用于粘合的方法和系统与流程

文档序号:13426200
用于粘合的方法和系统与流程

本发明涉及通过粘接剂连接部件的方法,以及可用于这些方法的系统和设备。特别地,我们设想在将纤维增强复合材料部件彼此连接和/或连接到金属部件,尤其是航空航天部件的领域中的应用。所描述的方法也可用于通常的配合检查中,例如在粘合的成形部件的质量控制中。用于实施该方法的系统是本发明的一个方面。



背景技术:

粘接剂广泛用于航空航天工业和其他领域,用于将纤维增强复合材料部件彼此连接和连接到金属部件。各种各样的航空航天结构部件,例如转子叶片、翼、支柱、风扇壳体衬垫等都结合有位于部件之间的粘合接头。通过消除或减少机械紧固件的使用,粘接剂粘合提供了许多已知的优点。

为了在苛刻的使用条件下实现提供令人满意的性能和可靠性的粘接剂粘合,不仅需要适当选择粘接剂类型、表面处理等,而且还要仔细注意正在连接的表面的精确配合。当粘合复杂三维形状的互补表面时,这是特别重要的。重要的是,在最终接头处,粘合界面处的部件表面之间的间隙(对应于它们之间的粘接剂层的厚度,即粘合层厚度)不会过大,或者可能产生粘合强度不足的区域。相反地,部件之间的任何实际接触不仅会在接触区域失去粘接力以及抑制粘接剂流动,而且还会将部件分隔地保持在相邻区域,不然他们能够适当地配合。在可能会有额外的操作应力、或者部件具有不同程度的热膨胀的地方,在整个粘合界面上达到期望的范围内的粘合层厚度特别重要。与纤维增强复合材料特别相关的另一个问题是固化后复合材料表面有轻微的不光滑或不平整。特别是当一个这样的部件被粘合到另一个具有尺寸公差范围的部件时,不均匀性会重合以使得粘合层厚度超出所需的或允许的范围。

由于这些原因,特别是对于高价值的高性能部件,常规的是在粘接剂实际施加到两个表面之前,经历一系列的配合检查程序。在已知的程序中,将第一层固体(膜)粘接剂施加到被离型膜覆盖的粘合界面上的一个部件上,成形部件表面一起放到预定的相对基准位置,然后分离。测试膜通过透明度/颜色变化指示粘接剂层已经接触两个表面的区域。在非接触区域施加进一步的保护粘接剂层,并重复该过程,逐渐构建与界面上的粘合层厚度分布相对应的粘接剂层厚度的模式或轮廓。由于膜测试(接触或非接触,不知道实际剩余间隙)的原始灵敏度,不可能精确地测量附加粘接剂的正确量和面积,这不可避免地产生粘合层的不准确填充;也许只有80%的量。在施加任何粘接剂之前,也可能需要对部件进行相应的迭代非粘接配合检查,以识别具有过多或不适当间隔的表面区域。重塑这些区域并重复该过程,直到整个粘合界面上的间隔预计在允许的范围内,可以施加粘接剂。

因此,这个过程非常费力和耗时。期望提供更有效和方便的程序,以及能够改善粘合层处的粘接剂填充精度的方法。



技术实现要素:

我们现在提出一种新的粘合方法,用于在粘合界面通过粘接剂粘合来连接第一和第二部件,所述粘合界面由所述第一和第二部件的相应的互补的粘合面限定,其中所述方法包括预粘合配合检查,其中该些部件布置在预期的粘合位置,以检查在所述粘合界面上所述第一和第二部件之间的配合的紧密度。

