树脂被覆金属板的制造方法

文档序号:4440165阅读:186来源:国知局
专利名称:树脂被覆金属板的制造方法
技术领域
本发明涉及ー种具有优越加工黏着性的树脂被覆金属板的制造方法。
背景技术
近年来,利用被覆树脂钢板的成型加工与成型加工后的弹カ加工、成型加工后的引缩加工、以及成型加工后弾力与引缩的双重加工等等严苛的加工制程,来制造罐身或罐身与罐底一体成型的罐体搭配旋紧上盖的铁罐。为了避免这些罐体所被覆的树脂于严苛的成型加工制程中以及成型加工制程后造成剥离或破裂等问题,所使用树脂对于钢板的黏着性能便非常重要。因此,这些罐体材料采用了具有优越加工黏着性的表面处理上ー层酪酸盐皮膜的 镀锡钢板等经过酪酸盐处理后的钢板,再增设上一层有机树脂的被覆树脂的酪酸盐处理钢板。然,使用被覆树脂酪酸盐处理钢板为材料的罐体,如树脂层与钢板接触面发生细微小孔或龟裂的情形,因酪酸盐处理钢板抗蚀性不佳,特别是如填充高酸度的内容物时,会存在钢板腐蚀情况加剧的问题。故,针对于填充入高酸度内容物状态下,亦能保有优越抗蚀性的被覆树脂的树脂镀锡钢板进行了许多测试,但树脂对于镀锡层黏着性能,特别是加工罐身时的胶膜加工黏着性能不佳之故,如何开发出ー种即使于上述严苛的加工制程中,亦能拥有优越胶膜加工黏着性能的材料便为当务之急。有鉴于此问题点,于专利文献I中,记载有一于无再熔镀锡或再熔镀锡钢板的镀锡层上涂抹硅烷偶合剤,且增设ー层有机树脂皮膜的被覆树脂的镀锡钢板。专利文献I :特开2002-285354号公报但使用专利文献I的被覆树脂镀锡钢板,于制作罐体的成型加工后的弹カ与引缩的双重加工制程时,会发生于成型加工制程中罐体上部树脂剥离或加工罐体时胶膜加工黏着性不足的问题。

发明内容
本发明的目的在提供ー解决上述问题,即使于严苛的成型加工制程中,仍保有优越胶膜加工黏着性的被覆树脂镀锡金属板的制造方法。(I)本发明的树脂被覆金属板的制造方法有以下特征含金属板至少单面镀锡制程、于前述镀锡面上涂抹硅烷偶合剂制程、于前述硅烷偶合剂面加上一层树脂层的制程、利用加热前述金属板来溶解前述树脂层与硅烷偶合剂黏附面的树脂表面制程。又,为保前述镀锡层与树脂层不发生变形问题,加热温度不可过高,可通过控制树脂层的软化及熔解程度提升黏着性能。举例来说,如高频加热,可通过控制高频电流、直流电流以及直流电压,控制高频加热装置发信机的输出,通过调整最大加热温度与加热时间达到有效控管。
(2)又,本发明的树脂被覆金属板的制造方法有以下特征含金属板至少单面镀锡制程、于前述镀锡面上涂抹硅烷偶合剂制程、于前述硅烷偶合剂面加上一层树脂层的制程、以及至少于前述镀锡层与硅烷偶合剂层涂抹层的接合区域以及硅烷偶合剂涂抹层与前述硅烷偶合剂涂抹层及前述树脂层的接合区域,施以前述树脂熔点-10°C +100°C加热制程。针对以上“至少于前述镀锡层与硅烷偶合剂层涂抹层的接合区域以及硅烷偶合剂涂抹层与前述硅烷偶合剂涂抹层及前述树脂层的接合区域,施以前述树脂熔点-10°C +100°C加热”此部分,举例来说,利用高频加热方式将加热整个钢板,控制高频电流、直流电流,通过控制高频加热装置发信机的输出,来调整最大加热温度与加热时间,以达到可提高欲溶解部分的温度,而其它部分又可将温度上升程度控制在一定范围以内。(3)本发明的树脂被覆金属板制造方法,其特征为于前述(I)与(2)说明中,前述加热温度为前述树脂熔点+30°C +60°C。
