用于注射成型或模压/压制的工具和方法与流程

文档序号:11159779阅读:654来源:国知局
用于注射成型或模压/压制的工具和方法与制造工艺

本发明涉及一种包括加热设备的工具,例如注射成型工具或模压/压制工具。加热通过层的堆叠实现,该层的堆叠加热活性工具表面,并且包括线圈载体层、导电顶部层、背衬层、导电中间层和热阻层,线圈载体层包括用于产生振荡磁场的至少一个缠绕线圈,导电顶部层邻近活性工具表面,当从顶部层观察时背衬层定位在线圈载体层下方,背衬层电连接到顶部层并具有比顶部层低的电阻率,导电中间层位于线圈载体层和顶部层之间,其中中间层具有比顶部层低的电阻率,热阻层在中间层和顶部层之间。

背景

这种设备在WO-2013/002703-A1中提出,其中该设备可以例如用于模压具有精细表面图案的光学设备。这种工具的一个问题是如何以高效的方式来生产工具。

概述

因此,本公开的一个目的是获得一种工具,该工具可以以更高效的方式被生产。该目的以如权利要求1所界定的工具实现。更具体地,在最初提到的类型的工具中,热阻层是陶瓷材料热喷涂层,从活性工具表面看时,该陶瓷材料热喷涂层结合到热阻层下方的层。这产生中间层的至少上部部分和热阻层,与该热阻层一起,中间层作为单个单元被涂覆。

为了生产具有模压的表面图案的平坦产品,中间层的顶表面可以是平坦的,并且顶部上的热阻层可以被机加工成平坦形状。这提供了补偿例如中间层的制造公差的机会。

可选地,热阻层可以被机加工成偏离平坦的平面形状的三维形状。这还允许生产非平面的最终产品。

可选地,可以将中间层的顶表面机加工成偏离平坦形状的三维形状,并且在该中间层的顶表面上施加具有均匀厚度的热阻层。

这允许在保持均匀厚的热阻层的同时压制三维(非平面)产品。

陶瓷材料热喷涂层可以包括氧化钇稳定的氧化锆YSZ,其已经被发现适用于热喷涂和随后的机械加工。

还已经考虑了用于在两个工具半部之间模压/压制坯件的方法,其中该方法包括使用线圈载体层中的至少一个缠绕线圈在所述工具半部中的至少一个中产生振荡磁场,使得热量在邻近面向坯件的活性工具表面的导电顶部层中经由在顶部层和线圈载体层之间的导电中间层产生。热阻层位于中间层和顶部层之间,并且工具半部被压在一起,其中该方法包括将坯件弯曲成以三维延伸的形式,该形式被机加工到热阻层中。

这允许通过压制产生三维的,即非平面的产品。

附图简述

图1示意性地示出了用于模压/压制坯件的工具。

图2示意性地示出了用于注射成型的工具。

图3示意性地示出了设计成提供工具表面的高效加热的层的堆叠。

图4示意性地示出了图3的层中的电流的感应。

图5示出了将热阻层热喷涂到层的堆叠上的过程。

图6示出了如图5中制造的正被机加工成平面形状的层。

图7示出了实现三维形状的第一实例。

图8示出了实现三维形状的第二实例。

图9A-9C示出了用于将顶部层施加到三维热阻层的一种方法。

图10示出了喷涂在具有三维表面的活性中间层上的热阻层。

详细描述

本公开涉及用于在成形树脂或塑料材料时使用的设备和方法。以下描述将主要描述用于模压塑料坯件的系统,但是,如技术人员意识到的,该系统可以同样适用于注射成型和其它工艺,例如吹制成形。WO-2013/002703-A1描述了一种用于模压/压制坯件或用于注射成型的设备。如图1中所示,这种设备可以具有两个工具半部3,5。每一个或其中的一个可以设置有加热设备7。在模压中,通过在工具中施加热和压力,即,在半部的面向坯件1的活性表面上加热半部的同时,将半部彼此压靠,坯料1(固体塑料件)在一定程度上再成形。通常,在一个或两个表面上施加表面图案。

可以使用该技术的一个示例是当生产用于背光平板LCD电视屏幕的导光体(lightguide)时。在该情况下透明的矩形塑料片材在其一个平坦表面上设置有细小的表面图案。当该片材的边缘被照亮时,该表面图案使入射的光均匀地在表面上离开导光体。这种图案可以通过压模/顶部层来实现,该压模/顶部层是工具半部的在活性表面处面向坯件的层。也可以想到用模压制造的其它产品,例如,菲涅尔透镜。除了提供表面图案(模压)外或作为提供表面图案(模压)的替代方案,例如,弯曲坯件(压制)是可能的。使用主动加热和冷却提供了相对短的周期时间,这意味着与不使用主动加热和可选的冷却相比,该设备具有更高的输出。该设备的使用决不限于生产光学部件。