根据我们的方案,所述配合检查包括:借助位于所述第一和第二部件的粘合面之间的柔性的、可压缩间隔的传感器层,在所述预期的粘合位置,使该些部件联合在一起,从而根据所述粘合界面的不同区域处的粘合层厚度(即面之间的间隔),压缩所述传感器层,以及感测不同区域处的所述传感器层的压缩程度,以获得所述粘合界面的粘合层厚度分布。可期望地以电子方式产生和存储的所述粘合层厚度分布实际上是所述粘合界面上的所述粘合层厚度的地图。然后,使用所述粘合层厚度分布来确定粘接剂施加进程,所述粘接剂施加进程确定要施加到各个区域的粘接剂的量。所述粘接剂施加进程同样优选地以电子方式产生和存储,可以例如被输入到切割器控制处理器,所述切割器控制处理器被编程为确定一组粘接膜片的形状,该组粘接膜片可以在粘合界面处被施加到一个部件或同时施加到两个部件,以构建具有对应于预定粘合层厚度分布的粘接剂厚度分布的粘接剂层。

我们特别倾向的是,传感器层是可操作的以测量在一压力范围内的各个界面区域上的压力变化,所述压力范围产生自:根据部件表面的变化的间隔,位于部件表面之间的传感器层的压缩程度不同。因此,特别优选的实施方案是包括压力传感器(优选压电传感器)阵列的传感器层。所述阵列的传感器通常具有连到用于记录粘合层厚度分布的外部处理单元的电气或其它连接器。

通过在许多位置或区域在一范围内逐渐测量压力,压力传感器层可以直接指示界面上的定量粘合层厚度变化,并且可以比先前的重复接触/非接触测试更有效。

优选地,未压缩的传感器层至少与预定的最大粘合层厚度(即,被认为对于所考虑的部件和粘接剂可接受的粘接剂层的最大厚度)一样厚,使得在整个界面上实现厚度测量。检测不到压缩的传感器层区域表示在该区域处的部件表面的潜在不可接受的不一致性,使得在重新确定和使用粘合层厚度分布之前,它们应该分离、重塑以及再次进行配合检查。相比之下,在许多情况下,远小于最大粘合层厚度的粘合层厚度,甚至接近实际接触可能是可接受的。因此,可期望地,传感器层易受到相当程度的压缩的影响,例如,可压缩到至少低至其静止状态厚度的20%,更优选至少低至10%。传感器层应该优选地能够承担这样的压缩并且随后弹性恢复,即不损坏或破坏压缩传感器例如压力传感器如压电传感器。

传感器层的期望的静止厚度将取决于具体应用(部件的材料和形式,粘接剂的类型),但通常它为至少0.5mm,优选为至少0.8mm,更优选为至少1mm,可能1.5mm或以上,通常不大于2mm。通常可恢复地可压缩至少低至0.3mm,优选至少低至0.2mm,更优选至少低至0.1mm。以上提及的弹性压缩率的%程度也可以应用于任何这些优选的绝对厚度。

传感器层的优选形式包括承载压力传感器阵列(例如压电传感器)的传感器片,以及层压在传感器片的一面或两面上的延伸层,所述延伸层的总厚度期望大于所述传感器片的总厚度,并且所述延伸层的材料比所述传感器片的材料柔软(作为层更容易被压缩)。可期望地,所述延伸层的材料构成所述传感器层的总厚度的至少60%,至少70%或至少80%。传感器层的这些延伸结构具有能够以不太柔软的材料稳定地支撑传感器和可期望的任何相关的接线的优点。柔软的延伸层将厚度构建到最大粘合层厚度,使得可以检测到高达该厚度的渐进压缩,同时仍允许传感器层压缩得足以在其他区域的部件表面的紧密接近下存在。

包括安装在稳定的矩形载体膜中的压电传感器和相关连接器阵列的压敏片是可获得的产品,用于将它们的传感器输出转换成压力地图显示的软件也是可获得的产品。这样的设备例如可从Tiedemann&Betz GmbH&Co.KG获得。这些膜的常规用途是如此检测压力变化的模式,而不是用于测量对应于层厚度变化模式的压缩变形的模式。可以调整和扩展这种已知的传感器片技术,以产生可以通过适当的编程进行显示和/或进一步处理的压力分布或地图。

