用于减温器的给水旁通系统的制作方法

文档序号:14265618阅读:597来源:国知局
用于减温器的给水旁通系统的制作方法

本申请及所得的专利大体上涉及使用燃气涡轮发动机的联合循环系统,且更特别地涉及用于与热回收蒸汽发生器的减温器一起使用以用于增加冷却能力的给水旁通系统。



背景技术:

联合循环动力产生系统使用燃气涡轮和蒸汽涡轮的组合以产生电力和/或另外用以驱动负载。特别地,燃气涡轮循环可借助于热回收蒸汽发生器与蒸汽涡轮循环操作地组合。热回收蒸汽发生器可为多区段换热器,其允许用于蒸汽产生过程的给水被燃气涡轮废气的热燃烧气体加热和膨胀。联合循环系统布置的主要功效是利用来自燃气涡轮的热燃烧气体的另外“浪费”的热量。发电站操作员因此企图从燃气涡轮废气中的热量产生可能的最大有用功。

联合循环系统可包括定位在热回收蒸汽发生器的高压过热器的最末级和蒸汽涡轮的其中一个区段之间的减温器。减温器可控制离开过热器的最末级的蒸汽的温度。减温器将水喷雾注入到主蒸汽流中。因此,用于水流的直管长度可能需要在到达第一管弯头之前确保足够的水蒸发。如果在到达减温器下游的主蒸汽管的第一弯头之前没有达到适当的水喷雾的蒸发,则可由于水冲击而发生侵蚀。由于设备升级或整个设备运行概念的变化(例如快速启动以满足电网要求等),这些侵蚀问题可进一步增加。此直管的最小长度的确定可取决于流所需的最少停留时间。此时间可随注入的水量以及水的速度而变。当水流增加时,确保完全水蒸发所需的直管的长度也可能增加。

典型地,从热回收蒸汽发生器的节约器抽提注水流。减温器的冷却能力可通过仅使用冷水来增加。然而,使用冷水可导致较高的热冲击传递到减温器下游的热衬套以及管金属表面。这种较高的热冲击的后果可能是增加管裂开和其他损坏的可能性。



技术实现要素:

本申请及所得的专利因此提供了一种联合循环系统。该联合循环系统可包括热回收蒸汽发生器、定位在热回收蒸汽发生器上游的给水源、定位在热回收蒸汽发生器下游的减温器、从热回收蒸汽发生器到减温器的第一抽提以及从热回收蒸汽发生器的上游到减温器的第二抽提。

本申请及所得的专利进一步提供了一种在减温器中控制来自热回收蒸汽发生器的过热蒸汽流的温度的方法。该方法可包括以下步骤:使蒸汽从热回收蒸汽发生器的过热器流到减温器,接收从热回收蒸汽发生器的节约器到减温器的第一抽提,以及可变地接收从热回收蒸汽发生器的上游到减温器的给水的旁通抽提。

本申请及所得的专利进一步提供了一种联合循环系统。该联合循环系统可包括带有节约器和过热器的热回收蒸汽发生器、定位于热回收蒸汽发生器上游的给水源、定位于热回收蒸汽发生器的过热器下游的减温器、从热回收蒸汽发生器的节约器到减温器的第一抽提以及从热回收蒸汽发生器的上游到减温器的给水的第二抽提。

技术方案1.一种联合循环系统,包括:

热回收蒸汽发生器;

定位于所述热回收蒸汽发生器上游的给水源;

定位于所述热回收蒸汽发生器下游的减温器;