(4)本发明的树脂被覆金属板制造方法,其特征为于前述(I) (3)任ー说明中,前述加热方式为施以高频加热。(5)本发明的树脂被覆金属板制造方法,其特征为(I) (4)任ー说明中,针对前述加热时的前述树脂温度,以前述树脂的结晶化温度领域以5°C /秒以上比例施行加热作业。(6)本发明的树脂被覆金属板制造方法,其特征为(I) (5)任ー说明中,前述加热作业后,以前述树脂的结晶化温度领域以30°C /秒以上比例施行冷却作业。(7)本发明的树脂被覆金属板制造方法,其特征为(I) (6)任ー说明中,前述镀锡层的镀锡量为O. 5 13g/m2。(8)本发明的树脂被覆金属板制造方法,其特征为(I) (7)任ー说明中,前述的硅烷偶合剂为水溶性氨基类硅烷偶合剂,硅(Si)附着量为O. 5 30mg/m2。将树脂膜被覆于已涂抹硅烷偶合剂的镀锡钢板上,施以后段加热处理所制得的本发明树脂被覆金属板,相较于将无进行后段加热处理的树脂膜被覆于已涂抹硅烷偶合剂的镀锡钢板上的树脂被覆金属板,树脂膜对于镀锡钢板的加工黏着性能较佳,于相关产业的利用可能性极高。


图I为将被覆树脂后的树脂金属板,以其行进的垂直方向转卷附高频线圈施以后段加热制程的概略侧视图;图2为后段加热的加热循环图表;图3为于镀锡钢板上进行硅烷偶合剂处理后,于其上被覆树脂层的状态说明图;图4为图3状态后,将树脂被覆金属板以“被覆树脂的熔点-10°C”以上温度进行加热处理,使硅烷偶合剂充分进行脱水合成反应,铁皮及树脂膜间结合力增强,黏着性能显著提升的状态说明图;图5为硅烷偶合剂涂抹量(横轴)与剥离强度S(纵轴)间关系的图表;图6为将后段加热后的树脂被覆金属板制成浅拉延杯体,此为显示杯体分层宽度大小与硅烷偶合剂涂抹量间关系的结果示意图表;
图7为测试S型剥离强度用测试片形状的平面图;图8为于测试S型剥离强度用测试片的被覆树脂面增设切线状态的平面图;图9为于测试S型剥离强度用测试片增压线的平面图;图10为增设压线部分形状的S型剥离强度测试片部分切面图;图11为将S型剥离强度测试用测试片装入测试片拖座中以测定強度的概略状态侧视图。附图标记说明71_测试片;71a_测试片ー边前端部;71b_测试片另ー边前端部;72-切线;73_压线;74_测试片拖座;74a-测试片插入部 ;74b_测试片拖座上部。
具体实施例方式本发明的树脂被覆金属板制造方法,因于镀锡层上涂抹硅烷偶合剤,再于其上方以热黏着方式贴附上一层树脂膜后施以加热处理之故,可提供ー较以往具有更优越加工黏着性的树脂被覆金属板。以下为本发明实施方式的详细说明。〔金属板〕本发明所使用的被覆树脂用金属板,依据不同用途可选择如将一般铝脱氧钢的热轧板经过冷间辊轧、韧炼后经过调质压制后板厚O. 15 O. 3mm的冷延钢板,或是韧炼后再施以冷间辊轧增加強度的冷延钢板等。将上述冷延钢板经过电解脱脂及酸洗后,于钢板上加上镀锡层,制成镀锡钢板。镀锡钢板以众所周知的酸性镀锡(ferrostan)法、齒素法(Aalogan)以及硫酸浸泡法等方式进行镀锡,通过先将锡加热至熔解温度以上后再急速冷却方式(再熔处理)于镀锡层间设ー Sn-Fe合金层的镀锡钢板,亦可使用镀锡层不进行加热溶解处理(无再熔处理)的镀锡钢板等。另外,亦可使用于冷延钢板上镀镍后于其上层镀锡,亦或是镀镍后再加热,将Ni于钢中扩散形成Ni-Fe合金层的上层再镀上ー层锡,将锡加热至溶解温度以上后再急速冷却等方式所制成的具岛状锡层的岛状镀锡钢板等。镀锡钢板的镀锡量,由抗蚀性及经济性观点考虑,O. 5 13g/m2范围为理想。未达O. 5g/m2因抗蚀性不足较不建议。特别是进行再熔处理后,所镀的锡因整个Fe-Sn合金化,不单是抗蚀性,加工性亦显著变差之故,至少O. 5g/m2以上的镀锡量是必要的。另ー方面,若镀锡量超过13g/m2,除了饮料罐与食物罐所要求的抗蚀程度达到饱和外,于再熔处理时会发生锡熔解不均或边缘磨耗等问题,铁皮的表面状态变差。接着,如上所制得的镀锡层上再涂抹上硅烷偶合剂并使之干燥。