优选地,当位于部件之间时,传感器层在其层方向上基本上不被拉伸,因为这将趋向减小其厚度并改变压缩(厚度)和检测压力之间的关系。因此,当粘合界面是三维形状时,优选地,传感器层被预成形或模式化以适应该三维形状。这可以通过通常保留或产生基本上均匀的层厚度的任何膜加工方法来完成。最简单地,传感器层被设置为多个面板,每个面板在其静止状态下可以是平坦的或基本平坦的,其轮廓对应于所选择的粘合界面的相对平坦的区域。或者说,分开的面板被提供用于区域到角度的任何一侧或界面的边缘、或至少最尖锐或最复杂的这些。面板可以单独使用或通过连接器部分(通常不具有感测能力)连接,以装配三维成形件或可折叠成形件以覆盖三维成形界面。通过用于传感器层或其面板的柔性和可织的(drapable)材料,可以获得额外的一致性。或者在一些实施例中,传感器层本身可以以三维形式形成,例如,通过切割成一模式并通过粘合或焊接使层部分边缘到边缘连接以产生所需的传感器层的三维成形件(传感器层预成形件),或者通过使用热成形或模制和定型工艺以形成传感器片预成形件。

粘合界面通常是三维形状或轮廓,因为特别地,在这些情况下,粘合层厚度的确定可能是有问题的。所述粘合界面优选地在多于一个平面中逐渐弯曲。所述第二部件可以具有凹槽,所述凹槽包含在所述第二部件中或构成所述第二部件的粘合面并且接收所述第一部件的相应地突出的粘合面或粘合面部分。例如,所述第二部件是通道、盖件或护套的形式,具有配合所述第一部件的互补的外缘粘合面上的内部凹槽粘合面。

特别地,所述方法可用于当一个部件是纤维增强复合材料或两个部件均是纤维增强复合材料时。所述第一部件可以是动叶片,静叶片或其它翼型元件,优选是纤维增强聚合物复合材料的。所述第二部件可以是用于所述第一部件的边缘盖或边缘防护件,优选时金属的。一个示例是金属(例如钛或钛合金)的边缘防护件,用于管道式风扇燃气涡轮发动机的风扇叶片、转子叶片或静叶片。

因此,我们的方案的优选实施例是一种粘合方法,用于将金属边缘盖件连接到纤维增强复合材料叶片边缘上。盖件是通道的形式,具有内部凹槽粘合面,该内部凹槽粘合面通常比盖件的宽度更深。这种粘合面,即内部凹槽的表面的直接形状测量是非常困难的,使得本方法提供了显著的益处。制备通道形式的包括如上所述的压力传感器阵列的传感器层预成形件,该通道形式对应于金属边缘部件的内部凹槽。金属边缘安装在叶片边缘上,传感器层预成形件位于它们之间。边缘和叶片一起移动直到它们达到预定的粘合位置。可以通过在粘合界面之外的两个部件上的预定位置点(基准点)的配合对接来指示达到粘合位置,使得它们可以直接对接,例如一个在金属边缘盖件的尖端,一个在金属边缘盖件的根部。传感器层预成形件占用边缘和盖件之间的整个粘合界面,并且根据界面间隙的厚度(粘合层厚度)在它们之间被压缩到不同程度。分布在界面上的传感器层的各个传感器相应地检测不同程度的压力,这些压力被传递到传感器层的数据处理器。将阵列的压力数据转换为相应的粘合层厚度值。这些数据反过来被转换成用于粘合界面的相应的粘接剂施加进度。因此,根据可以使用一般编程和处理确定的适当的算法来解释或转换粘合层厚度分布,以提供粘接剂施加进程计划程序/方案。

