根据排污量和输水量自动排污的锅炉系统的制作方法

文档序号:11770386阅读:301来源:国知局
根据排污量和输水量自动排污的锅炉系统的制作方法与工艺

本发明属于锅炉领域,属于f22领域。



背景技术:

传统的锅炉排污系统包括本地服务器。本地服务器接收控制器发送的信息,通过本地服务器内预设控制程序及参数得到的运行方案,控制器根据本地服务器得到的运行方案控制锅炉系统运行,即锅炉系统的运行只能按照本地服务器内预设的控制程序及参数得到的运行方案运行。然而,系统现场状况复杂多变,当本地服务器得到的运行方案无法满足现场状况的需求时,需要维护人员抵达现场更新本地服务器的控制程序及参数,以便本地服务器得到满足现场状况的运行方案,无法灵活地调整本地服务器内的控制程序及参数。



技术实现要素:

本发明通过实时监控每台锅炉的排污量与产生蒸汽量,得到排污量和产生蒸汽量的动态关系,并将上述动态关系实时的通过云端服务器传送给客户端,客户端可以及时掌握锅炉排污系统运行情况,并可以及时通过客户端进行排污参数的调整,防止由于锅炉排污系统故障造成的大量的热能浪费。

为了实现上述目的,本发明的技术方案如下:

一种锅炉系统,包括监控诊断控制器和锅炉,

所述锅炉包括设置在锅炉汽包下端的排污管,排污管上设置排污阀,排污阀一端连接阀门调节装置,阀门调节装置与监控诊断控制器进行数据连接,以便将阀门开度数据传递给监控诊断控制器,同时从监控诊断控制器接受指令,调节排污阀的开度;

所述排污管上进一步包括流量计,测量排污的流量;所述流量计与监控诊断控制器进行数据连接,以便将数据传递给监控诊断控制器,监控诊断控制器根据流量计算出单位时间的排污质量;

所述锅炉的总进水管上设置流量计,用于检测进入锅炉中的流量,所述流量计与监控诊断控制器进行数据连接,以便将测量的数据传递给监控诊断控制器,监控诊断控制器根据测量的流量计算单位时间进入锅炉的水的质量;

监控诊断控制器检测的排污的水的质量与输入锅炉的水的质量的比值超过上限时,监控诊断控制器通过阀门调节装置自动调小排污阀的开度;如果检测的排污的水的质量与输入锅炉的水的质量的比值超过下限时,监控诊断控制器通过阀门调节装置自动调大排污阀的开度;

所述监控诊断控制器与云端服务器数据连接,以便将监控的数据传递给云端服务器,云端服务器与客户端连接,客户端可以通过云端服务器得到监控的数据。

作为优选,监控诊断控制器将排污的水的质量、输入锅炉的水的质量及其比值、排污阀的开度传送到云端服务器,云端服务器将上述数据传递给客户端;

客户端根据得到的数据,输入排污阀的开度的数值,通过云端服务器传递给监控诊断控制器,通过监控诊断控制器来手动调节排污阀的开度。

作为优选,如果排污阀的开度最大的情况下,排污的水的质量与输入锅炉的水的质量的比值依然小于下限值,则客户端会发出警告;

如果排污阀的关闭的情况下,排污的水的质量与输入锅炉的水的质量的比值依然大于上限值,则客户端会发出警告。

作为优选,所述排污管上设置余热换热器,所述余热换热器为供暖散热器,所述散热器包括上集管和下集管,所述上集管和下集管之间连接散热管,所述散热管包括基管以及位于基体外围的散热片,所述基管的横截面是等腰三角形,所述散热片包括第一散热片和第二散热片,所述第一散热片是从等腰三角形顶角向外延伸,所述第二散热片包括从等腰三角形的两条腰所在的面向外延伸的多个散热片以及从第一散热片向外延伸的多个散热片,向同一方向延伸的第二散热片互相平行,所述第一散热片、第二散热片延伸的端部形成第二等腰三角形;所述基管内部设置第一流体通道,所述第一散热片内部设置第二流体通道,所述第一流体通道和第二流体通道连通。

作为优选,所述第二散热片相对于第一散热片中线所在的面镜像对称,相邻的所述的第二散热片的距离为l1,所述等腰三角形的底边长度为w,所述第二等腰三角形的腰的长度为s,满足如下公式:

l1/s*100=a*ln(l1/w*100)+b*(l1/w)+c,其中ln是对数函数,a、b、c是系数,0.68<a<0.72,22<b<26,7.5<c<8.8;