硅烷偶合剂有如こ烯基类、丙烯类、环氧类、氨基类、巯基类、叶绿素类等各式种类,以操作面及环境面考虑较推荐水溶性类的硅烷偶合剤。又,优越的保存稳定性亦很重要,且因树脂被覆金属板使用于食物罐与饮料罐之故,无毒性此点亦为必要。综合以上所述,推定使用氨基类硅烷偶合剂最为理想。氣基类娃烧偶合剂可使用氣丙基ニ甲氧基娃烧(APTMS)、氣丙基甲基_■こ氧基娃烷(APMDS)、胺丙基三こ氧基硅烷(APTES)、苯基胺丙基三甲基硅烷(PMTS)等,如信越化学エ业公司所制造的KBM-903或KBM603、KBE903,水溶性与保存稳定性佳,且获得FDA(美国食品药品管理局)认证之故,为理想使用选择。将硅烷偶合剂5 200g/L水溶液涂抹于上述镀锡钢板上并使之干燥。涂抹与干燥方式可使用众所周知的浸泡法、滚轮式涂抹法、浸泡后利用延压滚轮再压制法、喷涂法、电解处理法等涂抹方式,另外亦可利用电烤箱以100°C /5分钟加热的干燥方式。本发明的树脂被覆金属板,是由如上述制法所得的镀锡钢板,于其单面或双面,将树脂层的有机树脂膜被覆于硅烷偶合剂涂抹面上,以层层黏贴方式所得。有机树脂膜以加热后仍具有优越加工性能的热可塑性树脂为理想。聚こ烯对苯ニ甲酸酯(PET)、聚丁烯对苯ニ甲酸酯(PBT)、聚萘ニ甲酸こニ酯 (PEN)、PETI共聚物、PBTI共聚物等聚酯树脂,或将两种以上前述聚酯树脂混合的聚酯树月旨、聚こ烯、聚丙烯、こ烯-丙烯共聚物,以及利用马来酸变性后物质、こ烯-醋酸こ烯基共聚物、こ烯-丙烯酸共聚物等聚烯烃类树脂、尼龙6、尼龙66、尼龙610等聚酰胺树脂、聚碳酸酷、聚甲基戊烯、以及将上述聚酯树脂与离子聚合物混合的物质。可使用单层树脂膜,或使用由两种以上前述树脂所制成的复层树脂膜。针对树脂膜的厚度,就树脂膜贴附作业的简易性、树脂被覆金属板成形加工后的成形体(瓶罐等)与树脂膜的黏着强度、抗蚀性以及经济性等观点考虑后,认定10 100 μ m为理想范围。以上树脂膜利用加热方式熔解树脂板,将其由押出机的T印模压出所希望厚度的树脂膜,将其贴附于镀锡钢板的已喷涂上硅烷偶合剂的镀锡面,形成ー树脂层。此树脂层的被覆方式,如热黏贴法等均可,将树脂膜与以一定温度范围加热的镀锡钢板黏接,利用一组加压滚轮夹附加压黏贴。利用以上方式,所制膜的树脂无经延伸加工处理之故,可以较锡熔解温度低相当多的温度来进行热黏贴作业。〔被处理材的处理〕于本发明中,上述树脂层制成后,接着于镀锡层与硅烷偶合剂层涂抹层的接合区域以及硅烷偶合剂涂抹层与硅烷偶合剂涂抹层及树脂层的接合区域,进行“被覆树脂的熔点-10°c ” “被覆树脂的熔点+100°C ”的加热制程。所谓的被处理材的处理指的是进行后加热处理制程。较理想的后加热处理温度范围为被覆树脂的“熔点+30°C ” “熔点+60°C ”。被覆树脂的加热温度若未达“被覆树脂的熔点-10°C”,前述接合区域将软化不完全,无法提升其黏着性,且无法充分发挥硅烷偶合剂可通过加热提升黏着性的效果。另ー方面,若加热温度较“被覆树脂的熔点+100°C”高吋,树脂层的接合界面温度过高,树脂层容易产生气泡,故不建议。上述后加热过程中,除了需注意树脂层不产生气泡外,前述接合区域需控制于前述温度范围内,仅于上述接合区域软化熔解树脂层及镀锡层,提升其黏着性能。具体方式为,使用如图I所示装置,将被覆树脂后的树脂金属板以其行进的垂直方向转卷附高频线圈,再如图2所示加热至一定温度,经过高频线圈后利用空气冷却,之后再以水冷加热循环处理方式降至常温较理想。〔硅烷偶合剂的涂抹〕接着将利用图3及图4详细说明后加热处理时硅烷偶合剂对于胶膜黏着性的效