该方法的另一个设想的实施例是围绕燃气涡轮发动机的风扇壳体的内侧粘合风扇壳体衬套。它们是两个大的环形部件,通常均是纤维增强复合材料的,并且衬套的外侧将围绕壳体的内侧粘合。粘合界面处的径向间隙(粘合层厚度)可期望地高达例如1.5mm。尽管只要避免直接接触,最小值并不关键,在动叶片/静叶片和边缘金属装饰盖件的先前实施例中,优选的粘合层厚度通常较小,例如,从0.2mm到1mm。

根据部件的尺寸、复杂性和性质,传感器层(或传感器层预成形件)可以仅在粘合界面的一部分上延伸和/或可以在粘合界面的各个区域使用多于一个的传感器层或预成形件,例如因为界面很大或形状复杂。通过在粘合截面外对接和/或互配位置点(基准点)的上述方式来构建预期的粘合位置通常是适用的。

必要或可期望的位置分辨率,例如传感器层中压力传感器的面积密度取决于界面形状的复杂性。如果形状具有特别复杂或关键的部分,则面积密度可以各层变化。可期望地,所述层中的传感器的数量为至少100个,优选至少500个或至少1000个。

从粘合层厚度分布图得到的粘接剂施加进程或程序表示在粘合界面的各个区域待施加以完全占用粘合层的粘接剂的量。用于粘接剂施加进度或分布的实施程序或过程取决于所用粘接剂的种类。例如,如果要使用液体或糊状粘接剂,则可以根据粘合界面的各个区域处的单位面积粘接剂的预定施加重量来计算该进度。从厚度分布计算出的进度可以在适当的控制程序中使用,例如用于以适当的分布将液体或糊状粘接剂机械地施加到其中一个部件的粘合面上。

我们倾向使用固体膜形式的粘接剂,因为操作的便利性和清洁性,还因为它在施加后不趋于移动。通常借助固体膜粘接剂实施粘接剂施加进程,以便制备一组预定形状的粘接膜片,当在粘合界面处适当地定位时,它们将构建与粘合层厚度分布匹配的粘接剂厚度轮廓。因此,该方法可以使用膜切割控制程序,该膜切割控制程序具有适合于将粘合层厚度分布转换成粘合界面上的粘接膜片的相应的预定布置以提供目标粘接剂厚度分布的算法。同样,可以使用标准编程。可期望地,该程序使用与粘接膜的厚度的倍数相对应的一系列厚度阈值,以将层压粘接膜层的阶梯状厚度梯度近似为实际粘合层的渐变的厚度变化。

使用粘接膜片(粘接套件)的预定的计算的形状来控制切割机以从粘接膜切割相应的片的切割器程序(例如,用于在层压板和纺织品领域切割的.DXF文件)是公知的,因此这一步很容易实现。

粘接剂类型可以根据通常的做法进行选择。环氧粘接剂通常是合适的。

当粘接剂作为固体膜片施加时,优选在部件粘合面上设置定位引导件,以指示每个粘合片的适当位置。优选的是光投影仪,例如激光投影装置,其通过部件表面上的光束指示位置。这种装置在复合材料装配领域中是已知的。在本方法的上下文中,例如,可以基于粘接剂施加进度中的数据容易地控制投影仪。

如上所述,本方法在待粘合在一起的第一和第二部件之间实现。朝着必要的粘合层厚度的规范,直接并有效地执行具有巨大的优点。然而,在该想法的替代或补充实施中,其可以被实施,例如在制备待粘合部件中作为前期工序,可以在待粘合的部件之一和模板部件之间实施上述的配合检查。模板部件具有对应于待粘合的其他部件的形式的标准形式。例如当待粘合的部件中的一个或两个可能具有初始的基本不均匀性或不规则性时,该过程可能是有用的,使得将部件的粘合面最初近似为另一部件的标准形式而不是实际形式更有效。在这种实现中,可以根据本文中的任何方案使用传感器层进行配合检查,并且不需要产生粘接剂施加进程。

