包含预热工艺的用于干燥粒状体的方法和装置的制作方法

文档序号:4568381阅读:344来源:国知局
专利名称:包含预热工艺的用于干燥粒状体的方法和装置的制作方法
技术领域
本发明涉及通过将粒状体暴露于干燥风中来使其干燥的干燥粒状体的方法和装置,更具体地说,涉及使用一种在将其暴露于干燥风之前提高粒状体的温度的结构的干燥粒状体的方法和装置。
作为常规的通过将粒状体暴露于干燥风中来使其干燥的干燥粒状体的方法,一种通用的方法是由燃烧器和风扇产生高温干燥风并且反复地将粒状体暴露于这样的干燥风中。但是,为了缩短干燥时间和防止在干燥期间内引起的粒状体的质量变化,一种包含对粒状体进行预热工艺的方法,即一种在将其暴露于干燥风之前提高粒状体的内部温度的方法,作为一种经过改善的方法已引起人们的注意。在第2789279号日本专利公报中,可发现一个为了预热而使用远红外辐射的干燥装置的例子。
在上述的专利出版物中公开的装有远红外辐射装置的干燥方法和装置看来在涉及上述的目的方面已取得成功。但是,由于该结构中远红外辐射发生器应安装在干燥室内,故该装置的尺寸因该远红外辐射发生器的安装空间而不可避免地变得较大,这样,该装置本身不可避免地变得大型化。即,基本上说,为了通过在干燥装置内提供远红外辐射发生器来得到辐射热的效果,很明显需要与此对应的大的空间。由于近来的干燥装置的趋势是使其小型化而且通过缩小使谷物暴露于干燥风的干燥室的改进已在进行之中,故引入远红外辐射发生器是与缩小干燥装置的总的尺寸的趋势是相反的。
在特开昭58-187779号公报、特公昭60-8434号公报和特开昭62-9174号公报等中已公开了常规的不使用远红外辐射发生器的对粒状体进行预热的方法。在特开昭58-187779号公报和特公昭60-8434号公报的每一个中公开的技术涉及热风路和干燥室分别设有分离的热源的配置。由于该配置的缘故,需要对这些分离的热源分别进行控制。由于使用多个热源和需要对它们分别进行控制,故该装置将不可避免地是较贵的。
再者,在特开昭62-9174号公报中公开的技术涉及下述的系统,其中,将由燃烧器产生并被排风装置吸收的热风直接供给热风路室,以便能对谷物进行预热,而且通过热风引导路将热风从热风路室供给干燥室。在该系统中,不仅可利用一个热源(燃烧器)产生热风和干燥风,而且也可立即对在储藏室下的谷物进行预热,因此,该系统与上述的第2789279号专利的干燥装置相比的优点是,与上述装置不同,该系统不会变得大型化。
但是,关于在上述系统中的温度控制,应将对谷物进行干燥的干燥室中的干燥风温度(约为40°℃)定为参照温度,而且,由于热风路室简单地通过热风引导路与干燥室连通,故即使考虑了因在热风引导路中发生的热损耗而引起的热风温度的下降,热风的温度也决不会下降到适合于对粒状体进行干燥的程度,这样,必须实质性地降低由燃烧器的热源产生的热风本身的温度。结果,将不可能将在热风路室中的通过与谷物接触来提高谷物的温度的风的温度提高到足以进行预热的程度。
很清楚,在干燥粒状体时,为了安全地和快速地干燥粒状体,重要的是对粒状体进行预热和在暴露于干燥风之前保持粒状体本身的预定的温度,为了达到该目的,已进行了各种技术性的研究和开发,但迄今尚未取得成功。本发明的目的在于提供这样一种干燥方法和装置,其中,能满足小型化的干燥装置的要求,可实现所需要的干燥风温度,并保持高的预热温度,因此,能提供和制造廉价的干燥方法和装置,采用该方法和装置能安全地和快速地干燥粒状体。
按照本发明的一个方面,提供一种在粒状体的含水量达到预定的含水值之前干燥粒状体的方法,所述方法包括下述步骤保持该粒状体;通过使该粒状体与引入了热风的通风管的外壁接触,对经过该保持步骤流下的粒状体进行预热;通过混合来自该通风管的热风与从外部吸入的风来产生干燥风;该粒状体在经过该预热步骤被预热后流下,通过将该粒状体直接暴露于干燥风中取出其水分来干燥粒状体;以及在由该干燥步骤进行了干燥后取出该流下的粒状体。
