增材制造方法及设备与流程

文档序号:22687665发布日期:2020-10-28 12:56阅读:289来源:国知局
增材制造方法及设备与流程

交叉引用的相关申请

本专利申请根据滕忆先于2017年10月17日提交的美国第62/707022号题目为“材料熔融法三维增材制造”预备专利申请要求优先权,该申请为了所有目的在此提供参照予以引入。

本发明总体上涉及一种制造方法,更具体地而又不局限于在一种逐层构建的四周封闭的结构内建造三维物体的方法,所述封闭结构在三维物体成型过程中确定其几何形状和尺寸。这种封闭结构实质上是一个对应一组横截面的几何形状逐层构建的成型模,在其中加入原料从而建造三维物体。



背景技术:

在过去的世纪中有许许多多的制造方法和设备在各种工业中得到了利用。对照于传统减材制造技术比如机械加工,出现在三十年前的3d打印即增材制造技术已经越来越普及。这种新的制造途径取消了制造传统模具的需要,并提供了多种快速成型和利用计算机辅助设计文件进行制造的方法,使用塑料、金属和其它材料制造工件。

高熔点和复杂的成分处理组织性能的关系使金属增材制造成为富有挑战性的任务。缺陷或质量不合格,比如内部孔隙、氧化、不符合要求的微观组织、令人不满意或各向异性的性能、残余热应力、变形、开裂、尺寸偏差、以及表面粗糙是经常出现的问题。这些问题往往受到工艺参数和技术能力的影响。其结果是,在工艺鉴定和过程控制上很难确立合适的置信度,以交付连续一致的、令人满意的质量。

目前金属零件的增材制造主要是用金属粉末技术进行的,例如粉末床激光选区熔化、粉末床电子束选区熔化、粉末床粘结剂打印成型、及含有粘结剂的粉末膏的挤出成型。这些粉末床技术需要使用大量价格昂贵的金属粉末,在后续处理中要清理零件,收集松散粉末,小心回收和再次使用用过的粉末材料,避免掺入杂质、氧化及安全隐患等问题。在某些场合中,收集的松散粉末不能重复使用,造成昂贵材料的浪费。

粉末床激光或电子束选区熔化由于各层厚度通常是在40至70微米的范围内,一般来说速度非常慢,低生产率和高价原材料导致制造成本非常高。利用有机粘结剂的金属粉末成型技术制作低密度的“青坯件”(greenparts),在后续烧结过程中会出现高达20%的线收缩,导致很难控制收缩均匀性、几何形状偏差、尺寸精度及工艺的连贯一致性。此外,“脱粘结剂”(debinding)步骤之后的残余有机粘结剂在烧结过程中需要在有氧气存在的情况下予以烧除。然而,将其烧尽是很难控制的,因为这是在金属零件内避免金属粉末氧化与遗留碳素残留物之间一个复杂的平衡。

上述增材制造技术出于低生产率、高成本和有限工艺能力的考虑,一般只适合制造小型金属零件。根据这一原因,在提高速度降低成本的前提下,需要适合较大零件增材制造的新方法,所用材料不限于金属,还要适合塑料和复合材料。



技术实现要素:

本发明的目的在于提供一种能够构建包括壳型在内的成型模并在其中建造三维物体的增材制造方法和系统。

本发明的另一个目的是提供一种增材制造方法和系统,所述方法和系统能够在提高速度降低成本的情况下生产从小到大的三维物体或工件。

本发明的目的进一步包括提供一种利用粉末材料、不同成分的混合材料、或不同形态的原料进行增材制造的方法和系统,以制造金属、塑料及复合材料工件。粉末床、粘结剂打印、粉末清理和收集、脱粘结剂、烧除粘结剂、以及后续烧结步骤会被取消。

