树脂金属复合体、树脂金属复合体的制造方法以及树脂金属复合体的解体方法与流程

文档序号:20166592发布日期:2020-03-24 21:36阅读:220来源:国知局
树脂金属复合体、树脂金属复合体的制造方法以及树脂金属复合体的解体方法与流程

本发明涉及树脂金属复合体、树脂金属复合体的制造方法以及树脂金属复合体的解体方法。



背景技术:

随着环境限制、节能对策,汽车、飞机、铁道车辆等移动体的轻量化不断发展。其中,一直盛行如下尝试:利用由树脂(也可以是含有纤维的纤维增强树脂(frp),以下相同)构成的树脂构件来制作以往使用金属的构件从而谋求轻量化。但是,仅利用树脂构件,强度、耐久性等方面不充分的情况较多。因此,大多情况下,以具备上述树脂构件和由金属构成的金属构件,并将它们接合而成的树脂金属复合体的形式构成。在树脂金属复合体中,使用时构件间牢固地接合(为包含粘接的概念)。

作为将树脂构件与金属构件接合的技术,已知有专利文献1所记载的技术。专利文献1中记载了一种铝被覆纤维增强塑料成型体,其是在包含增强纤维和基体树脂的纤维增强塑料成型体的至少一个表面接合了铝片的铝被覆纤维增强塑料成型体,该铝片的至少与纤维增强塑料接触的面被化学粗化,该粗化层的厚度小于2μm。另外,记载了上述基体树脂成分主要是极限氧指数为25以上、软化温度为200℃以上的阻燃耐热超级工程塑料树脂的铝被覆纤维增强塑料成型体。

现有技术文献

专利文献

专利文献1:日本特开2014-148113号公报



技术实现要素:

发明所要解决的课题

在专利文献1所记载的技术中,通过在与树脂构件接合的金属构件的表面进行粗糙化,从而提高了树脂构件与金属构件的接合强度(特别是参照专利文献1的第0015段)。在此,从近年来的环境限制等观点出发,对于因使用完毕等理由而废弃的树脂金属复合体,优选分离为树脂构件和金属构件而解体。由此,之后的回收处理变得容易。

但是,专利文献1中记载的树脂金属复合体没有考虑解体性。即,在专利文献1所记载的技术中,受到树脂构件和金属构件的高接合强度的影响,存在难以将树脂金属复合体分离为树脂构件和金属构件而解体的可能性。

本发明是鉴于这样的情况而完成的,本发明要解决的课题在于,提供能够兼顾高接合强度和高解体性的树脂金属复合体、树脂金属复合体的制造方法以及树脂金属复合体的解体方法。

用于解决课题的方法

本发明人等为了解决上述课题而进行了深入研究。其结果发现以下见解而完成了本发明。即,本发明的主旨涉及一种树脂金属复合体,其特征在于,具备金属构件以及树脂构件,该树脂构件与该金属构件接合且具有能够对于存在于该金属构件表面的官能团可逆地解离和结合的动态共价键。其他的解决方法在具体实施方式中后述。

发明效果

根据本发明,能够提供能兼顾高接合强度和高解体性的树脂金属复合体、树脂金属复合体的制造方法以及树脂金属复合体的解体方法。

附图说明

图1是第一实施方式的树脂金属复合体的立体图。

图2是表示第一实施方式的树脂金属复合体中的树脂构件的官能团与金属构件的官能团的作用的图,是表示树脂构件与金属构件接合了的状态的图。

图3是制造第一实施方式的树脂金属复合体的方法。

图4是说明在制造第一实施方式的树脂金属复合体时使用的树脂构件及金属构件的表面构成的图。

图5是将第一实施方式的树脂金属复合体解体的方法。

图6是第二实施方式的树脂金属复合体的立体图。

图7是第三实施方式的树脂金属复合体的立体图。

具体实施方式

以下,适当参照附图,对用于实施本发明的方式(本实施方式)进行说明。需要说明的是,在各图中对相同的构件标注相同的符号,并省略重复的说明。

图1是第一实施方式的树脂金属复合体10的立体图。树脂金属复合体10构成为具备:具有可逆地解离及结合的共价键(以下称为动态共价键)的树脂构件1、以及金属构件2。树脂构件1和金属构件2通过在存在于树脂构件1表面的官能团与存在于金属构件2表面的官能团之间形成动态共价键而接合。