所公开的加热和冷却功能也可以与注射成型一起来使用。在该情况下,如图2中示意性示出的,将熔融树脂9注入形成在两个工具半部15、17之间的腔11中。工具半部的加热和冷却可以允许形成较薄的结构,并且可以缩短生产周期以提高产量。

作为参考,图3示意性地且以横截面示出了如在WO-2013/002703-A1中描述的层的堆叠。该堆叠被设计成提供活性工具表面31的高效加热。活性工具表面是指与待再成形的塑料或树脂接触的表面。层的堆叠具有感应线圈19,感应线圈19可以用于提供工具加热。该堆叠具有线圈载体层21,电活性中间层23,顶部层25,背衬层27和热阻层29。

本公开很大程度上涉及采用这种热阻层29的改进方式。

线圈载体层21包括缠绕线圈19并且由具有高的相对磁导率(例如室温下300)以及具有非常高的电阻率(例如,2.5*10-3Ωm)的材料制成。因此,它是易于传导磁场但是很大程度上不传送电流的材料。这意味着线圈载体层21将把由线圈19在其中产生的磁场传送和成形到其它层,同时不在线圈载体层21本身中感应出任何实质的涡流。线圈19放置在线圈载体中的开口凹槽中,并且在线圈载体的表面上提供场的均匀分布。PERMEDYN MF1(商标)被认为是用于线圈载体层的一种合适的材料并且包含通过电绝缘树脂一起烘烤的铁磁材料的颗粒。一般来说,线圈载体厚度通常可以在10-30mm的范围内。

电活性中间层23包括具有非常低的电阻率(通常为1-3*10-8Ωm或更小)的金属,例如铜或铝。该层被表示为活性的,因为线圈在其中感应出传送到顶部层的电流。然而,由于电阻率如此低,因此这些电流不会在活性中间层中产生任何较大程度的热。层的厚度通常可以是10-30mm,相对磁导率可以接近1(非铁磁性),并且热导率通常可以是100-400W/m/K。

顶部层25可以包括具有比活性中间层23更高的电阻率的金属。由于电阻率较高,这是热将因涡流而产生的层,该涡流通过线圈19和经由活性中间层23感应。

顶部层部分可以是非铁磁性的,并且电阻率通常可以在1*10-7-1*10-6Ωm的范围内。因此,顶部部分是导电的,但是比中间层的导电性小得多。镍,一种合适的顶部层选择,是铁磁性的。因此,面向线圈的镍的子层的表面(而不是活性表面)将被加热,这是该层优选地较薄的一个原因。另一个原因是电镀厚材料是耗时的。

当从活性表面31看,背衬层27(例如2-15mm厚)设置在线圈载体层21的另一侧上,背衬层27面向待处理的树脂或坯件,并且背衬层27可以由与活性中间层23类似的材料制成。背衬层27通过如图3中示意性示出的连接部33电连接到顶部层25。

热阻层29放置在活性中间层23和顶部层25之间。热阻层29用于在一定程度上阻挡热从顶部层25传递到活性中间层23,使得顶部层25可以达到更高的峰值温度。没有该层,在周期期间顶部层中将达到较低的峰值温度,因为在该种情况下更多的热量从顶部层25连续移除并传送到活性中间层23。

热阻层的厚度在高顶部温度(厚)和短周期时间(薄)之间的折衷来选择。该层可以是电绝缘的,并且热导率通常可以为约1W/m/K。相对磁导率可以接近1(非铁磁)。

热阻层还使得使用诸如镍的铁磁顶部层较少地出问题。由于铁磁材料中的趋肤效应,顶部层的面向线圈的一侧将主要被加热。然而,由于热阻层,该热能将被传送到活性表面,而不是被传送到活性中间层。

图4示意性地示出了图3的层中的电流的感应,图3的堆叠处于分解透视图。在图示的实例中,顶部层25是具有930mm的长边35和520mm的短边37的矩形。其它层具有相应的样式。线圈载体层21缠绕有线圈19,线圈19具有与矩形的短边37平行的方向上的绕组,即绕组匝位于长边上。

当高频AC脉冲施加到线圈19时,响应于线圈19中的电流,将在活性中间层23的下表面中感应出电流39。在一个示例中,每个工具半部可以具有七个线圈,每个线圈具有22个同步馈送的绕组匝,每个线圈在模压期间具有25kW/25kHz/10秒脉冲。因此在活性中间层中产生的电流将在活性中间层23的表面处形成闭合电流回路,其在活性中间层23的下表面处与相邻线圈电流反向平行地行进,并且在上(当从顶部层25观看时)表面处与该相邻线圈电流平行行进。