0.09<l1/s<0.11,0.11<l1/w<0.13

4mm<l1<8mm

40mm<s<75mm

45mm<w<85mm

等腰三角形的顶角为a,110°<a<160°。

与现有技术相比较,本发明的锅炉系统具有如下的优点:

1)本发明通过实时监控锅炉的排污量与产生蒸汽量,得到排污量和产生蒸汽量的动态关系,并将上述动态关系实时的通过云端服务器传送给客户端,客户端可以及时掌握锅炉排污系统运行情况,并可以及时通过客户端进行排污参数的调整,防止由于锅炉排污系统故障造成的大量的热能浪费。

2)本发明开发了一种新的余热利用的换热器,并对其结构进行优化,达到最节约的换热效果。

附图说明

图1是本发明排污系统自动控制的示意图;

图2是本发明散热器一个实施例的主视结构示意图;

图3是本发明散热器一个实施例的主视结构示意图;

图4是图2的右侧观察的示意图;

图5是设置孔的散热片的切面图;

图6是本发明云计算控制的流程示意图。

附图标记如下:

1汽包,2余热换热器,3流量计,4压力计,5温度计,6水质分析仪,7阀门调节装置,8排污阀,9阀门,10阀门调节装置,11流量计,12中央监控诊断控制器,13云端服务器,14客户端,,15基管,16第一流体通道,17第一散热片,18第二散热片,19第二散热片,20第一腰,21第二腰,22底边,23孔,24第二流体通道。

具体实施方式

下面结合附图对本发明的具体实施方式做详细的说明。

本文中,如果没有特殊说明,涉及公式的,“/”表示除法,“×”、“*”表示乘法。

一种锅炉热力系统,所述锅炉热力系统包括至少一台锅炉,用于产生蒸汽,所述锅炉与监控诊断控制器12进行数据连接,以便对锅炉的运行进行监控。所述监控诊断控制器12与云端服务器13数据连接,以便将监控的数据传递给云端服务器,云端服务器13与客户端14连接,客户端14可以通过云端服务器得到监控的各种信息。

作为优选,客户端可以输入数据控制锅炉系统的操作。

如图1所示,所述锅炉包括自动控制排污系统,所述自动控制排污系统根据锅炉产生的蒸汽量和输入锅炉的水量进行自动控制。如果蒸汽量与输入锅炉的水量之间的比值小于下限数值,则监控诊断控制器12自动控制减少排污量。如果蒸汽量与输入锅炉的水量之间的比值大于上限数值,则监控诊断控制器12自动控制增加排污量。具体控制系统如下:

如图1所示,所述锅炉包括设置在蒸汽出口管路上的流量计3、压力计4和温度计5,用于测量输出蒸汽的流速、压力和温度。所述流量计3、压力计4和温度计5分别与监控诊断控制器12进行数据连接,以便将测量的数据传递给监控诊断控制器12,在监控诊断控制器中根据测量的蒸汽温度、压力、流速计算单位时间的蒸汽质量。

所述锅炉包括设置在锅炉汽包1下端的排污管,排污管上设置排污阀8,排污阀8一端连接阀门调节装置7,阀门调节装置7与监控诊断控制器20进行数据连接,以便将阀门开度数据传递给监控诊断控制器20,同时从监控诊断控制器20接受指令,调节排污阀8的开度。

所述排污管上进一步包括流量计11,测量排污的流量。所述流量计11与监控诊断控制器20进行数据连接,以便将数据传递给监控诊断控制器20。监控诊断控制器20根据流量计算出单位时间的排污量,从而计算出排污质量。排污质量可以采用经验的排污水的密度来计算,也可以通过测量排污温度水质来具体调用控制器20中存储的数据来计算。

所述锅炉的总进水管上设置流量计,用于检测进入锅炉中的流量,所述流量计与监控诊断控制器20进行数据连接,以便将测量的数据传递给监控诊断控制器20,监控诊断控制器20根据测量的流量计算单位时间进入锅炉的水的流量,从而计算出水的质量。水的质量可以采用水的密度来计算,也可以通过测量水的温度来具体调用控制器20中存储的数据来计算。