本发明还有一个目的就是提供一种增材制造方法和系统,所述方法和系统被设置成在成型模内利用特定的能源、成分配方、或条件处理原料,以在三维物体成型的过程中达到熔融、烧结、凝聚、接合、反应、或硬化的目的,获得所要的微观组织、成分和性能。

本发明为实现以上和相关目的,可以展现出如附图所示范的方式。应当注意的事实是,这些附图仅仅是示范性。应该认为本发明还包括变更的内容,其保护范围当以权利要求书所界定的范围为准。

附图说明

本发明可以通过参考下面的具体实施方式和所附权利要求,再结合附图就可充分地得到理解:

图1是本发明制造方法的一个示例性工艺流程图。

图2a至图2d是本发明的某些实施例中的设备结构和操作示意图。

具体实施方式

本发明总体上是关于一种三维物体增材制造的方法和设备,所述方法和设备被设置成通过对应一组横截面的几何形状逐层构建成型模,向其内部提供原料并进行处理,以使所述三维物体成型。该成型模或部分成型模在其构建过程中呈现一个四周封闭的结构,因而内有空腔形成,可用来对具有外表面和内表面的三维物体进行成型。这样,在该成型模建起至少一层后,原料可以被加入其中进行处理。该成型模和物体的构建继续进行,直到该三维物体的建造操作全部完成为止。

所述成型模比较适合建成薄壁壳型结构,以减少制造过程中的材料和时间消耗。所以除非有具体说明,壳型和成型模的术语在本文中可以互换使用。

由于成型模或壳型确定了所要制造的三维物体的形状和尺寸,在本发明中聚焦细微的能量束,例如激光和电子束不再是必不可少。在壳型和原料四周没有粉末床的情况下,可以使用其它类型的能源来在较大的面积范围内和层厚增加的情况下对原料进行同时的、“宏观”的处理,以不至于影响尺寸分辨率和表面质量。换句话说,在壳型内制造的物体尺寸精度和表面质量基本上取决于壳型构建的工艺能力和质量,从而允许原料在较大体积内进行熔化、烧结、固化或硬化。于是,此方法在生产效率和能力方面的优越性对较大和某些不易制作零件(例如复合材料)的增材制造来说是显而易见的。

在三维物体建造完成之后,型壳可以在后续处理过程中予以清除。在某些情况下,型壳可与其中的原料接合在一起,从而成为合成一体的三维物体的表面部分。为某些应用,这个途径在三维物体内建造不同材料的复合结构时提供可选方案,有利于获得特殊性能和降低成本。

参考附图,其中描绘的各个部分不一定按比例绘制或表现完整,其中贯穿所有视图和附图相同的元件用相同的参考编号表示,这些图示意出一种增材制造方法以及根据本发明的原理配置的示例性的制造系统。

本发明将实施例对照参考附图进行讨论。本领域技术人员应理解本文中关于这些附图的详细描述是出于解释的目的,而且属于本发明范围内的其它实施例可以认为是合乎情理的。作为示例而并非作为限制,本领域技术人员根据本发明的阐述应意识到,根据具体应用的需要会有多个替代和适合的途径,来实现本文所述的任何功能以及超出本文所述的实施例特别应用的功能。各种相关的变更及实施例属于本发明的范围,是以权利要求所界定的范围为准。

应当进一步理解本发明不限于本文所述的特定方法、材料、用途和应用,因为这些可以变化。此外,还应当明白,本文中使用的术语仅是用于描述特定实施例的目的,而不旨在限制本发明的范围。应当注意到,除非上下文另有明确指明,本文和权利要求书中使用的单数形式″一″,″一个″和″该″包括复数引用。因此,比方说对″一个元件″的引用是对一个或多个元件的引用,并且包括本领域技术人员已知的等同物。所有使用的连词应被理解为尽有可能的包含性。因此,词语″或″应当被理解为具有逻辑性″或″的定义,而不是逻辑″排除或″的定义,除非上下文清楚地表明不是如此。本文中所描述的结构还应被理解为包括这样结构功能的等同物。除非上下文另有明确规定,描绘近似的语言应该如此予以理解。