作为树脂构件1,优选为在固化时形成酯键的单体、或含有作为单体骨架的酯键的结构。作为在固化时形成酯键的单体,例如除了多官能的具有环氧基的环氧化合物以外,还优选由羧酸酐或多元羧酸构成。作为多官能的具有环氧基的环氧化合物,例如优选双酚a型树脂、酚醛清漆型树脂、脂环式树脂、缩水甘油胺树脂。作为环氧化合物的进一步的具体例,可举出双酚a二缩水甘油醚苯酚、双酚f二缩水甘油醚、双酚s二缩水甘油醚、间苯二酚二缩水甘油醚,六氢双酚a二缩水甘油醚、聚丙二醇二缩水甘油醚、新戊二醇二缩水甘油醚、邻苯二甲酸二缩水甘油酯、二聚酸二缩水甘油酯、三缩水甘油基异氰脲酸酯、四缩水甘油基二氨基二苯基甲烷、四缩水甘油基间二甲苯二胺、甲酚酚醛清漆聚缩水甘油醚、四溴双酚a二缩水甘油醚、双酚六氟丙酮二缩水甘油醚等,但并不限定于这些。

作为羧酸酐或多元羧酸的例子,可举出邻苯二甲酸酐、四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、甲基四氢邻苯二甲酸酐、3-十二碳烯基琥珀酸酐、辛烯基琥珀酸酐、甲基六氢邻苯二甲酸酐、甲基纳迪克酸酐、十二烷基琥珀酸酐、氯菌酸酐、均苯四甲酸酐、二苯甲酮四甲酸酐、乙二醇双(三羧酸酐酯)(ethyleneglycolbis(anhydrotrimate))、甲基环己烯四甲酸酐、偏苯三酸酐、聚壬二酸酐、乙二醇双偏苯三甲酸酐酯、1,2,3,4-丁烷四甲酸、4-环己烯-1,2-二甲酸、多元脂肪酸等,但并不限定于这些。

另外,树脂构件1也可以包含:具有羟基、酯基和2个以上乙烯基的乙烯基单体、以及使该乙烯基单体聚合的聚合引发催化剂。

作为乙烯基单体的具体例,可举出甲基丙烯酸2-羟基酯、甲基丙烯酸羟丙酯、丙烯酸4-羟基丁酯、二乙烯基乙二醇、富马酸单甲酯、丙烯酸羟丙基酯、乙基2-(羟甲基)丙烯酸酯、二甲基丙烯酸甘油酯、丙烯酸烯丙酯、巴豆酸甲酯、甲基丙烯酸甲酯、3,3-二甲基丙烯酸甲酯、二乙二醇二甲基丙烯酸酯、乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、富马酸二甲酯、富马酸、1,4-丁二醇二甲基丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、1,3-丁二醇二甲基丙烯酸酯、四乙二醇二甲基丙烯酸酯、四乙二醇二丙烯酸酯、巴豆酸乙烯酯、巴豆酸酐、马来酸二烯丙酯、新戊二醇二丙烯酸酯、新戊二醇二甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、双酚a甘油二甲基丙烯酸酯等,但并不限定于这些。

作为聚合引发催化剂,可举出过氧化物聚合引发剂、偶氮化合物聚合引发剂等,作为具体例,可举出2,2-偶氮二异丁腈、2,2’-偶氮双(2,4-二甲基戊腈)、2,2’-偶氮双(2,4-二甲基-4-甲氧基戊腈)、1,1’-偶氮双(环己烷甲腈)、2,2’-偶氮双(2,4,4-三甲基戊烷)等偶氮化合物;二叔丁基过氧化物、二叔己基过氧化物、二枯基过氧化物等二烷基过氧化物类;1,1-双(叔丁基过氧)环己烷、1,1-双(叔丁基过氧)-3,3,5-三甲基环己烷、2,2-双(4,4-二叔丁基过氧环己基)丙烷等过氧化缩酮类;过氧化苯甲酸叔丁酯、过氧化苯甲酸叔己酯、过氧化乙酸叔丁酯、过氧化月桂酸叔丁酯、过氧化新癸酸叔己基酯等过氧化酯类;过氧化苯甲酰、过氧化月桂酰等二酰基过氧化物类;叔丁基过氧化异丙基单碳酸酯、叔己基过氧化异丙基单碳酸酯、过氧化二碳酸二正丙酯、过氧化二碳酸二异丙酯、过氧化二-2-乙基己酯等过氧化碳酸酯等,但并不限定于这些。