本方案的另一方面是用于实现如上所述的粘合方法的系统,包括如上所述的传感器层预成形件以及控制处理器,所述控制处理器被编程为基于来自所述传感器层预成形件的传感器的压力数据来来确定粘合层厚度分布,优选所述控制处理器为根据所述粘合层厚度分布来确定粘接剂施加进程,并且可选地控制以下任何一种:切割器以切割粘接片、定位引导件以指示在所述部件上用于粘接片的所述预定位置、自动粘接剂施加器。在特定实施例中,预成形件成形为沿叶片边缘(例如,用于管道式风扇燃气涡轮发动机的压缩机风扇叶片边缘)配合。

附图说明

现在将参考附图通过示例来描述本发明,其中

图1示出了安装在燃气涡轮发动机的压缩机风扇叶片上的边缘防护件,图2是II-II处的部分弦截面;

图3示出了位于叶片上的边缘防护件,图4是IV-IV处相应的截面;

图5是传感器层和相关设备的示意图;

图6、7和8是传感器层的替代形式的示意性截面图;

图9示意性地示出了相对的部件表面之间的传感器层的特点,该相对的部件表面具有对应于粘合层厚度的不同的间距;

图10示出了适用于配合图1至4中的风扇叶片上的边缘防护件的传感器层预成形套件;

图11是部分弦截面,其示出了在配合检查程序中使边缘防护件和叶片边缘联合在一起时,在边缘防护件和叶片边缘之间引入的传感器层预成形套件;

图12示意性地示出了风扇叶片上的成形粘接剂层的激光投影引导标记施加位置;

图13是管道式风扇燃气涡轮发动机的纵向截面图,所描述的方法可用于其,例如在风扇叶片的制造中。

具体实施方式

首先参见图1至4。参考将压缩机风扇叶片100的叶片主体1粘合到金属前缘防护件或装饰件2的示例来说明本发明。这是众所周知的结构;边缘防护件2的较大的强度保护了叶片100的纤维复合材料主体1免受冲击损坏。边缘防护件2是细长通道的形式,具有顶部21、压力侧凸缘25和吸力侧凸缘24,该吸力侧凸缘24比压力侧凸缘25短。它通常是钛或钛合金的如Ti 6-4。风扇叶片100具有尖端11和根部12。在所示示例中,边缘防护件2沿大部分叶片前缘延伸;它可能比这更短或更长。通过与边缘防护件(图2)的向内的内部粘合面23粘合的粘接剂层9(图4),它被粘合到叶片主体1的粘合面13上(参见图1)。参考上述本发明的一般性讨论,叶片主体1是第一部件,边缘防护件是第二部件。部件1、2是大尺寸的,硬且强的不同材料的,并且它们各自的粘合面13、23以陡斜和变化的角度接近。因此,实现在粘接剂9的允许或期望的范围内的间隙厚度,然后确保间隙在其基本上所有区域上的被粘接剂填充(但非过度填充)是一项艰巨的任务。实际上在这种情况下,极端边缘区域对于粘合厚度来说不太关键;这里可以存在如图所示的增大的厚度或空隙区域26,其填充有较大的粘接剂主体并且关键厚度区域位于其两侧。

叶片主体1和边缘防护件2的相对的粘合表面13、23限定了由粘接剂9占用的装配的粘合界面。穿过该界面从一个部件表面到另一个部件表面的最短距离是粘合层厚度。优选的粘接剂是环氧基粘接剂,用作设置在离型背衬(release backing)上的固体膜。用于这种装配的远离空隙区域26的最大粘合层厚度,即粘接剂在其上将一些部件连接在一起变得不太有效的粘合层厚度通常为约1mm。然而,可以允许更小的粘合层厚度,直到接近接触,而没有不利之处。因此,优选使用厚度仅为最大粘合层厚度的一部分的粘接膜,使得可以构建多层粘接剂以近似于粘合层间隙的变化。粘接膜厚度通常在最大粘合层厚度的1/10和1/3之间。在本示例中,使用0.25mm厚的热固性环氧粘接膜。