对″一个实施例″,″实施例″,″示例性实施例″及类似的引用可以指本发明如此描述的一个或多个实施例,可以包括某一特定的特征,结构或特性,但不是每个实施例必须包括这个特定的特征,结构或特性。

图1展示出一个示例性工艺流程图,其工艺流程还可以用图2a至图2d中的增材制造系统100进一步示范,这些图对本专利也同样是示例性。在步骤201,使用者用计算机辅助设计软件按照所要制造的三维物体设计一个成型模10,并用所选的文件格式生成一个描述该成型模几何形状尺寸的计算机辅助设计模型。成型模10最好设计成具有薄壁的壳式结构,以在其建造过程中尽可能地减少成型模制造材料20的消耗和运行时间。成型模10的设计及成型模材料20的选用应当考虑到工艺处理条件,并确保成型模10能承受所用制造三维物体的原料51的处理条件以及制造该三维物体的条件。

在成型模或壳型10内的空腔在形成至少部分三维物体时起到成型的功能,所以成型模空腔18在本发明中又叫作型腔18。

步骤202是关于利用软件程序生成计算机文件,其过程是通过将成型模设计的计算机辅助设计模型按顺序切成一组横截面几何形状,并采用这些数据、工艺参数及控制规范,来控制增材制造系统100,进行建造成型模10及其中的三维物体的操作。

取决于成型模10的构建工艺,通常使用陶瓷粉末、金属粉末、矿物材料粉末或其它非金属材料粉末与无机或有机粘结剂一起,将成型模制造材料20配制成膏状或浆料材料,供材料挤出(extrusion)或喷射(jetting)工艺使用。图2a示范出一些实施例中使用的挤出器装置31,用来提供成型模制造材料20并使成型模10成型。在不同的实施例中,对具有足够的固体掺入量和粘度的浆料也可以使用挤出法。低粘度的浆料在合适的液态压力下可以用喷头进行喷射打印成型。在一些应用方案中,材料挤出和喷射方法也可用聚合物熔体和树脂来构建成型模10.

在应用能量定向熔融沉积(directedenergydeposition)的某些实施例中,包括激光、电子束和电弧熔化,可以使用粉末或丝状的金属材料来构建金属成型模10(例如壳型)。在用合适的合金材料构建至少部分壳型时,所述壳型材料可以与型腔18内的金属原料51接合在一起(如经过熔融或烧结),来构成有复合结构成分变化的金属工件。当需要优异的表面性能时,比如金属工件用在需要耐磨或耐蚀的场合,高性能高成本的合金可被用来构建壳型,从而在至少部分金属工件表面提供所需要的性能。然而,另一种低成本具有补偿性能的合金原料可以用来充填型腔,以构建不同合金的复合结构。这些实施例在制造中大型工件时对降低成本提高性能来说特别有用。

在某些应用中,金属箔、纺织物、纸或塑料膜可以用在薄片叠加(sheetlamination)工艺中来构建成型模10。

在步骤203,用一种软件程序在计算机5(或控制器5,下同)运行计算机执行文件,计算机5可以集成在本系统之中,或是独立单机或网络设备连接到本系统,来开始成型模10的构建操作。成形模10的第一层11是建在一个固体基底上,比如构建版41。该构建版41是安装到z轴的移动机构40上,可用金属或陶瓷材料制成,用来在高温下进行金属零件的增材制造。在一些实施例中,成型模10将构建版41和所建三维物体或工件的第一层81分隔开来。在另外的实施例中,尤其在使用电弧加热或电子束加热处理金属原料51制造金属工件时,要求该金属工件将电流传导至构建版41上,所以该金属工件至少要有一部分建在或触及金属构建板41,除非用别的方法连接使电流通过。