另外,在树脂构件1中通常含有产生动态共价键重组(使结合的官能团发生变化)的酯交换反应催化剂。作为酯交换反应催化剂,优选为在混合物中均匀地分散,并促进酯交换反应的物质。可举出例如,乙酸锌(ii)、乙酰丙酮锌(ii)、环烷酸锌(ii)、乙酰丙酮铁(iii)、乙酰基丙酮钴(ii)、乙酰基丙酮钴(iii)、异丙氧基铝、异丙氧基钛、甲氧化(三苯基膦)铜(i)络合物、乙氧化(三苯基膦)铜(i)络合物、丙氧化(三苯基膦)铜(i)络合物、异丙氧化(三苯基膦)铜(i)络合物、甲氧化双(三苯基膦)铜(ii)络合物、乙氧化双(三苯基膦)铜(ii)络合物、丙氧化双(三苯基膦)铜(ii)络合物、异丙氧化双(三苯基膦)铜(ii)络合物、三(2,4-戊二酸)钴(iii)、环烷酸钴(ii)、硬脂酸钴(ii)、二乙酸锡(ii)、二(2-乙基己酸)锡(ii)、n,n-二甲基-4-氨基吡啶、二氮杂双环十一碳烯、二氮杂双环壬烯、三氮杂双环癸烯、三苯基膦、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-苯基咪唑、1-氰基乙基-2-苯基咪唑等,但并不限定于这些。

另外,作为图1所示的树脂构件1,也可以是导入了具有动态共价键的交联成分的热塑性树脂。作为可使用的热塑性树脂,可举出聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、丙烯酸树脂等,但并不限定于这些。另外,作为该热塑性树脂中所含的交联成分,可举出具有烷氧基胺骨架、二芳基二苯并呋喃骨架、二氧杂硼烷骨架的交联成分,但并不限定于这些。

进而,树脂构件1也可以包含纤维。即,树脂构件1也可以是具有动态共价键的纤维增强树脂(frp)。通过使树脂构件1包含纤维,能够提高树脂构件1的强度以及刚性。

作为能够在树脂构件1中含有的纤维,可举出碳纤维、玻璃纤维、芳纶纤维等,可以是单向的连续纤维、连续纤维的织物、短纤维、长纤维中的任一种。作为制作含有纤维的树脂构件1的方法,可举出将含浸有树脂的纤维重叠并进行加压及加热的方法、向铺设有纤维的模具内注入树脂并加热的方法、在树脂中混炼纤维并进行注射成型的方法等。

进而,作为树脂构件1,也可以重叠多张含有纤维的树脂(纤维增强树脂)。如上所述,树脂构件1是具有动态共价键的树脂。因此,与以往的使用热固性树脂的纤维增强树脂不同,即使在固化后,通过加热也会在多张重叠的纤维增强树脂之间树脂彼此发生化学结合。由此,能够提高纤维增强树脂间的强度。

上述图1所示的树脂金属复合体10所具备的金属构件2例如是汽车、飞机、铁路车辆等中使用的金属,例如除了铝、铁等金属的单质或含有该金属的化合物以外,也可以是例如不锈钢(sus304等)等合金。

金属构件2的形状在上述图1中为平板状,但金属构件2可以使用加工或成形为任意的形状的构件。另外,也可以使用预先加工或成形了的金属构件2来制造树脂金属复合体10,例如能够将由平板状的金属构件2与平板状的树脂构件1贴合而得到的树脂构件1与金属构件2的一体物进行任意地加工或成形。