按照本发明的另一个方面,也提供一种在粒状体的含水量达到预定的含水值之前干燥粒状体的装置,该装置包括保存装置,用于在其中保存粒状体;
热风产生装置,用于产生热风;预热装置,用于对从保存装置流下的粒状体进行加热,该预热装置被设置在所述保存装置之下,具有多个水平地配置在该处的通风管,由热风产生装置产生的该热风被引入到多个通风管的每一个的一端;干燥风产生装置,被连接到多个通风管的另一端,其中,将来自通风管的热风与从装置的外部吸入的风混合,以产生干燥风;干燥装置,用于通过将该粒状体直接暴露于干燥风中来干燥该粒状体,该干燥装置具有干燥室,将在预热装置中已被预热的粒状体供给该干燥室,将由干燥风产生装置产生的干燥风引入到该干燥室的一端;排气装置,被连接到干燥装置的干燥室的另一端,用于将包含湿气的干燥风排出到装置的外部;以及取出装置,被配置在干燥装置之下,用于取出已干燥的粒状体。
由于为了干燥粒状体而在保存工艺与干燥工艺之间设置了加热工艺,故可使谷物内从中心部分到表面部分的温度变得均匀,这样,当将粒状体暴露于用于干燥的热风时,在粒状体中几乎不会发生变形。结果,不仅可减少由干燥引起的粒状体的损伤,而且可更快地进行干燥。再者,由于可将热风作为干燥风引入干燥工艺,其中,通过将外部风与由加热工艺送来的热风混合,该热风的温度已被降低,故即使在加热工艺中的热风的温度比较高,通过引入外部风,也可将热风的温度降低到足以适合于干燥操作那样的程度。再者,可将上述的加热工艺设置在保存工艺中,故不需要设置加热工艺的附加的空间,由此,可实现小型的装置。
为了将干燥风的温度维持于预定的温度,设置了用于检测干燥工艺的温度的装置和用于在加热工艺中根据检测出的温度来控制热风的温度的装置。采用该结构,当用被吸入的外部风将热风转换为适合于干燥的干燥风时,即使发生诸如装置的周围温度的提高在其他情况下可引起干燥风的温度提高的外部条件的任何变化,也可通过控制热风本身的温度使干燥风保持于合适的温度。
在加热工艺中,一部分热风被引入到正在流下的粒状体中,将该粒状体暴露于热风。这样,进一步加快了粒状体的温度升高到合适温度的过程,使得粒状体的温度从干燥的开始阶段就升高,加快了干燥速度。再者,由于除了在干燥工艺中外,还在加热工艺中将热风施加于粒状体上,除了由常规的干燥工艺进行的干燥外,还进行由加热工艺进行的积极的加热,故能以高效率来进行包括加热工艺和干燥工艺的干燥工艺。这样,在不增大干燥装置的尺寸的情况下,能实质性地提高干燥效率,以符合小型化装置的要求和趋势。
以上说明的将一部分热风引入到流下的粒状体流中的干燥工艺包括外部风调节装置,该装置用于增加或减少所吸入的外部风的量,使得被引入到粒状体中的热风的量可以改变。具体地说,当利用外部风调节装置的调节来改变外部风的量而使其减少时,与该被引入的外部风的量的减少对应的风的短缺量由在加热工艺中被引入到粒状体中的一部分热风的量的增加来补偿。这一点意味着被引入到粒状体中的一部分热风的量与被引入的外部风的量的减少成反比地增加。因为这一点,在加热期间内被引入到粒状体中的热风增加,相应地,经受加热工艺的粒状体的温度升高得更快。为了更有效地实现这一点,该工艺最好只在干燥的初始阶段内进行,例如,只在从加热工艺到取出工艺的所有工艺的1个循环的期间内将被充填的粒状体加热。通过这样做,可将全部粒状体的温度更快地升高到适合于快速干燥的温度,其后,通过以通常的方法或稳定的状态开始引入外部风,可更快地干燥全部粒状体。
