴6连续引入到由转动模头轮5和模孔6a之间限定的间隙时,部分熔融树脂60充入该间隙形成基片1′,与此同时,其余部分熔融树脂60依次充入形成啮合元件的模腔51,这些模腔都是在模头轮5的圆周表面内形成的,这样,就在基片1′的正表面上随着模头轮5的转动整体成型多个啮合元件毛坯2′。这样就可连续成型初级中间体成型表面拉锁SF′。
当本发明表面拉锁SF的毛坯初级中间体成型表面拉锁SF′基本上沿着模头轮5的半个圆周表面运动时,此初级中间体表面拉锁SF′被安装在模头轮5内的冷却水套7a强制冷却并且,同时,初级中间体表面拉锁SF′进入并穿过低温(约15℃)冷却水在其内循环的冷却水浴7b,并因此被快速冷却促进固化。由于成型表面拉锁SF′开始结晶之前初级中间体成型表面拉锁SF′就已被此快速冷却固化,因此可以使整个基片1和所有啮合元件2足够柔软。
当已固化的基片1′被引出辊10,11从模头轮5的圆周表面分离时,各个已冷却和固化的啮合元件2′当它们弹性变形为直线形时,被平滑地从形成啮合元件模腔51依次拔出。在其时,啮合元件2′趋于复原原来的形状但不能完全复原原来的形状,各个啮合头22′具有这样的形状,即,啮合头22′在与形成啮合元件模腔51的倒L形相比稍微向上的弯曲角度站立。
在此实施例中,利用相互同时以相反方向转动的上引出辊和底引出辊10,11把初级中间体表面拉锁SF′从模头轮5分离。尽管引出辊10,11的圆周表面可以是平滑的,但最好在其形成啮合元件行的圆周部分上提供环形槽,从而不损害啮合元件2。初级中间体成型表面拉锁SF′被移动穿过裁边单元12(在其中成型表面拉锁SF′相对的边缘被切除),然后在构成加热和加压装置8的上辊和底辊8a,8b之间穿过。当在上辊和底辊8a,8b之间位移并穿过时,啮合元件2′的啮合头22′顶部被上加热辊8a加热并加压致使各个啮合头22′从其底端至其末梢端稍微向上倾斜,如实线所示,与此同时,由于被软化而从其顶部变形,如图16中所示。结果,啮合头22′的顶部22a(图1中的虚线所示)被成型从而有一基本平展的顶表面P和一对相对面的突出物22a′(图1至3中的实线所示)。平顶表面P在其中央区域由于连续的冷却,可能被稍微压缩,这取决于成型条件。
在本发明中,已在加热装置8之间穿过的成型表面拉锁SF在常温而不用分离的冷却装置缓慢冷却,于是成型表面拉锁SF被缠绕在辊上而结束该制造过程。在本发明中,重要的是加热和加压啮合元件2的顶部并缓慢冷却包括突出物22a′的顶部22a。即,当被加热软化和被加压变形的已被加热的啮合头22顶部22a缓慢冷却时,该被加热的部分变为结晶的从而与链柄21相比较具有提高了的刚度。
由于与基片1′和啮合元件2′的大部分相比仅仅啮合头22′具有高度的刚性,因此尽管当保证啮合头22的刚性时,啮合元件2尺寸微小且柔软性很高,仍可保证从配对环的足够的耐分离性。另一方面,由于基片1剪切方向的强度在这样的情况下(即,链柄21在其相反表面有一对加强肋23甚至啮合元件2有一单头,如在本发明中这样)可以被保证,所得的成型表面拉锁SF是高质量产品,在其啮合表面很少有生疥疮的手感并具有足够的啮合强度,尽管其柔软性良好,尺寸微小,但啮合头22很硬,从而保证反复使用的良好耐用性。图19是一标绘图,其中已用加热和加压方法加工的啮合元件2的剥离强度与正好拔离模头轮5之后而被用加热和加压方法加工以前的未加工的啮合元件2′的剥离强度进行比较。已知啮合头22的顶部22a被加热和加压,从此图可以知道啮合元件2与未加工的啮合元件2′的剥离强度相比具有明显程度的提高。