另外,也可以对金属构件2的表面辅助性地实施自然氧化或氧化处理。通过实施自然氧化或氧化处理,能够将羟基确实地导入金属构件2的表面。并且,由此,在所导入的羟基与树脂构件1进行化学结合时,即发生酯交换反应时,金属构件2表面的羟基与酯基反应,使得树脂构件1与金属构件2更牢固地粘接。需要说明的是,金属构件2的表面通常被氧化,因此存在羟基。因此,即使未有意地进行氧化处理,也能够利用动态共价键将树脂构件1与金属构件2接合。

另外,为了加强接合,树脂构件1和金属构件2能够使用螺栓、螺钉、铆钉等来使它们压接。

图2是表示第一实施方式的树脂金属复合体10中的树脂构件1的官能团与金属构件2的官能团的作用的图,是表示树脂构件1与金属构件2接合了的状态的图。如上所述,树脂构件1具有动态共价键。具体而言,在该图2所示的例子中,通过在构成树脂构件1的羧基与构成金属构件2的羟基之间形成酯键,从而树脂构件1与金属构件2接合。而且,该酯键是上述的动态共价键,可在图2所示的双波浪线部可逆地切断(和结合)。

图3是制造第一实施方式的树脂金属复合体10的方法。树脂金属复合体10例如通过在将平板状的树脂构件1与平板状的金属构件2重合后进行加热来制造。在此,一边参照图4一边对树脂构件1及金属构件2各自的表面构成进行说明。

图4是说明制造第一实施方式的树脂金属复合体10时使用的树脂构件1及金属构件2的表面构成的图。在树脂构件1的表面,存在多个能够在构成酯基的c-o键(图4中的双波浪线部)的部分可逆地切断(和结合)的酯键作为动态共价键。需要说明的是,该结合例如通过加热而被切断。另一方面,在金属构件2的表面存在羟基。

然后,使具有这些表面的树脂构件1与金属构件2重合(使其接触)并进行加热时,如上所述,存在于树脂构件1表面的酯基的共价键被切断。该切断在上述图4中的双波浪线部的位置进行。由于切断共价键而生成的羰基具有不成对电子,因此反应性高。因此,在树脂构件1的表面生成的羰基与存在于金属构件2表面的羟基结合。由此,如参照上述图2说明的那样,树脂构件1与金属构件2接合。

图5是将第一实施方式的树脂金属复合体10解体的方法。在树脂金属复合体10使用完毕而要被废弃时,为了将树脂构件1和金属构件2分开废弃,能够应用图5所示的方法。

若对树脂金属复合体10中的树脂构件1与金属构件2的接合部分(在图5所示的例子中为树脂金属复合体10的整体)进行加热,则在树脂构件1与金属构件2之间形成的酯键中,在图2的双波浪线部结合被切断。由此,树脂构件1与金属构件2之间的结合力消失,树脂构件1与金属构件2的接合被解除。其结果是,能够容易地从金属构件2剥离树脂构件1。即,通过加热,可解除它们之间的接合。其结果是,能够容易地从金属构件2剥离树脂构件1而容易地将它们分离,能够容易地将树脂金属复合体10解体。因此,能够容易地将树脂金属复合体10进行回收利用。

需要说明的是,在分离后的树脂构件1中,存在具有不成对电子的羰基。如前所述,该羰基由于反应性高,因此与存在于树脂构件1表面的羟基结合。由此,在树脂构件1的表面生成新的酯基,恢复为上述图4所示的状态。

参照这些图2~图5来进行了说明的加热(为了进行接合而进行的加热、以及为了分离而进行的加热)可以通过任意的方法进行。例如,加热可以在恒温槽等中对整体进行加热,也可以对所希望的位置照射微波或红外线来部分地进行加热。进而,例如也可以通过将使用电加热器等加热了的金属板按压于所希望的位置来进行加热。

另外,在接合时,可以一边在树脂构件1与金属构件2的层叠方向上进行加压(施加按压力)一边进行加热,也可以不进行加压而进行加热。另外,在不进行加压而进行加热的情况下,例如也可以在加热后进行加压。另一方面,在分离时,可以一边在树脂构件1与金属构件2的层叠方向上施加拉开的力一边进行加热,也可以不施加这样的力而进行加热。另外,在不施加这样的力而进行加热的情况下,也可以在加热后施加拉开的力而将它们分离。