上述的和其它的本发明的目的、特征和优点,通过参照附图所说明的本发明优选实施例的下述描述将变得显而易见,其中

图1是按照本发明的循环型谷物干燥装置的局部被剖开的正面图;图2是按照本发明的循环型谷物干燥装置的局部被剖开的侧面图;图3是按照本发明的循环型谷物干燥装置的干燥室的平剖面图;图4是按照本发明的谷物干燥装置的控制框图;图5是用于基于谷物的充填量来设置预定温度的控制装置的流程图;图6是用于基于谷物的含水值来改变预定温度的控制装置的流程图;图7是用于控制燃烧装置的控制装置的流程图;图8是燃烧装置的框图;图9是燃烧装置的控制的流程图;图10是用于显示通风管的内部结构的放大透视图;图11是用于显示通风管的另一例的内部结构的放大透视图;图12是显示外部风吸入装置的放大剖面图;以及图13是显示外部风吸入装置的细节的透视图。
现在,参照图1至4说明本发明的优选实施例。这里,就用于干燥作为粒状体的谷物的循环型谷物干燥装置的一个例子进行说明。谷物干燥装置1从其顶部开始,顺序地设有用于保存待进行干燥的谷物的保存罐2;具有被从正面一侧A延伸到背面一侧B的有孔板6分开的送风路3、排风路4和连接到保存罐2的谷物流下管5的干燥室7;以及取出部10,被干燥的谷物从取出部10被取出。取出部10包括旋转阀8和螺旋运送器9,上述旋转阀8用于间歇地排出流下到无孔倾斜板5a上的谷物,该无孔倾斜板5a被连接到干燥室7的有孔板6上,上述螺旋运送器9用于横向地传送从旋转阀8运送来的谷物。再者,由吊斗提升器11来连接取出部10与保存罐2。结果,这样来重复循环操作,使得从保存罐2被运送到干燥室7的谷物由吊斗提升器11通过取出部10被再次引入保存罐2。
保存罐2装有加热部13,该加热部13在保存罐2之下形成,并具有多个从前到后的方向延伸的通风管12。在谷物干燥装置1的干燥室7的正面一侧A,设置了使用灯油作为燃料的燃烧装置14,并设置了通过前风路15的热风路,使得由燃烧装置14产生的热量直接作为到达多个通风管12的开始端(在正面一侧A)的热风而被引入。通风管12的末端(在背面一侧B)通过后风路16被连接到干燥室7的送风路3上。后风路16设有外部风吸入口17。在谷物干燥装置1的背面一侧B,设置了其风路被连接到排风路4上的排风扇20。在后风路16与干燥室7之间的连接部处,设置了用于测量干燥风的温度的温度传感器21。该传感器21通过控制装置22被连接到燃烧装置14。在该被描述的配置的例子中,通风管12被横向地排列在从前到后的方向上。但是,该配置不限于该例子,这是因为,通风管12可处于从左至右的方向上,或者,加热部13可通过结合从前到后的方向和从左至右的方向上的配置来形成。
图4是控制装置22的控制框图。燃烧装置14是这样由控制装置22来控制的,引入到干燥室7中的干燥风的温度被控制成预定的温度(约为40℃)。对于控制部22的I/O端口22a,分别输入来自设有各种操作开关的输入部29的信号;来自温度传感器21的用于干燥风的信号,该信号通过A/D转换电路23;来自含水量检测装置18的信号,该信号通过A/D转换电路24;以及来自外部风温度传感器41的信号,该信号通过A/D转换电路42。同样,从I/O端口22a分别对燃烧装置14和电机驱动电路25输出信号。该电机驱动电路25的工作是启动和/或停止驱动取出部10的驱动电机25b、吊斗提升器11的驱动电机25c、排风扇20的驱动电机25a和用于外部空气吸入口的电机34。控制装置22装有CPU22b作为主要元件,以进行比较和计算操作。控制装置22还设有I/O端口22a、只读存储器(以下,称为“ROM”)22c和随机存取存储器(以下,称为“RAM”)22d,其中,在ROM22c中存储控制程序和温度和/或含水量的的设置值,在RAM22d中存储从输入部29输入的充填量和选择值以及计算结果。这些I/O端口22a、ROM22c和RAM22d都连接到CPU22b上。CPU22b监视来自输入部29、温度传感器21、含水量检测装置18和外部风温度传感器41的各个信号,并基于来自输入部29的各个信号对各个部分和装置输出控制信号,使得对应的部分和装置相应地工作。