边缘防护件2分别在其顶部和根部处具有位置点211、212,如图1所示但未具体示出。形成这些,以使得当在粘合界面处在叶片主体1和边缘防护件之间限定有通常合适的粘合层厚度时,叶片主体1和边缘防护件2对接这些位置,因此它们提供用于配合检查和粘合的参考位置。这本身就是已知的。

图5至图8示出作为本方案的特征部分的传感器层系统的细节。在图5中作为功能单元示意性地示出的是传感器层5、控制处理器6、用于切割粘接膜7的切割器65、用于引导粘接剂施加到部件的激光投影装置8和用户显示器63。

传感器层5是结合有微小压电传感器53的阵列51的薄聚合物片或膜52。层5是柔性的,并且用于传感器53的连接器在片52内延伸到单个主连接器59再到控制处理器6。这种一般类型的矩形压电阵列传感器片是已知的并且市售可得,例如从如上所述的Tiedemann&Betz。它们在1mm以下的广泛范围内的片厚度以及各种聚合物材料中可用。也可以在广泛范围内选择单个传感器的总数和密度,根据设计需要,各个传感器之间的距离高达12mm,并且小至1mm。通常以交叉“线”布置的传感器的总数可以是数百或数千,从而可以确定详细的压力分布。每个传感器53发出与在层5的该点处被施加的压力成比例的电信号,并且这些压力数据被传送到控制处理器6进行存储和使用。可以在显示器63上呈现层上的压力变化的视觉表示或地图。

根据本方案,图5中示意性示出的这类传感器层5用于测量叶片主体1与边缘防护件2的粘合面13、23之间的粘合层厚度。为此,被成形为匹配粘合层的形状的传感器层预成形件55由结合有压电传感器阵列的层材料构成,预成形件55在图10中示出。在该结构中,粘合界面的厚度关键区域是尖锐边缘空隙区域26的两侧的相对平坦的区域。这些可以分别通过用于压力和吸力面的单个平坦传感器层面板552、553作为套件来适当地测量。图10以示例的方式示出了这些面板552、553,它们制作成单个预成形件以便于处理,它们通过中间弹性体连接件551连接,在配合检查期间没有位于叶片边缘处的空隙区域26中的传感器。也可以分别地使用这些面板。面板552、553被轮廓定制以匹配金属防护凸缘和叶片侧面之间的界面的对应部分的轮廓。由于粘合层的允许厚度可能会大大低于最大值,所以传感器层需要相应地可压缩而不破坏传感器结构。图6示出了一简单结构,其中结合有传感器阵列51的可压缩聚合物层相对于这些传感器的层要厚(厚度x为允许的粘合层最大值),并且聚合物足够柔软以压缩至x的小部分,在该处粘合层狭窄。这种简单的结构在一些情况下可能是合适的,但是在另一些情况下,传感器53及其相关的连接器可能没有得到充分地支撑。图7示出了优选的替代方案,其中较强的、较不易变形的聚合物的传感器层52与柔软的、易于压缩的聚合物的延伸层54层压至相同的总厚度x,传感器层52占用厚度y是总厚度x的小部分,小于20%。尽管传感器层聚合物的可压缩性较差,但延伸层54给层5提供了足够的可压缩性。图8示出了另一种替代方案,其中延伸层材料54设置在位于中心的传感器层52的两面。

图9以示意性截面示出了传感器层5在界面处的部件1、2之间的特点。随着粘合层厚度从较大的值(在B处)减小到较小的值(在A处)时,延伸层54逐渐压缩。随着层逐渐压缩,压电传感器53承受的压力逐渐增加,它们产生相应地增加的信号,使得来自传感器53的压力信号直接和逐渐地与相关点处粘合层厚度相关。如果存在过大的间隙111,该处表面间隔超过最厚粘合层(在C处)而且因此也超出传感器层5的层的静止厚度x,则相应的传感器不会检测到压缩,这将指示在该区域的不一致性的不可接受程度。