当然,进入锅炉的水是循环水管和补水管两者的水量总和。作为优选,可以在补水管和循环水管上分别设置与监控诊断控制器20数据连接的流量计,通过计算两者流量之和,从而计算单位时间进入锅炉总的水量。本发明可以采用多种控制策略来控制排污量。

一个优选控制策略是:监控诊断控制器20计算的蒸汽质量与输入锅炉的水的质量的比值小于下限值,则表明排污率过高,因此监控诊断控制器20通过阀门调节装置7自动调小排污阀8的开度。通过上述操作,可以避免排污过大,造成能源的浪费。如果蒸汽质量与输入锅炉的水的质量的比值大于上限值,则表明排污率过低,可能会影响锅炉的寿命,则监控诊断控制器20通过阀门调节装置7自动提高排污阀8的开度。

监控诊断控制器20将蒸汽质量、输入锅炉水的质量及其比值、排污阀39的开度传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

客户端14根据得到的数据,可以输入排污阀8的开度的数值,通过云端服务器13传递给监控诊断控制器20,通过监控诊断控制器来手动调节排污阀的开度。

作为优选,如果排污阀8的开度最大的情况下,蒸汽质量与输入锅炉的水的质量的比值依然大于上限值,则客户端会发出警告,提示排污系统是否出现故障。

作为优选,如果排污阀8的关闭的情况下,蒸汽质量与输入锅炉的水的质量的比值依然小于下限值,则客户端会发出警告,提示排污系统是否出现故障。

一个优选控制策略是监控诊断控制器20通过流量计11检测的排污的水的质量与输入锅炉的水的质量的比值超过上限时,则表明排污量过大,因此监控诊断控制器20通过阀门调节装置7自动调小排污阀8的开度。如果检测的排污的水的质量与输入锅炉的水的质量的比值超过下限时,则表明排污量过小,因此监控诊断控制器20通过阀门调节装置7自动调大排污阀8的开度。通过这样设置,避免汽包中的水质太差,以免造成锅炉汽包的腐蚀。

监控诊断控制器20将排污的水的质量、输入锅炉的水的质量及其比值、排污阀8的开度传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

客户端14根据得到的数据,可以输入排污阀8的开度的数值,通过云端服务器13传递给监控诊断控制器20,通过监控诊断控制器20来手动调节排污阀的开度。

如果排污阀的开度最大的情况下,排污的水的质量与输入锅炉的水的质量的比值依然小于下限值,则客户端会发出警告;

如果排污阀的关闭的情况下,排污的水的质量与输入锅炉的水的质量的比值依然大于上限值,则客户端会发出警告。

一个优选策略,所述汽包1还包括水质分析仪6,以测量汽包内的水质。所述水质分析仪6与监控诊断控制器20进行数据连接,以便接受测量的数据,根据测量的数据对排污阀8进行开度控制。如果测量的数据表明水质过差,例如某一指标超出数据上限,则需要进行及时排污,因此监控诊断控制器20通过阀门调节装置7自动调大排污阀8的开度。如果测量的数据表明水质好,则监控诊断控制器20通过阀门调节装置7自动调小排污阀8的开度。必要情况下甚至可以关闭排污阀。

监控诊断控制器20将测量汽包内的水质数据、排污阀8的开度传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

客户端14根据得到的数据,可以输入排污阀8的开度的数值,通过云端服务器13传递给监控诊断控制器20,通过监控诊断控制器20来手动调节排污阀的开度。

一个优选策略,在排污管道上设置水质分析仪(没有示出),以测量排污管内的水质。所述水质分析仪与监控诊断控制器20进行数据连接,以便接受测量的数据,根据测量的数据对排污阀进行开度控制。如果测量的数据表明水质过差,例如某一指标超出数据上限,则需要进行及时排污,因此监控诊断控制器20通过阀门调节装置7自动调大排污阀8的开度。如果测量的数据表明水质好,则监控诊断控制器20通过阀门调节装置7自动调小排污阀8的开度。必要情况下甚至可以关闭排污阀。

监控诊断控制器20将测量排污管内的水质数据、排污阀8的开度传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