从所述热回收蒸汽发生器到所述减温器的第一抽提;和

从所述热回收蒸汽发生器的上游到所述减温器的第二抽提。

技术方案2.根据技术方案1所述的联合循环系统,其中,所述热回收蒸汽发生器包括高压区段。

技术方案3.根据技术方案1所述的联合循环系统,其中,所述热回收蒸汽发生器包括节约器。

技术方案4.根据技术方案3所述的联合循环系统,其中,所述第一抽提包括从所述节约器到所述减温器的第一抽提。

技术方案5.根据技术方案3所述的联合循环系统,其中,所述第一抽提包括从所述节约器到所述减温器的第一抽提线路。

技术方案6.根据技术方案1所述的联合循环系统,其中,所述热回收蒸汽发生器包括过热器。

技术方案7.根据技术方案6所述的联合循环系统,其中,所述减温器定位于所述热回收蒸汽发生器的所述过热器的最末级的下游。

技术方案8.根据技术方案1所述的联合循环系统,其中,进一步包括在所述减温器下游的蒸汽管。

技术方案9.根据技术方案8所述的联合循环系统,其中,所述蒸汽管包括直区段和弯头。

技术方案10.根据技术方案1所述的联合循环系统,其中,进一步包括在所述减温器下游的蒸汽涡轮。

技术方案11.根据技术方案1所述的联合循环系统,其中,所述第二抽提包括给水流。

技术方案12.根据技术方案1所述的联合循环系统,其中,所述第二抽提包括冷却水流。

技术方案13.根据技术方案1所述的联合循环系统,其中,所述第二抽提包括与所述第一抽提连通的旁通抽提线路。

技术方案14.根据技术方案1所述的联合循环系统,其中,所述第二抽提包括旁通阀、旁通流控制器和/或旁通流量计。

技术方案15.一种在减温器中控制来自热回收蒸汽发生器的过热蒸汽流的温度的方法,包括:

使蒸汽从所述热回收蒸汽发生器的过热器流动到所述减温器;

接收从所述热回收蒸汽发生器的节约器到所述减温器的第一抽提;和

可变地接收从所述热回收蒸汽发生器的上游到所述减温器的给水的旁通抽提。

技术方案16.一种联合循环系统,包括:

热回收蒸汽发生器;

所述热回收蒸汽发生器包括节约器和过热器;

定位于所述热回收蒸汽发生器上游的给水源;

定位于所述热回收蒸汽发生器的过热器下游的减温器;

从所述热回收蒸汽发生器的节约器到所述减温器的第一抽提;和

从所述热回收蒸汽发生器的上游到所述减温器的给水的第二抽提。

技术方案17.根据技术方案16所述的联合循环系统,其中,所述热回收蒸汽发生器包括高压区段。

技术方案18.根据技术方案16所述的联合循环系统,其中,所述第一抽提包括从所述节约器到所述减温器的第一抽提线路。

技术方案19.根据技术方案16所述的联合循环系统,其中,进一步包括定位于所述减温器下游的蒸汽涡轮。

技术方案20.根据技术方案16所述的联合循环系统,其中,所述第二抽提包括与所述第一抽提连通的旁通抽提线路。

当结合若干附图及所附权利要求回顾以下详细描述时,本申请及所得的专利的改进的这些及其他特征将对于本领域的普通技术人员显而易见。

附图说明

图1为包括燃气涡轮发动机、热回收蒸汽发生器和蒸汽涡轮的联合循环系统的示意图。

图2为带有最末级的减温器的热回收蒸汽发生器的高压区段的示意图。

图3为与可如在此描述的减温器一起使用的给水旁通系统的示意图。

具体实施方式

现在参考附图,其中,相似数字指示贯穿若干视图的相似元件。图1为示例性联合循环系统100的示意图。联合循环系统100包括燃气涡轮发动机110。燃气涡轮发动机110可包括压缩机120。压缩机120压缩进入的空气流130。压缩机120将压缩的空气流130传递到燃烧器140。燃烧器140将压缩的空气流130与加压的燃料流150混合并点燃混合物,以产生燃烧气体流160。虽然仅示出了单个燃烧器140,但燃气涡轮发动机110可包括成周向阵列或诸如此类定位的任何数量的燃烧器140。燃烧气体流160继而被传递到涡轮170。燃烧气体流160驱动涡轮170以便产生机械功。涡轮170中产生的机械功经由轴180驱动压缩机120以及驱动例如发电机等的外部负载190。

燃气涡轮发动机110可使用天然气、各种类型的合成气、液体燃料和/或其他类型的燃料及其混合物。燃气涡轮发动机110可具有不同的构造且可使用其他类型的构件。其他类型的燃气涡轮发动机也可在此使用。多个燃气涡轮发动机、其他类型的涡轮以及其他类型的动力产生设备也可在此一起使用。