为了实现本发明,将例如如图10所示的传感器层预成形套件55置于叶片主体1和边缘防护件2之间,并使它们联合在一起(图11,箭头D),直到在位置点211、212处的接合指示达到预期的粘合位置。来自压电传感器53的信号被转换成粘合界面区域上的压力图,其可以在显示器63上观看。该压力图直接与粘合界面上的粘合层厚度的变化即粘合层厚度分布相关;如图5中示意性地示出,计算并保留或存储该粘合层厚度分布61。

然后,控制处理器(当然,它实际上可以是单独的操作以及单独的处理器)的其他软件将粘合层厚度分布数据61转换成一组指令,这些指令对应在每个区域填充粘合层所需的膜粘接剂的层数或量。然后使用这样的计算出的粘接剂施加进程62来帮助制备粘接套件,该粘接套件用于将边缘防护件2粘合到叶片主体1上。

首先,根据粘接剂施加进程来控制可编程自动切割器65(其在图5中示意性地示出;这些是众所周知的)。

对于具有预定厚度的固体膜粘接剂,软件参考对应于粘接膜厚度的倍数的一组阈值,来解释来自传感器层的渐变的压力/厚度值,从而确定在每个区域填充粘合层所需的膜粘接剂的层数。结果是粘接剂施加进程,该粘接剂施加进程的形式为根据粘合层厚度分布计算的预定的一组粘接膜形状的程序指令,并且其可以通过自动切割器65从供应的粘接膜7切割。一些相应的粘接剂形状在图5中以71示意性地示出。结果是一个完整的粘合片套件,当适当地定位时,其可以被构建,以在边缘防护件就位时,在叶片粘合面13上提供与预测的粘合层厚度匹配的粘接剂模式。

由于粘接剂施加进程的形式为从粘合层厚度分布直接计算的存储数据,因此也可以帮助用户将粘接膜71的一些片正确地定位在叶片主体1上。图12示出了已经就位的膜片71和激光投影装置8,该激光投影装置8通过由光束81划定的标记82指示用于后续粘接膜片的适当位置。

以这种方式,用于装配叶片边缘防护件的粘接套件的制备过程是完全自动化的。本领域技术人员还将理解,在实际的粘合阶段之前,传感器层预成形件和相关联的系统可以用作待粘合的部件的形状检查和质量控制的手段。

参考图13,结合有根据本发明制成的粘合部件的管道式风扇燃气涡轮发动机通常用510表示,并且具有主轴线和旋转轴线X-X。沿轴向流动顺序,发动机包括进气口511、推进风扇512、中压压缩机513、高压压缩机514、燃烧设备515、高压涡轮516、中压涡轮517、低压涡轮518和核心发动机排气喷嘴519,该推进风扇512具有可由本方法制造的一组风扇叶片,例如,关于其前缘或后缘防护件。机舱521通常围绕发动机510并且限定进气口511,旁通管道522和旁通排气喷嘴523。

在操作过程中,进入进气口511的空气通过风扇512加速,从而产生两股空气流:进入中压压缩机513的第一气流A和通过旁通管道522的第二气流B,以提供推进推力。中压压缩机513压缩引导到其中的空气流A,之后将该空气输送到发生进一步压缩的高压压缩机514。

将从高压压缩机514排出的压缩空气引导到燃烧设备515中,在燃烧设备515中其与燃料以及燃烧的混合物混合。然后,在通过喷嘴519排出之前,所产生的热燃烧产物通过膨胀,从而驱动高、中和低压涡轮516、517、518,以提供额外的推进推力。高、中和低压涡轮分别通过合适的互连轴驱动高和中压压缩机514、513和风扇512。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1