这些电流在活性中间层的长边缘处互连,并且由于趋肤效应,电流主要存在于活性中间层表面附近。活性中间层23的顶表面中的AC电流将继而在顶部层25中感应出电流40。由于顶部层25具有较高的电阻率,所以该层将产生相当大量的热量。顶部层用连接部33连续地或者以一些间隔在其长边处电连接背衬层27,以允许该电流在整个顶部层表面上流动。

在线圈载体的背侧处的线圈将在背衬层27中感应出类似于活性中间层中的电流。该电流将具有与电流40相同的方向,并且将与电流40叠加。由于其低电阻率,在背衬层27中将产生非常少量的热量。

活性中间层23可以设置有冷却管道(未示出)以允许模具或工具的冷却。该管道可以输送诸如水或油的冷却介质。流动可以是连续的,或者可以是脉冲式的,以便在生产周期的仅一个阶段期间提供冷却。

陶瓷材料作为热阻层的应用

在本公开中,改善了热阻层。在WO-2013/002703-A1中,使用固体玻璃层,并且另一选择是施加薄的塑料层,例如具有低的低导热系数的聚酰亚胺膜,这将允许使用薄层。在本公开中,使用不同的方法。

热阻层被设置为陶瓷层,该陶瓷层作为涂层用热喷涂来施加。一种合适的材料选择是氧化钇稳定的氧化锆(yttria-stabilized zirconia),YSZ,例如METCO 204-TBC(商标)。然后可以将该层机加工成所需的形状。由于这种方法,热阻层将结合到下方的(当从顶部层观看时)层,即通常结合到活性中间层。这产生了中间层的至少上部部分和热阻层,与该热阻层一起,中间层作为单个单元一起被涂覆顶部层。该单个单元可以在压力机中更高效地更换,以便从生产一种类型的产品转换到另一种类型。

图5示出了将热阻层热喷涂到层的堆叠上的过程。通过加热设备53将涂层材料51加热至熔化,并且熔化的颗粒55被加速,从而以熔化的形式与它们预期覆盖的基底(在该情况下是活性中间层23)碰撞。这意味着,与先前的热电阻层相比,该层变成结合到基底层。热喷涂本身对本领域技术人员而言是公知的,并且将不更详细地描述。存在使用不同的方式来熔化和加速朝向基底的熔融材料的滴的不同的技术。

不用说,喷涂层将是不平坦的,但是已经表明,这种层可以通过如图6中示意性示出的常规加工技术被机加工成平面形状。

如图7中的横截面所示,可以实现三维形状,即非平面形状。因此,该装置不是仅仅用于模压表面图案,而是可以用于将坯件弯曲成期望的形状,或者用于注射成型非平面结构。这是使用喷涂的陶瓷材料的另一个优点。例如,并且如示意性地示出的,可以实现具有圆角的矩形的、浅碗形状,其可以产生例如用于电子设备的壳体的一部分。然而,如图8中所示,可以产生任意形状,只要其适合于压制/模压或注射成型。非平面形状也可以应用于增强塑料材料或层压塑料材料的坯件。

图9A-9C示出了用于将顶部层施加到三维热阻层的一种方法。在该图示的实例中,顶部层25'被施加在如图7中所示的热层上。顶部层坯件57被加工成图9A中所示的形式,其镜像热阻层29'的形状,并且该顶部坯件57随后例如通过导热胶结合到该层,如图9B中所示。然后,在外侧上加工所施加的顶部层坯件,以形成最终的顶部层25'。作为可选方案,顶部层可以通过热喷涂施加到机加工的热阻层。不同的钢合金允许这种应用。

图10示出了喷涂在具有机加工的三维表面形状的活性中间层23上的热阻层29。这是当通过热喷涂施加热阻层时变得可用的另一选择。参考图10,两个工具半部可以以类似的方式设计,并且这也适用于结合图6-9C所描述的变型。如所示,热阻层可以被机加工成均匀的厚度,使得其遵循下方的活性中间层的形状。这可能是有利的,因为这样可以实现更均匀的顶部层峰值温度,并且与如果热阻层厚度在活性表面上变化相比,活性表面将更均匀地冷却。

热喷涂的另一个优点是它可以可选地补偿其所应用的不完全平坦的基部。例如,如果活性中间层包括独立的部分,具有不同节段之间的结合部,则喷涂层可补偿例如在结合部处的间隙。

热阻层的厚度可以是例如在0.5-5mm的范围内,取决于其导热性能和其被使用的应用。

所使用的材料的典型示例可以是:

本公开不限于上述实施方案。在所附权利要求的范围内,本公开可以以不同的方式来改变和变化。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1