在一些实施例中,在使用建起的成型模10前需要将其加热或固化来使其硬化。应用某些类型的能源或调整工艺过程的条件会对成型模10的硬化有很好的效果。在高温下制造金属工件的过程中,从非常热的工件散出的热量可能足以达到硬化成型模10的要求。

当成型模10建到预先确定的层数时,其造型工序暂停并启动步骤204。送料器60将所需的原料50输送到型腔18中。在一些实施例中,该送料器在计算机5的控制下在型腔18范围内,沿指定轨迹在x和y轴方向上移动,将原料50定量地投放在指定的位置。如有多余的原料50落在型腔18外面的话,将被收集起来。如图2b所示的实施例显示,构建版41可以让多余的原料50通过构建版41上的孔隙散落到下面被收集起来。在一些实施例中,在构建版41振动和真空收集的的帮助下,收集散落下的原料会效率更高。除真空收集外,如合适的话可以使用其它方法,例如磁性收集和打扫来收集散落的原料。

在型腔内原料51处理之前,有必要对型腔18内的原料予以紧实以提高其密度。有些实施例利用机械紧实方法,比如但不限于振动、晃动、转辊压实及机械压实等。

原料50选择的种类包括:金属、塑料、陶瓷、其它无机材料和复合材料。原料可以包含单一或多种组成部分或成分,包括粉末材料、丝状材料、纤维状材料、片状材料、液态材料、或上述材料的综合。适用的选料包括但不限于:粉末、粘结剂、添加剂、短纤维、长纤维、纤维束、纺织物、编织物、无纺纤维纱(布)、无纺纤维毡、预制型(preform)、及网格材料等。

在步骤205,各种实施例在型腔18内用单一或复合能源加工处理原料51,将其熔融、烧结、硬化、接合、提高密度、或固化,以使至少部分三维物体成型。在各种实施例中,处理工艺有多种选择,包括而不限于:电磁感应加热,电弧加热,电阻加热,激光加热,电子束加热,等离子弧加热,燃料燃烧加热,炬焰加热,紫外线照射,远纤外辐射加热,微波加热,射频辐射加热,压力加工,气压处理,以及超声波焊接。加工处理的目的是使所制造的物体或工件满足设计规范的要求,并获得所要求的微观组织(晶粒尺寸、物理形态、组分、组成相、孔隙度、层与层的结合、夹杂等)和性能(强度、硬度、延展性、韧性及密度等)。

对于金属工件在高温下进行增材制造时,常需要某些保护性气氛将四周环境中的氧气含量降至最低,以避免金属粉末的氧化。有些实施例利用氩气、氮气或二氧化碳,而别的实施例则使用真空或含有氢气或一氧化碳的还原性气体。

除了在处理原料51中施加能量外,有些实施例还利用化学反应或改变物理状态,例如放热反应、自传播反应(self-propagatingreaction)、交联固化、化学粘接和凝固,将原料51固化、硬化、增加密度、接合、烧结或熔结。

在型腔18内处理原料51之后,完成了至少一层三维物体或工件(如第一层81)。在所述物体或工件全部完成之前,重复步骤203、204和205以继续所述构建过程。在这一过程完成之后,已建成的物体或工件要经过后续处理,以去除成型模或壳型10,并进行下述处理步骤,比如而不限于:切割、打磨、喷砂、热处理、机械加工等,从而满足生产规范和质量要求。

在前面的详细描述中,已经参考了本文的附图,其中通过图示的方式示范出了可以实施本发明的一些具体实施例。这些实施例及其某些变体已经得到足够详细的描述以使本领域技术人员能够使用本发明。应当理解,还有其它合适的实施例可以利用,并且在不脱离本发明的精神或范围的情况下做出符合逻辑的改变。这些描述可能省略了本领域技术人员已知的某些信息。因此,前面细节上的描述并不旨在限于本文的表达内容和范围,而是相反它意在涵盖替代选择,变更和等同的方案,合理地归属于所附权利要求的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1