客户端14根据得到的数据,可以输入排污阀8的开度的数值,通过云端服务器13传递给监控诊断控制器20,通过监控诊断控制器20来手动调节排污阀的开度。

作为优选,所述排污管道上连接余热利用换热器2,以便充分利用污水的热量。换热器2的冷源入口管设置阀门9,所述阀门9与阀门调节装置10连接,阀门调节装置10与监控诊断控制器20进行数据连接,以便将阀门9的开度数据传递给监控诊断控制器20和同时接受监控诊断控制器20的指令。如果监控诊断控制器20测量的排污量增加,则监控诊断控制器20通过阀门调节装置10增加阀门9的开度,以增加进入换热器2的冷源量,保持换热器2输出的冷源的温度恒定,同时避免冷源过热。如果监控诊断控制器20测量的排污量减少,则监控诊断控制器20通过阀门调节装置10减小阀门9的开度,以减少进入换热器2的冷源量,保持换热器2输出的冷源的温度恒定,同时避免冷源加热效果太差。作为优选,所述换热器2可以设置多个。

监控诊断控制器20将测量的阀门9的开度、排污阀8的开度数据传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

客户端14根据得到的数据,可以输入阀门9的开度的数值,通过云端服务器13传递给监控诊断控制器20,通过监控诊断控制器20来手动调节排污阀的开度。

作为优选策略,监控诊断控制器20可以通过计算蒸汽质量与排污质量之和与输入锅炉的水的质量的比值来计算锅炉的水损失。如果计算的水损失超过上限,监控诊断控制器20则发出报警提示。

监控诊断控制器20将蒸汽质量、排污质量、输入锅炉的水的质量及其蒸汽质量与排污质量之和与输入锅炉的水的质量的比值数据传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

如果计算的水损失超过上限,客户端13则发出报警提示。

作为优选策略,汽包1中设置水位计(没有示出),所述水位计与监控诊断控制器20进行数据连接,以便将测量数据传递给监控诊断控制器20。监控诊断控制器20根据测量的数据计算单位时间的水位高度变化,从而计算出汽包1中的水单位时间的质量变化。监控诊断控制器20根据蒸汽产生量、锅炉输入的水量以及汽包水量的变化来调节排污阀8的开度。如果监控诊断控制器20计算的蒸汽质量加上锅炉汽包1水的质量变化之和与输入锅炉的水的质量的比值低于一定数值,则表明排污率过高,因此监控诊断控制器20通过阀门调节装置7自动调小排污阀8的开度。通过上述操作,可以避免排污过大,造成能源的浪费。通过增加汽包水位检测,进一步增加了测量的数据的准确。

监控诊断控制器20将测量的水位、汽包1中的水单位时间的质量变化、蒸汽产生量、锅炉输入的水量以及蒸汽质量加上锅炉汽包1水的质量变化之和与输入锅炉的水的质量的比值数据传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

客户端14根据得到的数据,可以输入阀门9的开度的数值,通过云端服务器13传递给监控诊断控制器20,通过监控诊断控制器20来手动调节排污阀的开度。

作为优选策略,监控诊断控制器20可以通过计算蒸汽质量、汽包水的变化质量与排污质量三者之和与输入锅炉的水的质量的比值来计算锅炉的水损失。如果计算的水损失超过上限,监控诊断控制器20则发出报警提示。

监控诊断控制器20将蒸汽质量、汽包水的变化质量与排污质量及其蒸汽质量、汽包水的变化质量与排污质量三者之和与输入锅炉的水的质量的比值数据传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

如果计算的水损失超过上限,客户端13则发出报警提示。

作为优选,设置测量汽包中水的温度和汽包压力的装置,所述装置与监控诊断控制器20数据连接,监控诊断控制器20根据测量的温度和压力计算汽包中水的质量变化。通过温度和压力计算水的质量,使得结果更加准确。

监控诊断控制器20将汽包中水的温度和汽包压力数据传送到云端服务器13,云端服务器13将上述数据传递给客户端14。

作为优选,汽包中设置测量蒸汽温度和压力的装置,所述装置与监控诊断控制器20数据连接,监控诊断控制器20根据测量的温度和压力以及汽包中水位高度,计算汽包中蒸汽的质量。这样,在前面的计算中,根据汽包中蒸汽的质量变化、输出蒸汽的质量和汽包中水的质量变化三者之合与输入锅炉的水的质量的比值的大小来控制排污阀的开度。这样使得计算结果更加准确。