果O于镀锡钢板上涂抹硅烷偶合剂后再增设树脂层的状态下,如图3所示,镀锡钢板与被覆树脂膜间界面残留许多氢氧基,黏着性能低。硅烷偶合剂的涂抹量以硅(Si)附着量O. 5 30mg/m2为理想。Si附着量如未达O. 5g/m2,被覆于硅烷偶合剂涂抹层之上的被覆树脂的加工黏着性无法提升,无法充分发挥本发明的效果。 另ー方面,若Si附着量超过30g/m2,被覆树脂黏着度并不会提升,由成本面考虑亦不需涂抹更多的量。接着,将树脂被覆金属板以“被覆树脂的熔点-10°C”以上加热后,如图4所示,使硅烷偶合剂充分进行脱水合成反应,增强Sn与树脂膜间结合力,能显著提升黏着性。又,树脂层由DSC(示差扫描热量測定)曲线得知,较公称熔点低约10°C温度开始软化,因较树脂熔点低10°c进行本发明制程亦具相同效果,故本发明将加热温度设定为“被覆树脂的熔点-10°c”以上。再者,树脂被覆金属板的加热速度以树脂膜结晶化温度范围(120°C 180°C )内尽可能以最短时间进行升温防止树脂膜结晶化较理想,故,采用高频诱导加热或通电加热等加热速度快的处理方式较佳。然,树脂被覆后,若将树脂膜保持在结晶化温度范围内,因树脂膜将进行结晶化,于罐体加工时会产生分层等问题之故,被覆树脂钢板的加热速度以5°C /sec以上为理想。若加热速度未达5°C /sec,通过结晶化温度范围的时间变长,树脂膜将进行结晶化,故不建议。以下将说明硅烷偶合剂的决定涂抹量。接着,将针对通过上述处理方式所被覆树脂层的黏着强度进行说明。图5为硅烷偶合剂涂抹量(横轴)与剥离强度S(纵轴)间关系的图表。如图5所示,即使涂抹上硅烷偶合剂,若“无后段加热”或“烤箱加热(2°C /秒升温至260°C ...低速加热”,不太能提升树脂膜的黏着力。另ー方面,若利用“高频诱导加热(100°C /秒升温至260°C ...高速加热”,随着硅烷偶合剂涂抹量增多,其S型剥离强度越增强,Si附着量=6mg/m2状态下的树脂膜黏着カ(S型剥离强度)为最大,即使硅烷偶合剂涂抹量达Si附着量=30mg/m2,和无加热相较,仍具有提升黏着度的效果,但,若Si附着量超过30mg/m2,会产生硅烷层凝集破坏现象,相対的黏着性即降低。再者,将利用上述处理方法所得的树脂被覆金属板制成浅拉延杯体,此时杯体分层宽度大小与硅烷偶合剂涂抹量间关系的结果如图6所示。即使涂抹上硅烷偶合剂,若“无后段加热”或“烤箱加热(2°C /秒升温至2600C ...低速加热”,分层问题亦几乎不会消失。另ー方面,若利用“高频诱导加热(100°C /秒升温至260°C ...高速加热”,随着硅烷偶合剂涂抹量增多,杯体分层宽度将缩小,但硅烷偶合剂涂抹量若超过Si附着量=O.5mg/m2,分层问题将几乎获得解決。故,硅烷偶合剂的涂抹量以Si附着量=O. 5 30mg/m2为理想,而O. 5 30mg/m2范围内更加理想。于此,所谓的杯体分层宽度指的是如下所述的测定值。意即将拉延杯体的前端利用实态显微镜放大拍照,再观察照片内前端部以测定分层大小。又,Si附着量则可使用荧光X射线測定。〔被处理材的冷却速度〕再者,树脂被覆金属板的后段加热制程的冷却方式,相同的以短时间冷却通过前述树脂的结晶化温度范围(120°C 180°C )较理想。
