基于鞍形曲面过渡的薄膜无级双向拉伸装置的制造方法

文档序号:8876009阅读:507来源:国知局
基于鞍形曲面过渡的薄膜无级双向拉伸装置的制造方法
【技术领域】
[0001]本实用新型涉及高分子材料加工技术领域,特别涉及一种基于鞍形曲面过渡的薄膜无级双向拉伸装置。
【背景技术】
[0002]采用双向拉伸技术生产塑料薄膜,可以提高薄膜的机械性能,降低对气体、水汽等的渗透性,提升薄膜的透明度、表面光泽度等光学性能,缩小厚度偏差、提高尺寸均匀性。
[0003]目前,生产双向拉伸薄膜的加工工艺可以分为两大类:双膜泡法和拉幅加工法。双膜泡法是将物料经挤出机熔融挤出形成初膜后骤冷,再经过加热二次吹胀拉伸制得薄膜产品。拉幅法生产加工双向拉伸薄膜的技术包含分步拉伸和同步拉伸。分步拉伸技术是由线速度不同的辊筒进行纵向拉伸;横向拉伸通常由两组夹子夹着薄膜沿着具有设定轨迹的导轨移动,实现薄膜的横向扩幅。但是,分步拉伸薄膜受力不均匀,拉伸的薄膜厚度不均匀,热收缩率大,各向异性差,薄膜品质均衡性差。
[0004]德国布鲁克纳公司将线性同步电机应用到薄膜的同步双向拉伸设备,利用线性同步电机精准的控制各夹子在导轨上的运动速度,使夹紧薄膜两侧的夹子运动位移保持高精度的同步,实现了薄膜同步双向拉伸。2007年,奥地利ANDRITZ公司推出了机械同步双向拉伸技术MESIM,利用具有伸缩性能的机械链夹,实现对薄膜的同步双向拉伸。申请号为201010612820.8的实用新型专利申请公开了一种塑料薄膜双向拉伸设备,其原理是利用拉伸段内侧轨与外侧轨的距离自前至后逐渐减小,实现外侧轨M形连杆结构的变化,从而改变拉伸段夹具间的距离,实现薄膜的同步双向拉伸。申请号为201310184357.5的实用新型专利申请公开了一种薄膜同步双向拉伸机,其原理是利用机械夹具夹持薄膜在圆周形导轨上运动,实现薄膜的同步双向拉伸,这与传统的机械夹持式同步双向拉伸没有多大区别,仅仅是把线性导轨布置成圆周导轨。
[0005]同步双向拉伸生产的薄膜比分步双向拉伸生产的薄膜综合性能更好,但是上述机械夹持式同步双向拉伸技术存在如下问题:(I)薄膜容易因拉伸不均匀产生严重的弓曲现象,弓曲现象将导致薄膜中部和边缘部位分子取向不同,并导致薄膜的光学性能、通透性、热收缩率有差异;(2)夹具组件中夹子是间隔分布,薄膜的拉伸过程属于间断拉伸,不是无级拉伸;(3)夹具组件中夹子呈点分布,拉伸过程中薄膜边缘受力不均匀,拉伸后薄膜的厚度不均匀,容易破膜,不能用于大角度拉伸;(4)夹具组件本身结构复杂,容易损坏,生产成本较高;(5)协同性较差,对基础工艺要求比较高,对导轨精度、电机驱动和控制系统的精度要求苛刻,导致薄膜生产线的成本高。
[0006]针对目前薄膜的双向拉伸方法及设备存在上述问题,开发一种新型的薄膜同步双向拉伸装置具有重大意义。
【实用新型内容】
[0007]本实用新型的目的在于克服现有技术的不足,提供一种原理简单、易于控制且薄膜综合性能优异的基于鞍形曲面过渡的薄膜无级双向拉伸装置。
[0008]本实用新型的技术方案为:一种基于鞍形曲面过渡的薄膜无级双向拉伸装置,包括人字轮单元和平行轮单元,人字轮单元中的两个横向拉伸轮之间设有可调的夹角,平行轮单元中的两个纵向拉伸轮平行设置;捆绑绳将薄膜左右两侧边缘捆紧在横向拉伸轮及纵向拉伸轮的圆周表面;横向拉伸轮的转动带动薄膜进行横向拉伸,横向拉伸轮与纵向拉伸轮之间的线速度差值带动薄膜进行纵向拉伸。其中,利用捆绑绳与横向拉伸轮及纵向拉伸轮的协同作用,使横向拉伸力和纵向拉伸力分别作用于薄膜曲面的不同切平面上,从而形成鞍形曲面。
[0009]所述人字轮单元包括对称设置的两个横向子单元,每个横向子单元中设有一个横向拉伸轮,两个对称设置的横向拉伸轮形成人字形,横向拉伸轮底部设有第一捆绑组件,横向拉伸轮外侧平行设有第一支板,横向拉伸轮的轮轴穿过第一支板,第一支板底部设有底板,第一支板垂直设于底板上;底板上,靠近人字轮单元入口处的一端设有拨叉定位柱,靠近人字轮单元出口的一端设有第一出口定位柱,拨叉定位柱处设有拨叉;各拨叉的末端通过相应的入口螺母与第一丝杆连接,各第一出口定位柱通过相应的第一出口螺母与第二丝杆连接。