同样,计算水的损失的时候也需要将汽包中蒸汽的质量变化、输出蒸汽的质量和汽包中水的质量变化以及排污量四者之和与锅炉输入水量进行对比。

作为优选,可以在排污管上设置温度计,监控诊断控制器20根据排污的水温、水的成分以及流速计算单位时间的排污的水的质量。

作为优选,在监控诊断控制器20中预先存储蒸汽的温度压力与密度的关系数据,以便计算蒸汽质量。也可以预先存储水的温度与密度关系数据,一边计算汽包中水的质量。对于污水的温度、成分以及密度的关系也预先存储下监控诊断控制器20中。

前面提到的所有的测量数据和计算数据都可以通过监控诊断控制器20送到云端服务器13,云端服务器13将上述数据传递给客户端14。客户端及时能够得到系统运行的信息。

作为优选,换热器为供暖散热器。当然污水可以直接进入供暖散热器中进行供暖,如图1所示。当然,散热器中的循环水也可以通过换热器与排污水进行换热后,循环到供暖散热器进行供暖。

所述散热器包括上集管和下集管,所述上集管和下集管之间连接散热管,如图2、3所示,所述散热管包括基管15以及位于基管外围的散热片17-19,如图2、3所示,所述基管的横截面是等腰三角形,所述散热片包括第一散热片17和第二散热片18、19,所述第一散热片17是从等腰三角形顶角向外延伸的,所述第二散热片18、19包括从等腰三角形的两条腰所在的面向外延伸的多个散热片18以及从第一散热片向外延伸的多个散热片19,向同一方向延伸的第二散热片18、19互相平行,例如,如图所示,从等腰三角形第二腰21(左边的腰)向外延伸的第二散热片18、19互相平行,从等腰三角形第一腰20(即右边的腰)向外延伸的第二散热片18、19互相平行,所述第一散热片17、第二散热片18、19延伸的端部形成第二等腰三角形,如图2所示,第二等腰三角形的腰的长度为s;所述基管15内部设置第一流体通道16,所述第一散热片17内部设置第二流体通道24,所述第一流体通道17和第二流体通道连通24。例如,如图2所述,在等腰三角形顶角位置连通。

一般散热管都是四周或者两边设置散热片,但是在工程中发现,与墙壁接触的一侧的散热片一般情况下对流换热效果不好,因为空气在墙壁侧流动的相对较差,因此本发明将等腰三角形底边22设置为平面,因此安装散热片的时候,可以直接将平面与墙壁紧密接触,与其它散热器相比,可以大大的节省安装空间,避免空间的浪费,同时采取特殊的散热片形式,保证满足最佳的散热效果。

作为优选,所述第二散热片18、19相对于第一散热片17中线所在的面镜像对称,即相对于等腰三角形的顶点和底边所在的中点的连线所在的面镜像对称。

作为优选,第二散热片垂直于第二等腰三角形的两条腰延伸。

等腰三角形的边的长度一定的情况下,第一散热片17和第二散热片18、19越长,则理论上换热效果越好,在试验过程中发现,当第一散热片和第二散热片达到一定长度的时候,则换热效果就增长非常不明显,主要因为随着第一散热片和第二散热片长度增加,在散热片末端的温度也越来越低,随着温度降低到一定程度,则会导致换热效果不明显,相反还增加了材料的成本以及大大增加了散热器的占据的空间,同时,换热过程中,如果第二散热片之间的间距太小,也容易造成换热效果的恶化,因为随着散热管长度的增加,空气上升过程中边界层变厚,造成相邻散热片之间边界层互相重合,恶化传热,散热管长度太低或者第二散热片之间的间距太大造成换热面积减少,影响了热量的传递,因此在相邻的第二散热片的距离、等腰三角形的边长、第一散热片和第二散热片的长度以及散热器基体长度之间满足一个最优化的尺寸关系。

因此,本发明是通过多个不同尺寸的散热器的上千次试验数据总结出的最佳的散热器的尺寸优化关系。

所述的相邻的第二散热片的距离为l1,所述等腰三角形的底边长度为w,所述第二等腰三角形的腰的长度为s,上述三者的关系满足如下公式:

l1/s*100=a*ln(l1/w*100)+b*(l1/w)+c,其中ln是对数函数,a、b、c是系数,0.68<a<0.72,22<b<26,7.5<c<8.8;