加热温度根据树脂构件1的材料组成和配合比率而不同,例如为150℃~300℃左右。另外,加热时间例如可以设为1小时~10小时。另外,在使树脂构件1与金属构件2接合时以及在将它们分离时,加热温度以及加热时间可以相同,也可以不同。

另外,作为参照图2~图5来进行了说明的加热,也可以将树脂金属复合体10放置在高温高湿环境下。特别是,通过暴露于高湿下,从而通过空气中的水分可促进酯键的水解,能够更容易地将树脂构件1与金属构件2接合及分离。

高温高湿环境的具体条件没有特别限制,例如在100℃或200℃下,相对湿度可以为60%~95%。另外,高温高湿环境下的处理时间例如可以设为3小时~20小时。需要说明的是,在使树脂构件1与金属构件2接合时以及在将它们分离时,高温高湿环境的具体条件可以相同,也可以不同。

图6是第二实施方式的树脂金属复合体20的立体图。在树脂金属复合体20中,与上述树脂金属复合体10同样地,具备树脂构件1和金属构件2。其中,在该图6所示的树脂金属复合体20中,在树脂构件1与金属构件2之间形成有粘接层3,它们经由粘接层而接合。因此,在该树脂金属复合体20中,除了上述那样的在树脂构件1与金属构件2之间产生的作用(参照图2)以外,树脂构件1与金属构件2还通过该粘接层3接合。

粘接层3用于辅助接合树脂构件1和金属构件2,例如由环氧系、丙烯酸系、氨基甲酸酯系、有机硅系等各种树脂构成。其中,该粘接层3优选包含动态共价键。通过包含动态共价键,能够在树脂构件1与粘接层3之间产生参照上述图2而进行了说明的作用。由此,能够在树脂构件1与粘接层3之间更牢固地接合,并且能够更容易地进行包含粘接层3的树脂构件1与金属构件2的分离。作为包含动态共价键的树脂,例如可以使用与构成上述树脂构件1的树脂相同的树脂。

图7是第三实施方式的树脂金属复合体30的立体图。在树脂金属复合体30中,与上述树脂金属复合体10、20同样地,具备树脂构件1和金属构件2。其中,在该图7所示的树脂金属复合体30中,在树脂构件1与金属构件2之间具备偶联剂4,它们经由偶联剂4而接合。

偶联剂4用于将可与上述树脂构件1所具有的动态共价键结合的偶联基(环氧基等)配置在金属构件2的表面。因此,在该树脂金属复合体30中,除了上述那样的在树脂构件1与金属构件2之间产生的作用(参照图2)以外,还可以利用配置于金属构件2的偶联剂4与树脂构件1之间产生的作用。由此,树脂构件1与金属构件2能够更牢固地接合,并且树脂构件1与包含偶联剂4的金属构件2的分离能够变得容易。

作为偶联剂4,例如可以使用具有环氧基、羟基、酸酐基等能够与树脂构件1形成化学键的官能团的烷氧基硅烷等。作为烷氧基硅烷,例如可举出3-环氧丙氧基丙基三甲氧基硅烷。另外,作为将偶联剂4配置于金属构件2的方法,例如通过将偶联剂4用任意的有机溶剂稀释,并使金属构件2浸渍,从而能够在金属构件2的表面配置偶联剂4。

实施例

以下,列举实施例,对本发明进行更具体的说明。

<实施例1>

按照日本专利第5749354号公报的实施例1中记载的方法制作树脂组合物(树脂构件)。具体而言,首先,将10.7g的der332环氧树脂(dowchemical公司制)和0.81g的乙酰丙酮锌(ii)放入烧杯中。进而,加入3.5g的戊二酸酐,将烧杯放入恒温槽并加热,混合至它们完全溶解为止。接着,使已均匀的溶液流入四氟乙烯制的模具中,在140℃加热加压8小时,制作平板状的树脂组合物作为树脂构件。然后,将所制作的树脂构件与铝板(金属构件)重合,一边在200℃加热3小时一边进行加压,自然冷却至室温,由此得到上述图1所示的形状的树脂金属复合体。