[0010]所述第一捆绑组件包括第一捆绑绳、第一滑动轮和第一预紧轮,第一捆绑绳缠绕于多个第一滑动轮上,第一捆绑绳的外侧设有第一预紧轮;各第一滑动轮的轮轴穿过第一支板。
[0011]所述人字轮单元中,通过第一丝杆可调节两个拨叉末端形成的夹角,通过第二丝杆可调节人字轮单元薄膜出口处横向拉伸轮之间的距离,从而调节薄膜从横向拉伸轮剥离时的出口宽度,实现横向拉伸比无级可调,两个横向拉伸轮之间的夹角值β —般为0°< β <180° ;第一捆绑组件中,通过第一预紧轮预先调节第一捆绑绳在第一滑动轮上的张紧度,然后通过调节第一捆绑绳的张紧度,来控制薄膜在滑动轮上的捆紧程度,保证薄膜被捆紧。
[0012]所述平行轮单元包括对称设置的两个纵向子单元,每个纵向子单元中设有一个纵向拉伸轮,两个对称设置的纵向拉伸轮平行设置,纵向拉伸轮底部设有第二捆绑组件,纵向拉伸轮外侧平行设有第二支板,纵向拉伸轮的轮轴穿过第二支板;第二支板上,靠近平行轮轮单元入口的一端设有导向孔,靠近平行轮单元出口的一端设有第二出口定位柱;各导向孔处与导杆连接,各第二出口定位柱通过相应的第二出口螺母与第三丝杆连接。
[0013]所述第二捆绑组件包括第二捆绑绳、第二滑动轮和第二预紧轮,第二捆绑绳缠绕于多个第二滑动轮上,第二捆绑绳的外侧设有第二预紧轮;各第二滑动轮的轮轴穿过第二支板。
[0014]平行轮单元中,通过第三丝杆及导杆之间的配合,可调纵向拉伸轮之间的距离,一般情况下,平行轮之间的距离稍大于横向拉伸轮在人字轮单元出口处的距离即可;第二捆绑组件中,通过第二预紧轮预先调节第二捆绑绳在第二滑动轮上的张紧度,然后通过调节第二捆绑绳的张紧度,来控制薄膜薄膜在滑动轮上的捆紧程度,保证薄膜被捆紧。
[0015]基于马鞍面调控的薄膜同步双向拉伸装置使用时,其方法是:薄膜曲面双向拉伸过程中,利用横向拉伸力和纵向拉伸力分别作用在不同切平面上,使薄膜在三维空间内由窄平面经鞍形曲面平滑过渡到宽平面,通过控制鞍形曲面的形状实现双向拉伸薄膜厚度均匀性的调控。
[0016]其原理是:薄膜曲面双向拉伸过程中,利用横向拉伸力与纵向拉伸力分别作用在不同切平面上,使薄膜在三维空间内由窄平面经鞍形曲面平滑过渡到宽平面,通过控制鞍形曲面的形状实现双向拉伸薄膜厚度均匀性的调控;捆绑绳将薄膜左右两侧边缘捆紧在横向拉伸轮及纵向拉伸轮的圆周表面(即:第一捆绑绳将薄膜的左右两侧边缘捆紧在横向拉伸轮的圆周表面,第二捆绑绳将薄膜的左右两侧边缘捆紧在纵向拉伸轮的圆周表面),通过调节两个横向拉伸轮之间的夹角来控制薄膜的横向拉伸,通过调整横向拉伸轮与纵向拉伸轮之间的线速度差来控制薄膜的纵向拉伸;同时平行轮单元可将薄膜向宽度方向两侧拉开、展平定型,纵向拉伸过程仅有薄膜边缘与设备接触,薄膜表面无摩擦损伤,不损伤薄膜表面。
[0017]本实用新型与现有的机械夹子式相比,具有以下有益效果:
[0018]1、在外力作用下,薄膜产生连续同步双向拉伸,并在三维空间内形成类似于双曲抛物面的鞍形曲面;通过控制鞍形曲面的形状,能有效的对薄膜弓曲现象、厚度均匀、微观结构进行调控。
[0019]2、通过调节第一丝杆和第二丝杆,可以改变横向拉伸轮的夹角,从而调整横向拉伸比,利用捆绑绳对薄膜的连续捆紧作用及人字轮单元的拉伸作用,实现薄膜的无级同步双向拉伸。
[0020]3、在双向拉伸过程中,捆绑绳与薄膜为线接触,避免了因传统夹子的间隙而导致拉伸过程中薄膜边缘的受力不均匀,有利于提高薄膜制品厚度的均匀性。
[0021 ] 4、工作中,捆绑绳始终在同一个平面内运行,不存在空间扭曲等复杂变形,捆绑绳的宽度不受限制;同时,捆绑绳无需克服摩擦阻力,承受载荷小,寿命更长。
[0022]5、捆绑绳的缠绕压紧方式和运行轨迹简单,人字轮单元的同步拉伸容易控制,装置的结构及零件简单,容易制造装配,对基础工艺要求较低,避免了传统夹子式拉伸装置对导轨精度、电机驱动和控制系统的精度要求苛刻等问题,降低了薄膜生产线的成本。
【附图说明】
[0023]图1为本基于鞍形曲面过渡的薄膜无级双向拉伸装置的结构示意图,此时处于双向拉伸状态。
[0024]图2为图1的A-A剖面结构示意图。
[0025]图3为人字轮单元处
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1