根据本发明的实施例其中拔离模头轮5的啮合元件2′不恢复到其原来形状,啮合元件2有一大体上虚构的L形,它是特殊L形形成啮合元件模腔51的形,并且与形成啮合元件模腔51的弯曲相比呈现提高的弯曲角度,如图17A和17B中显示。进一步,由于当从相应的模腔51拔离时阻力较大,因此图17B的正向啮合头22′的弯曲角大于图17A的反向啮合头22′的弯曲角。
在本发明者的试验中,发现从模头轮5拔出后形状恢复的差别有趣地影响被加工形成突出物22′的啮合元件2的物理性能,如图19所示。根据图19的标绘图,在加热和加压工序以前如图17A和17B中所示的啮合元件2′的形状中,正向啮合头和反向啮合头22′之间弯曲角的差别直接影响正向啮合头和反向啮合头22′之间的剥离强度。在加热和加压工序以后如图18A和18B中所示的啮合元件2中,正向啮合头和反向啮合头22之间的弯曲角的差别被减少,而正向啮合头22的剥离强度与反向啮合头22的剥离强度相比被明显提高。
即,形成突出物22a′之后的普通倒L形啮合元件2(其中正向啮合头22′被变形)与啮合元件2(其中反向啮合头22′弯曲角变形较小)相比剥离强度明显地提高。对于所观察到的此物理性能变化,如果模头轮5圆周表面中各个形成反向啮合头模腔51的弯曲角被预先设定得大于各个形成正向啮合头模腔51的弯曲角,则对于有正向啮合头22′的啮合元件2或有反向啮合头22′的啮合元件2都可以基本保证具有相同的剥离强度。
图20图解显示在相同的板中一优选的形成啮合元件模腔51的形状,在该模腔中预先设定形成正向啮合头模腔51b的弯曲角α1和形成反向啮合头模腔51b的弯曲角α2之间的差。为了在加热和加压工序之后在正向啮合头顶部和反向啮合头22顶部22a之间不产生形状差别,优选除了设定弯曲角α1和α2的差之外,还要给定深度h1(形成正向啮合头模腔51b的弯曲起点o相对于对应的形成链柄模腔51a从模头轮5圆周表面径向方向开口立起的深度)和深度h2(形成反向啮合头模腔51b的弯曲起点o相对于对应的形成链柄模腔51a的深度)之间的差。优选的是,形成正向啮合头模腔51b的弯曲角α1是-5°~+80°而形成反向啮合头模腔51b的弯曲角α2是+10°~+90°。该深度h1和h2的比值优选是大约1∶1.01-1∶1.50。当然,这些弯曲角和深度比值取决于所用的树脂物质,因此并不意味着被限定于特殊的数值但趋于接近该图解的数值。
在图解的数字例子中,形成正向啮合元件模腔51b的弯曲角α1是10°,形成正向啮合元件模腔51的形成链柄模腔51a的深度h1是0.20mm,形成反向啮合元件模腔51的弯曲角α2是27°,而形成反向啮合元件模腔51的形成链柄模腔51a的深度h2是0.23mm。
图21是用于连续制造成型表面拉锁的装置(使用了加热和加压装置8的改进形式)的垂直截面视图。此实施例除了形成突出物工位BP之外与以上实施例的整体结构基本上相同。在此图解例中,上板和底版8c和8d被用作加热和加压装置8。上板8c有一未图示的加热源加热器因此可被加热到高达树脂的软化温度,上板8c的垂直位置可用未图示的垂直位置调节器调整。底版8d以这样的方式被固定,即其上表面可被设置得与初级中间体表面拉锁SF′的运行通道对齐。上板8c被设置在稍低于初级中间体表面拉锁SF′的啮合元件2′的啮合头22′的运行平面的水平。此设定位置是通过从根据本发明啮合元件2的啮合头22的项部22a突出的相对突出物22a′的测定长度而决定的。