在该树脂金属复合体中,在树脂构件与金属构件的边界插入金属制的刃时,结果刃未能侵入树脂金属复合体的内部。另外,在用手将树脂构件从金属构件剥离时,结果它们牢固地接合,未发生树脂构件与金属构件的剥离。因此,确认了此处制作的树脂金属复合体中,树脂构件与金属构件牢固地接合。

另外,将所制作的树脂金属复合体放入恒温槽,将其整体在200℃加热1小时。在刚加热1小时之后,在树脂构件与金属构件的边界插入金属制的刃。于是,刃能够容易地侵入树脂金属复合体的内部,能够容易地将树脂构件从金属构件剥离。因此,在树脂金属复合体中,确认了虽然在加热前牢固地接合,但通过加热能够容易地剥离。

<实施例2>

首先,制作国际公开第2016/178345号的实施例1中记载的液态清漆。具体而言,将苯乙烯(东京化成公司制、通过聚合得到聚苯乙烯)3.0g、双酚a甘油二甲基丙烯酸酯(aldrich公司制)3.0g、2-羟基甲基丙烯酸酯0.77g、过氧化聚合引发剂ct50(日立化成公司制)0.11g、以及环烷酸锌(ii)(东京化成公司制)0.32g放入玻璃制的螺纹瓶中。然后,使用混合转子搅拌螺纹瓶中的试剂,制作均匀的液态清漆。

使此处制作的液态清漆含浸于将碳纤维编织成织物状的布中。含浸后,将清漆干燥,得到含浸有树脂的布。将得到的布重叠4张,一边在120℃加热4小时一边进行加压,然后冷却至室温,由此制作纤维增强树脂作为树脂构件。然后,将所制作的树脂构件与铝板(金属构件)重合,一边在120℃加热3小时一边进行加压,自然冷却至室温,由此得到上述图1所示的形状的树脂金属复合体。

对于所得到的树脂金属复合体,与实施例1同样地插入刃时,结果刃未能侵入树脂金属复合体的内部。另外,与实施例1同样地,用手将树脂构件从金属构件剥离时,结果它们牢固地接合,未发生树脂构件与金属构件的剥离。因此,确认了在实施例2中,树脂构件与金属构件也牢固地接合。

另外,对于所制作的树脂金属复合体,代替200℃而将温度设为120℃,除此以外,与实施例1同样地进行加热,刚加热后,与实施例1同样地插入刃。于是,刃能够容易地侵入树脂金属复合体的内部,能够容易地将树脂构件从金属构件剥离。因此,确认了在实施例2中,对于树脂金属复合体,虽然在加热前牢固地接合,但通过加热也能够容易地剥离。

<实施例3>

通过与上述实施例2同样的方法制作液态清漆。将所制作的液态清漆放入四氟乙烯制的烧杯中,在120℃的恒温槽中加热4小时,由此得到固化物。将固化物从烧杯中取出,用研钵充分地粉碎,由此得到粉体状的固化物。该固化物相当于参照上述图6而进行了说明的粘接层3。

另一方面,通过与上述实施例2同样的方法,制作纤维增强树脂(树脂构件)。然后,在此处制作的纤维增强树脂的表面分散上述粉体状的固化物,在其上载置铝板(金属构件)。即,在实施例2中记载的纤维增强树脂与铝板之间,夹入所制作的粉体状的固化物(粘接层)。接着,一边将它们整体在120℃加热3小时一边进行加压,自然冷却至室温,由此得到上述图1所示的形状的树脂金属复合体。

对于所得到的树脂金属复合体,与实施例1同样地插入刃时,结果刃未能侵入树脂金属复合体的内部。另外,与实施例1同样地,用手将树脂构件从金属构件剥离时,结果它们牢固地接合,未发生树脂构件与金属构件的剥离。因此,确认了在实施例3中,树脂构件与金属构件也牢固地接合。

另外,对于所制作的树脂金属复合体,代替200℃而将温度设为120℃,除此以外,与实施例1同样地进行加热,刚加热后,与实施例1同样地插入刃。于是,刃能够容易地侵入树脂金属复合体的内部,能够容易地将树脂构件从金属构件上剥离。因此,确认了在实施例3中,对于树脂金属复合体,虽然在加热前牢固地接合,但通过加热也能够容易地剥离。

