火电机组减温水调阀流量特性线性度校正及控制方法与流程

文档序号:11151476阅读:1520来源:国知局
火电机组减温水调阀流量特性线性度校正及控制方法与制造工艺

本发明涉及火电机组减温控制系统的控制,具体地说是一种火电机组减温水调阀流量特性线性度校正及控制方法。



背景技术:

大型火电机组减温控制系统的常用调节手段是减温水调阀,当减温水调阀的流量特性较差时,往往严重影响到汽温系统的控制品质,有时甚至导致汽温系统不稳定,它是造成汽温系统超温的重要原因。为提高汽温系统的控制品质,保证火电机组的安全、高效运行,除了需要性能优异的减温控制系统外,还需要对减温水调阀流量特性的线性度进行自动校正,因此减温水调阀流量特性线性度校正对于减温控制系统具有重要的实践意义。

在火电机组汽温控制中,控制对象的数学模型具有大迟延大惯性特性,该数学模型在阀门流量特性线性度较好时是固定的,但是当阀门流量特性线性度较差时,比如存在死区或漏流量时,数学模型是时变的,这就使减温控制系统的设计较为困难,除了工况变化造成的多模型,阀门特性的变化也使得减温控制系统对象模型多样化,控制器参数整定困难,常用的阀门线性校正方法采用折线函数,但该方法会使阀门在非线性区出现大幅震荡。



技术实现要素:

本发明所要解决的技术问题是克服上述现有技术存在的缺陷,提供一种火电机组减温水调阀流量特性线性度校正及控制方法,其在阀门流量特性死区(或小流量区)范围内,阀门按照快开调节关的方式,使其动作的大部分时间处于流量特性线性区,实现对阀门流量特性进行实时校正,对减温控制系统模型影响降到最低。

为此,本发明采用如下的技术方案:火电机组减温水调阀流量特性线性度校正及控制方法,获得减温水调阀流量特性后,所述的减温水调阀采用阀门快开调节关的方式,即阀门由0-5%开度开启时,先快速动作至减温水调阀的流量特性线性区间再进行调节,阀门关小至非线性区间时,自动调节关下。

基于本发明设计的减温控制系统能够更好的适应工况需求,提高了控制品质。本发明能够适应阀门的死区非线性特性,实现对减温控制系统的有效补偿,不会引起减温控制系统不必要的震荡。

进一步地,所述阀门快速动作的触发条件为:综合考虑当前阀门开度、导前汽温和设定的导前汽温偏差,判断阀门快开的时间,若当前阀门已关小至阀门流量特性的死区范围内同时导前汽温又高于设定值,触发快开减温水调阀至流量特性线性区间内。

进一步地,当阀门快开条件触发时,用2-3秒的时间快速将控制器下限抬升至阀门流量特性的死区范围内,然后释放控制器下限信号给控制器。

进一步地,当阀门快开条件触发时,在控制器前馈通道中叠加一个微分量,按照快加慢减的方式进行。

更进一步地,所述控制器前馈通道叠加的幅度为死区范围的25-35%。

进一步地,当阀门快开至线性区间后,控制器进行正常调节,当阀门关至非线性区间时根据温度偏差调节至最小。

更进一步地,所述的温度偏差为导前汽温与导前汽温设定值之间的偏差。

本发明具有以下有益效果:保证了火电机组减温控制系统受阀门流量特性影响最小;提高了汽温系统的控制品质;机组在扰动状态(尤其是磨组启停过程)时汽温控制系统能够处于自动调节状态,波动幅度减小,大幅减少了运行工作量。

附图说明

图1为本发明阀门快速动作的判断逻辑图(图中,A表示判断条件1,B表示判断条件2,C表示触发条件)。

图2为本发明基于调阀流量特性线性度校正的控制系统图(图中,A表示控制器下限信号,B表示前馈信号,C表示控制输出指令)。

图3为常规方法控制效果图(图中,A为负荷曲线,B为温度曲线,C为阀门开度曲线)。

图4为本发明控制效果图(图中,A为负荷曲线,B为温度曲线,C为阀门开度曲线)。

具体实施方式

下面结合说明书附图和具体实施方式对本发明作进一步说明。

一、减温水调阀快开判断条件逻辑设计

在火电机组汽温控制中,控制对象的数学模型具有大迟延大惯性特性,该模型在阀门流量线性度较好时是固定的,但是当阀门流量特性较差时,比如存在死区或漏流量时,模型是时变的,这就使控制系统的设计较为困难,除了工况变化造成的多模型,阀门特性的变化也使得系统对象模型多样化,控制器参数整定困难,多模型造成的系统切换会引起控制品质急剧下降。

本发明在知道减温水调阀流量特性的情况下,按照快开慢关的方式,当阀门开启时将减温水调阀快开至线性区间进行调节,关小至非线性区间时则自动调节至最小。

若通过试验可以获得减温水调阀流量特性,则需要设计减温水调阀流量特性线性度校准系统,本发明提出的调阀流量特性线性度校准系统中阀门快开判断条件逻辑如图1所示。

在图1中,A是判断信号1,根据温度进行判断,B是判断信号2,根据阀门开度进行判断,C是阀门快开触发信号。该逻辑综合考虑当前阀门开度、导前温度和设定的偏差等情况,判断阀门快开的时间;若当前阀门已关小至阀门流量特性的死区范围内同时导前温度又高于设定值,触发快开减温水调节阀至流量特性线性区间内。

二、基于调阀流量特性线性度校准的控制系统设计

图2给出了具体的设计方案,A表示控制器下限信号,B表示控制器前馈信号,C控制器输出信号;在A中,当阀门快开条件触发时,用2至3秒的时间快速将控制器下限抬升至流量特性的死区范围内,然后释放;在B中,当阀门快开条件触发时,在控制器前馈通道中叠加一个微分量,按照快加慢减的方式进行。在C中,当阀门快开至线性区间后,进行正常调节,当阀门关至非线性曲线时根据温度偏差调节至最小。

在上述方法中,阀门快开的幅度为阀门流量特性的死区范围,前馈叠加的幅度为死区范围的30%左右。

对于本领域的技术人员而言,阅读上述说明后,各种变化和修正无疑将显而易见。因此,所附的权利要求书应看作是涵盖本发明的真实意图和范围的全部变化和修正。在权利要求书范围内任何和所有等价的范围与内容,都应认为仍属本发明的意图和范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1