根据具有以上结构的实施例,在未图示的旋转模头轮上连续成型的初级中间体成型表面拉锁SF′随着模头轮的转动而呈弧形运动之后,当用引出辊10,11强制拔出时,可以连续地将其从模头轮圆周表面分离。当它随模头轮弧形运动时,此初级中间体表面拉锁SF′被未图示的安装在模头轮中的冷却水套和未图示的设置在模头轮以下的冷却水浴快速冷却。此快速固化使初级中间体表面拉锁SF′柔软度很高。
初级中间体表面拉锁SF′的相对边缘被未图示的裁边单元切除之后,这样成型的初级中间体表面拉锁SF′就在作为加热和加压装置的上板8c和底版8d之间运动并穿过。在该时间过程中,啮合头22的顶部22a(它由图8中的虚线表示)被上加热板8c加热和加压,啮合元件2变形从该基础至末梢端向下游端稍微变形(如图8中实线所示)。进一步,顶部22a由于软化而从其顶点变形形成一对从平顶表面相对边以相反方向突出的横向突出物22a′并且被缓慢冷却和固化,如上述的实施例中那样,结果,突出物22a′和其圆周部分的刚度提高了,从而得到具有像第一结构例中那些同样的形状和功能的标准啮合元件2。
图22是一总图解视图显示了使用改进的突出物成型工位连续制造成型表面拉锁的另一装置的结构。此实施例不同于第一和第二实施例,其中各个形成啮合元件模腔510基本上只是直线延伸并且相对于模头轮5的径向方向稍微倾斜,而不呈现基本倒L形状。该实施例的剩余单元或设备的基本结构与第二实施例相同只是将上加热板80c和底水箱80d用作加热和加压装置80。
由于每个以倾斜姿态站立在初级中间体表面拉锁SF′的基片1′上的啮合元件2′只是基本水平的,该上板80c上游部分80c-1的入口端高度被设定在与啮合元件2′上端相同的水平。进一步,使上板80c的底表面和底部水浴80d的水平面之间的距离朝着上板80c的中心部分沿着表面拉锁SF′的运行通道逐渐降低并沿着下游部分80c-2均匀化。当其沿着上板80c的上游部分80c-1运行时,该基本伸直的啮合头22′被上板80c弯曲;然后当其沿着上板80c的下游部分80c-2运行时,该弯曲的啮合头22′顶部22a逐渐被上板80c加热和加压形成一对从顶部22a的相对边缘以相反方向突出的突出物。尽管上板80c必然被加热,啮合头22′也被很快地弯曲,但如果上游部分80c-1在高温下被加热,则其质量将降低。为了避免过热,上游部分80c-1的温度被设定在预定的梯度直至啮合头22′弯曲在上游部分80c-1完成,与此同时,下游部分80c-2也像以上的实施例被加热到树脂的软化温度。
在有此结构的实施例中,当由模头轮5成型的初级中间体表面拉锁SF′到达上板80c和底水浴80d之间的位置时,基本伸直的基片1′和链柄21′在底水浴80d中的冷却水中通过导辊被移动,在此期间啮合头22′的一个分支在比树脂软化温度低的温度被加热并逐渐被上板80c的上游部分80c-1弯曲为大体上倒L形。结果各个啮合头22′相对于对应的链柄21′在普通的预定弯曲起点被均匀地弯曲。特别是,由于基片1′和链柄21′在冷却条件下,它们并不因加热的上板80c而变软,因此仅仅在预定水平之上的啮合头22′可被弯曲为均匀形状。此水冷却方法仅仅是一图解例,为了实现相同的目的啮合元件2′可以具有易于弯曲的部分。
该大体上被弯曲成L形的啮合元件2′然后在软化温度被软化和变形,当被加热的上板80c的下游部分80c-2加压时,形成本发明特征部分的突出物22a′。通过下游部分80c-2的成型表面拉锁SF然后被移动穿过缓慢冷却工位(其为常温),因此啮合头22与表面拉锁SF的剩余部分相比将具有提高的刚度,如上所述。