<实施例4>

在具有环氧基的硅烷偶联剂(3-环氧丙氧基丙基三甲氧基硅烷)的0.5%水溶液中浸渍铝板,在空气中进行干燥。通过该操作,在铝板(金属构件)的表面配置了参照上述图7而进行了说明的偶联剂4。接着,将该铝板与在上述实施例2中制作的纤维增强树脂(树脂构件)重合,与上述实施例2同样地操作,得到树脂金属复合体。

对于所得到的树脂金属复合体,与实施例1同样地插入刃时,结果刃未能侵入树脂金属复合体的内部。另外,与实施例1同样地,用手将树脂构件从金属构件剥离时,结果它们牢固地接合,未发生树脂构件与金属构件的剥离。因此,确认了在实施例4中,树脂构件与金属构件也牢固地接合。

另外,对于所制作的树脂金属复合体,代替200℃而将温度设为120℃,除此以外,与实施例1同样地进行加热,刚加热后,与实施例1同样地插入刃。于是,刃能够容易地侵入树脂金属复合体的内部,能够容易地将树脂构件从金属构件上剥离。因此,确认了在实施例4中,对于树脂金属复合体,虽然在加热前牢固地接合,但通过加热也能够容易地剥离。

<实施例5>

通过与上述实施例2中记载的方法同样的方法,制作树脂金属复合体。需要说明的是,通过该方法制作的树脂金属复合体的接合强度牢固,该情况在上述实施例2中已被确认。

然后,将此处制作的树脂金属复合体按照iec(internationalelectrotechnicalcommission,国际电工委员会)68-2-66的条件放入设定为温度130℃、相对湿度85%的加热装置中,暴露10小时。经过10小时后,从加热装置取出树脂金属复合体,紧接着与实施例1同样地插入刃。于是,刃能够特别容易地侵入树脂金属复合体的内部,能够容易地将树脂构件从金属构件剥离。因此,确认了在实施例2中,对于树脂金属复合体,虽然在加热前牢固地接合,但通过高温高湿环境下的热处理也能够特别容易地剥离。

<实施例6>

按照science(科学)、356、62~65页的记载,制作用二氧杂硼烷衍生物将聚甲基丙烯酸进行交联而成的树脂构件。将所制作的树脂构件与不锈钢板(sus304、金属构件)重合,在190℃加热加压1小时,得到树脂金属复合体。

对于所得到的树脂金属复合体,与实施例1同样地插入刃时,结果刃未能侵入树脂金属复合体的内部。另外,与实施例1同样地,用手将树脂构件从金属构件剥离时,结果它们牢固地接合,未发生树脂构件与金属构件的剥离。因此,确认了在实施例6中,树脂构件与金属构件也牢固地接合。

另外,对于所制作的树脂金属复合体,代替200℃而将温度设为120℃,除此以外,与实施例1同样地进行加热,刚加热后,与实施例1同样地插入刃。于是,刃能够容易地侵入树脂金属复合体的内部,能够容易地将树脂构件从金属构件剥离。因此,确认了在实施例6中,对于树脂金属复合体,虽然在加热前牢固地接合,但通过加热也能够容易地剥离。

作为比较例,通过将日本专利第5749354号公报的比较例1中记载的方法部分变更的方法来制作树脂组合物(树脂构件)。此处制作的树脂组合物不具有动态共价键。首先,将10.7g的der332环氧树脂(dowchemical公司制)放入烧杯中。进而,加入3.5g的戊二酸酐,将烧杯放入恒温槽并加热,混合至它们完全溶解为止。接着,使用已均匀的溶液,通过与上述的实施例1同样地操作,从而得到平板状的树脂组合物(树脂构件)、以及上述图1所示的形状的树脂金属复合体。

在该树脂金属复合体中,在树脂构件与金属构件的边界插入金属制的刃时,刃容易地侵入树脂金属复合体的内部,树脂构件与金属构件简单地分离了。因此,确认到对于此处制作的树脂金属复合体,与实施例1不同,树脂构件和金属构件仅通过热压接而粘接,不过是弱的接合。

符号说明

1树脂构件

2金属构件

3粘接层

4偶联剂

10树脂金属复合体

20树脂金属复合体

30树脂金属复合体。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1