联合循环系统100也可包括至少一个热回收蒸汽发生器200及蒸汽涡轮210。热回收蒸汽发生器200可从离开燃气涡轮发动机110的燃烧气体160回收热量,以产生用于在蒸汽涡轮210中膨胀的蒸汽流220。蒸汽涡轮210可驱动例如发电机等的另外的负载230。热回收蒸汽发生器200可具有一个或多个压力区段,例如高压区段、中压区段和低压区段。每个压力区段可包括蒸发器、过热器和/或节约器的任何组合。这些构件中的各个典型地包括导管束,燃烧气体160流过导管束,将热量从燃烧气体160转移到热交换流体120,例如流过导管的水。例如,蒸发器可包括流过导管的给水,且燃烧气体160可导致给水变成蒸汽。过热器可包括流过导管的蒸汽,且燃烧气体160可加热蒸汽以产生过热蒸汽。节约器可包括流过导管的给水,且热燃烧气体160可预热给水以在蒸发器中使用。燃烧气体160可离开热回收蒸汽发生器200作为冷却的排出气体250。可从蒸汽涡轮210抽提蒸汽220且供给至加热和冷却应用260。类似地,可从热回收蒸汽发生器200抽提蒸汽220且供给至加热和冷却应用260。

图2示出了热回收蒸汽发生器200的示例性高压区段270的示意图。高压区段270可包括高压节约器280、带有高压鼓状物300的高压蒸发器290以及高压过热器310。高压区段270从燃气涡轮发动机110接收燃烧气体流160,并且从高压给水系统320接收给水流240。蒸汽流220离开高压过热器310的最末级330且可经由蒸汽管340传送至蒸汽涡轮210。

减温器350可在高压过热器310的最末级330和蒸汽涡轮210之间定位在蒸汽管340附近。如上文所述,减温器350向离开高压过热器310的最末级330的蒸汽流220提供冷却流360以控制其温度。蒸汽管340通常在距高压过热器310一定距离处需要弯头345。冷却流360可从高压节约器280等抽提。抽提线路380可在其上包括一定数量的阀390、流控制器400等。

图3示出了热回收蒸汽发生器200的高压区段270,其带有可如在此描述的给水旁通系统410。给水旁通系统410可在旁通抽提线路420中包括旁通抽提415。旁通抽提线路420可从高压节约器280的上游或别处延伸且可连接到减温器抽提线路380。备选地,旁通抽提线路380可与减温器350直接连通。旁通抽提线路420可包括一定数量的旁通阀430、旁通流控制器440和/或旁通流控制器450。其他构件和其他构造可在此使用。

给水旁通系统410因此从多于一个抽提点向减温器350提供冷却流360。在此示例中,冷却流360可从高压节约器280的上游抽提。此流然后可与从高压节约器280抽提的冷却流360混合。减温器350处的冷却流360所需的冷却水的温度因此可通过将这些不同的水源混合来调节。给水旁通系统410因此确保了在减温器350的出口处所需的温度设定点,同时增加减温器的冷却能力而不增加注水流。此外,给水旁通系统410通过减小注水温度来增加减温器350的能力而不增加水冲击的风险。可将流混合以达到水温度设定点、绝对最小水流等的所需规格。给水旁通系统410的使用可取决于操作因素变化。

给水旁通系统410因此在改造的情况中提供成本节省的益处,因为该系统不需要对现有减温器350的任何改变。可使用多于一个旁通抽提线路。例如,除了给水线路之外,可使用冷凝线路、除盐水线路等。现有减温器350可用于例如设备升级,同时给水旁通系统410提供增加的冷却能力而不增加注水量。同样地,给水旁通系统410可限制由高注水流引起的管侵蚀及裂开的风险。

将显而易见的是前述内容仅涉及本申请及所得的专利的某些实施例。在不脱离由以下权利要求及其等同物限定的本发明的精神和大体范围的情况下,可由本领域的普通技术人员在此做出许多变化和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1