0.09<l1/s<0.11,0.11<l1/w<0.13

4mm<l1<8mm

40mm<s<75mm

45mm<w<85mm

等腰三角形的顶角为a,110°<a<160°。

作为优选,基管长度为l,0.02<w/l<0.08,800mm<l<2500mm。

作为优选,a=0.69,b=24.6,c=8.3。

需要说明的是,相邻第二散热片的距离l1是从第二散热片的中心开始算起的距离,如图1所示的那样。

通过计算结果后再进行试验,通过计算边界以及中间值的数值,所得的结果基本上与公式相吻合,误差基本上在3.54%以内,最大的相对误差不超过3.97%,平均误差是2.55%。

优选的,所述的相邻的第二散热片的距离相同。

作为优选,第一散热片的宽度要大于第二散热片的宽度。

优选的,第一散热片的宽度为b1,第二散热片的宽度为b2,其中2.2*b2<b1<3.1*b2;

作为优选,0.9mm<b2<1mm,2.0mm<b1<3.2mm。

作为优选,第二流体通道的宽度为第二散热片的宽度的0.85-0.95倍,优选为0.90-0.92倍。

此处的宽度b1、b2是指散热片的平均宽度。

优选的,在第一和/或第二散热片上设置孔23,用于破坏层流底层。主要原因是第二散热片主要通过空气的对流进行换热,空气从第二散热片的底部向上进行自然对流的流动,在空气向上流动的过程中,边界层的厚度不断的变大,甚至最后导致相邻第二散热片之间的边界层进行了重合,此种情况会导致换热的恶化。因此通过设置孔9可以破坏边界层,从而强化传热。

优选的,孔23的形状是半圆形或者圆形。

优选的,孔23贯通整个散热片。

作为一个优选,沿着空气的流动的方向,即从散热器的底部到散热器的顶部,孔23的面积不断的增大。主要原因是沿着空气的流动的方向,边界层的厚度不断的增大,因此通过设置不断增加孔23的面积,可以使得对边界层的破坏程度不断的增大,从而强化传热。

优选的,最大面积的孔23是最小面积的1.25-1.37倍,优选是1.32倍。

作为一个优选,沿着空气的流动的方向,即从散热器的底部到散热器的顶部,孔23的密度(即数量)不断的增加。主要原因是沿着空气的流动的方向,边界层的厚度不断的增大,因此通过设置不断增加的孔23的密度,可以使得对边界层的破坏程度不断的增大,从而强化传热。

优选的,孔23最密的地方的密度是最疏的地方的密度的1.26-1.34倍,优选是1.28倍。

作为一个优选,同一个第二散热片上,从散热片根(即与基管15的连接部)到散热片顶之间,每个孔239的面积不断的变小。主要原因是从散热片根到散热片顶,散热片的温度不断的下降,因此边界层的厚度不断的降低,通过设置变化的孔23的面积,可以实现破坏边界层的不同位置的厚度,从而节约材料。

优选的,孔23的面积的变化与散热片上的绝对温度成正比例关系。

作为一个优选,同一个第二散热片上,从散热片根(即与基管1的连接部)到散热片顶之间,孔23的密度不断的降低。主要原因是从散热片根到散热片顶,散热片的温度不断的下降,因此边界层的厚度不断的降低,通过设置变化的孔23的密度,可以实现破坏边界层的不同位置的厚度,从而节约材料。

优选的,孔23的密度的变化与散热片上的绝对温度成正比例关系。

优选的,对于第二散热片之间的宽度b2是按照一定的规律进行变化,具体规律是从等腰三角形的底角到顶角,从等腰三角形的两条腰延伸的第二散热片18的宽度越来越大,从等腰三角形的顶角到第一散热片17的端部,从第一散热片18延伸的第二散热片19宽度越来越小。主要原因是在腰部设置的第二散热片,散热量从底角到顶角逐渐增加,因此需要增加散热的面积,因此通过增加散热片的宽度来增加散热片的散热面积。同理,沿着第一散热片18,从底部到端部,散热的数量越来越少,因此相应的减少散热片的面积。通过如此设置,可以极大的提高散热效率,同时极大的节省材料。

作为优选,从等腰三角形的底角到顶角,从等腰三角形的两条腰延伸的第二散热片18宽度增加的幅度越来越大,从等腰三角形的顶角到第一散热片17的端部,从第一散热片17延伸的第二散热片19宽度减少的幅度越来越小。通过实验发现,通过上述设置,与增加或者减少幅度相同相比,能够提高大约16%的散热效果。因此具有很好的散热效果。

虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1