意即,后段加热处理后,以30°C /秒以上比例冷却树脂结晶化温度范围较佳。冷却速度若为30°C /秒,通过结晶化温度范围的时间变长,树脂膜将进行结晶化,故不建议。故,冷却方式采用喷涂或浸溃等水冷方式较佳。实施例以下将通过实施例I 12及比较例I 3具体说明本发明。〔镀锡钢板的制作〕使用表I “板厚”栏所示的低碳冷轧钢板,经过于碱性水溶液中电解脱脂一水洗及硫酸酸洗一水洗后,利用酸性镀锡feirostan法如表I所示条件制成镀锡层后实施熔融处理。接着,于镀锡层上方涂抹硅烷偶合剂后使之干燥,制得如表I实施例与比较例所示Si附着量的硅烷偶合剂涂抹层。〔树脂被覆金属板的制作〕如实施例I 12及比较例I 3所示,依照表中所列条件将厚度28 μ m透明PETI的透明无伸缩胶膜黏贴于镀锡钢板其中一面(罐身内侧面),于另外一面(罐身外侧面)黏贴上相同PETI材料但含20质量%钛是白色颜料的白色无伸缩胶膜。树脂膜被覆完成后立即施行冷却作业。且,此树脂膜被覆完成后,利用表I所示被处理材的处理条件,进行后段加热处通,制成树脂被覆完成金属板。与此,表I所显示的高频诱导加热设定条件中,Ihf代表变压输出前的高频电流值、IdcL代表通过整流器将交流电变为直流电的直流电流值、Vdc代表将电源电压变为直流的直流电压值,其各自为 Ihf = 38. 5 (A) ,IdcL = 10.7 (A), Vdc = 280〔V〕。其中,通过增加Ihf与IdcL值可提高加热的温度。又,表I被处理材处理条件中的“MAX板温度”,指的是加热中板温度的最大值。将常温到MAX板温的加热速度除以温度上升所需时间所得的值。表I的“板温加热速度”指的是每秒温度上升的值。将MAX板温至常温的冷却速度除以温度下降所需时间所得的值。表I的“冷却温度”指的是每秒温度降低的值。〔评价〕针对镀锡钢板被覆树脂的加工黏着性,在此采用S型剥离强度来评价。
以往以加工前平板状态下测试T型剥离强度来评价,但因考虑其无法完全正确反映加工黏着性之故,于本发明中,为了能确实反映经过成型加工后再施行弾力与引缩双重加工等严苛成型作业所得罐体于加工中以及加工后的黏着性(加工黏着性),采用S型剥离強度评价。所谓S型剥离强度,指的是树脂被覆金属板施以成型加工制成杯状形体,于杯体侧壁切割下一测试片,以此测试片的树脂膜剥离强度来评价加工黏着强度。S型剥离强度的具体测试方式如下所示。由树脂被覆金属板上将直径154mm的毛坯(鉄片)进行冲压加工,以成型比I : 64进行第一阶段成型加工,制得一直径96臟,高42mm的成型杯体。于此杯体上以杯体高度方向30mm及杯体圆周方向120mm的大小,由成型杯体的 侧壁切出,折回平板状态后,如图7平面图所示尺寸的T字状测试片71,利用冲压模具进行冲压。接着,如图8所示,使用小刀于测试片71的ー边(右边)前端71a的黏着强度测试面(图示中跟前这面)及反面的被覆树脂(图示中的里侧面)划上切线72直达镀锡钢板面。紧接如图9及图10所示,使用压线加工用打模机于黏着强度测试面与反面(划入切线72之面)加上压线73,弯曲压线处仅切断镀锡钢板层。此时,于黏着強度测试面,所被覆树脂并无切断,而是与已切断分离的镀锡钢板呈现两端联接的状态。接着,如图11所示,于测试片拖座74的测试片插入部74a插入测试片其中ー边前端部71a,将测试片71固定于测试片拖座74后,将测试片拖座74上部74b与测试片71的另ー边前端部71b以拉カ测试机的两夹部夹住拉伸,将被覆树脂由镀锡钢板強制剥离,测试其拉伸強度作为S型剥离强度,来评价加工黏着度。如上述所测得的S型剥离强度,以测试片宽度15mm来说,O. 6Kg/15mm以上为理想。S型剥离强度若未达O. 6Kg/15mm,成型加工后再施行弾力与引缩双重加工等严苛成型作业所得罐体于成型加工制程中无法获得稳定且优异的加工黏着性。与本实施例中,将表I所示实施例I 12以及比较例I 3的树脂被覆金属板,取直径151_的毛坯(鉄片)进行冲压加工后,将杯体内面贴上透明树脂膜(含白色顔料的树脂则被覆于相反面的瓶身外面),以成型比I : 64进行第一阶段成型加工,制得1st杯体、B/M罐体、Fi罐体,再就透明树脂膜黏附面进行测试,制作S型剥离强度测试用测试片。