从以上的叙述可以清楚,根据本发明的装置,可以有效地制造成型表面拉锁SF,而不需要复杂的过程,该装置由多个专门的站在基片1上的倒L形啮合元件2组成,每个元件都有一对从基本平展的顶表面P的相对边缘突出的突出物22a′。具有这样形状的每个啮合元件2,部分是由于啮合头22基本上从该链柄21的上端直线延伸,因此啮合头22很少有生疥疮手感。进一步,由于啮合头22可以相对于链柄21倾斜大于85°的角,因此啮合头22趋于进入配对环3。更进一步,由于啮合头22的相对边突出物22a’,因此可以保证适宜的啮合强度。结果,即使与微小尺寸的配对环3也保持可靠的啮合,突出物22a用于夹持环3以可靠的啮合阻止啮合过程中施以剥离力。进一步剥离时,啮合头22a′倾向在剥离方向弯曲链柄21因此允许环3在移动方向沿着突出物22a′的边缘用适宜的摩擦力平滑地运动,这样就便于从啮合头22脱离环3。
根据啮合元件2(具有从顶部22a突出的突出物22a’)的独特形状,可以使啮合头22a顶表面具有较少生疥疮的手感并保证适宜的甚至与微小尺寸配对环3的可靠啮合。进一步,不像常规的蘑菇型啮合元件(有一伞形啮合头从链柄的上顶端向所有的方向伸出),可以保证所需程度的剥离强度和平滑的分开,尽管啮合头的尺寸微小仍是这样,而不会引起出现所说的卡住现象(其中链柄和啮合头之间的颈部与环缠住,因而造成或是啮合元件2或是环3损坏),因此可以实现耐用程度的改进。
如果初期中间体表面挂锁SF被成型并通过快速冷却固化,而被加热和加压形成一对突出物的啮合头却被缓慢冷却,可以保证整个成型的表面拉锁适宜程度的柔软度并提高啮合头与表面拉锁剩余部分相比的刚度,这样就带来极好的耐剥离度并保证适宜的形状稳定性。
权利要求
1.一种制造成型的表面拉锁的方法,该拉锁有基片和在基片一表面上站立的许多啮合元件,每个啮合元件都由从所说基片一个表面上渐高的链柄,和从该链柄上端伸出的用于分开啮合配对环的啮合头组成,所说的方法包括以下步骤(a)成型具有从链柄上端伸出的每一啮合元件啮合头的表面拉锁初级中间体;(b)强制冷却具有该成型的啮合元件的成型的初级中间体表面拉锁;(c)连续移动该冷却的和固化的初级中间体表面拉锁至加热和加压装置;(d)从啮合头的上面用所说的加热和加压装置加热和加压啮合头的顶部以软化啮合头并且,与此同时形成一对从啮合头的顶部突出并相对于该啮合头的长度方向垂直的突出物;和(e)缓慢固化已通过所说的加热和加压装置的成型的表面拉锁。
2.如权利要求1所述的方法,其中,啮合头的弯曲角相对于所说的链柄是大约80°-170°。
全文摘要
一种制造成型的表面拉锁的方法,包括以下步骤:成型表面拉锁初级中间体;强制冷却初级中间体表面拉锁;连续移动该冷却的和固化的初级中间体表面拉锁至加热和加压装置;从啮合头的上面用加热和加压装置加热和加压啮合头的顶部以软化啮合头,形成一对从啮合头的顶部突出并相对于该啮合头的长度方向垂直的突出物;缓慢固化已通过加热和加压装置的成型的表面拉锁。该方法制造的表面拉锁可与配对表面拉锁的环高速啮合,不容易脱离啮合。
文档编号B29C43/22GK1312160SQ0012907
公开日2001年9月12日 申请日期2000年9月29日 优先权日1996年6月6日
发明者明野满, 村崎柳一 申请人:Ykk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1