接着利用拉カ测试机测试S型剥离强度。再观察1st杯体与B/M罐体前端是否发生分层(树脂膜剥离)现象。并于Fi罐体以目视确认外部白色侧与内部透明侧是否有罐体损伤分层现象。又,在此1st杯体指钢板经过成型加工后所制得物,B/M罐体为将1st罐体再进行成型及引缩加工所制得的罐径小侧壁高的细长状罐体,而Fi罐体为将B/M罐体再施行剪切、凸缘及颈部加工所制得。其结果如表2所示。实施例I 12的杯体,无论是1st杯体、B/M罐体、Fi罐体,其内面S型剥离强度均达O. 7Kg/15mm以上,于严苛罐体成型加工时树脂膜的加工黏着性佳。
且,1st杯体与B/M罐体的杯体前端均无出现分层现象,Fi罐体亦无罐体损伤分层现象发生。相对与此,比较例I 3中,1st杯体于成型加工制程中,杯体前端部分的树脂膜与镀锡钢板间黏着度不佳,杯体前端部发生分层现象。又,于比较例I及2中,B/M罐体于加工时发生罐体破裂现象,不适合作为罐体加エ用原料。
再者,表中的朝上箭头指与其上方字段所记载数值相同之意。
权利要求
1.一种树脂被覆金属板的制造方法,包含以下特征金属板至少单面镀锡制程、于前述镀锡面上涂抹硅烷偶合剂制程、于前述硅烷偶合剂面加上一层树脂层的制程、利用加热前述金属板来溶解前述树脂层与硅烷偶合剂黏附面的树脂表面制程。
2.一种树脂被覆金属板的制造方法,包含以下特征金属板至少单面镀锡制程、于前述镀锡面上涂抹硅烷偶合剂制程、于前述硅烷偶合剂面加上一层树脂层的制程、以及至少于前述镀锡层与硅烷偶合剂层涂抹层的接合区域以及硅烷偶合剂涂抹层与前述硅烷偶合剂涂抹层及前述树脂层的接合区域,施以前述树脂熔点-10°C +100°C加热制程。
3.根据权利要求I和2所述的树脂被覆金属板的制造方法,其特征为前述金属板的加热温度为前述树脂熔点+30°C 前述树脂熔点+60°C。
4.根据权利要求I 3所述的任一所述的树脂被覆金属板的制造方法,其特征为前述金属板的加热方式为高频加热方式。
5.根据权利要求I 4所述的任一所述的树脂被覆金属板的制造方法,其特征为前述金属板加热时的前述树脂温度,以前述树脂的结晶化温度领域以5°C /秒以上比例施行加热作业。
6.根据权利要求I 5所述的任一所述的树脂被覆金属板的制造方法,其特征为前述金属板加热后,以前述树脂的结晶化温度领域以30°C /秒以上比例施行冷却作业。
7.根据权利要求I 6所述的任一所述的树脂被覆金属板的制造方法,其特征为前述镀锡层的镀锡量为0. 5 13g/m。
8.根据权利要求I 7所述的任一所述的树脂被覆金属板的制造方法,其特征为前述硅烷偶合剂为水溶性氨基类硅烷偶合剂,硅(Si)附着量为0. 5 30mg/m2。
全文摘要
本发明关于一种树脂被覆金属板的制造方法,其即使于严苛的成形加工制程中,仍保有优越的胶膜加工黏着性。其树脂被覆金属板加工制程依序有金属板至少单面镀锡制程、于前述镀锡面上涂抹硅烷偶合剂(silane coupling agent)制程、于前述硅烷偶合剂面加上一层树脂层的制程、利用加热前述金属板来溶解前述树脂层与硅烷偶合剂黏附面的树脂表面制程;另外,至少于前述镀锡层与硅烷偶合剂层涂抹层的接合区域以及硅烷偶合剂涂抹层与前述硅烷偶合剂涂抹层及前述树脂层的接合区域,施以前述树脂熔点-10℃~+100℃加热制程。
文档编号B29C65/46GK102686778SQ20098016192
公开日2012年9月19日 申请日期2009年10月14日 优先权日2009年10月14日
发明者松原政信, 田屋慎一, 甲斐政浩, 黑川亘 申请人:东洋钢板株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1