输入部29设有用于设置谷物的充填量的充填设置开关29a;用于设置在终点处的含水值的目标值的含水量设置开关29b;用于启动充填操作的充填按钮29c;用于启动干燥操作的干燥按钮29d;以及用于排出谷物的排出按钮29e等。在接受由输入部29操作充填按钮29c所产生的信号时,控制装置22对电机驱动电路25送出控制信号,以驱动取出部电机25b、吊斗提升器电机25c和风扇电机25a。同样,在接受由输入部29操作排出按钮29e所产生的信号时,控制装置22对电机驱动电路25送出控制信号,以驱动吊斗提升器电机25c、取出部电机25b和风扇电机25a。
在执行实际的干燥操作时,首先由充填设置开关29a设置保存罐2中的充填量,由含水量设置开关29b设置在终点处的含水值的目标值。将这些值存储在RAM 22d中,其后,将干燥启动开关29d接通。在控制装置22接受干燥启动信号时,它对电机驱动电路25送出控制信号,以便按照存储在ROM 22C中的程序分别驱动取出部电机25b、吊斗提升器电机25c和风扇电机25a,它也对燃烧装置14送出燃烧信号。然后,接着进行在下面参照图5给出的程序。
如图5中所示,在干燥操作的开始,在步骤501中,在RAM 22d中存储在保存罐2中的充填量N。预先在ROM 22C中已存储了相对于充填量N设置的一些初始的预定温度,以便选择在目前与充填量N对应的预定温度,并将其存储在RAM 22d中。更具体地说,在步骤502中,如果充填量N被判断为在2000kg之上,则将相对于由外部风温度传感器41检测的外部温度的外部温度+55℃作为初始预定温度来存储。在步骤503中,如果充填量N被判断为在2000kg之下但在1500kg之上,则将外部温度+40℃作为初始预定温度来存储。同样,在步骤504中,如果充填量N被判断为在1500kg之下但在1000kg之上,则将外部温度+30℃作为初始预定温度来存储。在步骤504中,如果充填量N被判断为在1000kg之下(但在最小充填量之上),则将外部温度+20℃作为初始预定温度来存储。这里,以下在使用外部温度+20℃作为初始预定温度的情况下,示出并说明例子(A)。关于其它的例子(B)至(D),将在表1中示出的这样的温度加到由外部风温度传感器41检测的外部风温度上,将所得到的温度用作初始预定温度T0。
表1预定的温度(℃)
在将初始预定温度确定为热风温度的情况下开始干燥,但这样来进行安排,以便随着谷物的干燥的进行,使预定温度按照谷物的含水量的下降值而下降。预先在ROM 22C中存储了含水值和温度,使得在干燥期间内测量谷物的含水量的同时,使预定温度按照含水量的实际值的变化而下降。因而,按照充填量N待选择的值是用以改变预定温度(外部风温+20℃)的第1至第3含水值、在步骤505中示出的预定温度和用于在含水值为图6中示出的值时作出相应变化的预定温度(外部风温+α℃),这些值是从ROM 22c中读出的,并将其存储在RAM 22d中。这里,可以将对应于第3含水值的含水值作为最终含水值,该最终含水值从输入部29输入,并存储在RAM 22d中。在该情况下,存储在ROM 22c中的值暂时性地为15%,但在比较从ROM 22c读出到RAM 22d的第3含水值与从输入部29输入的最终含水值和所得到的值与上述的百分比不同时,从输入部29输入的最终含水值将具有优先度,并代替该暂时性的百分比,将该值作为第3含水值存储在RAM 22d中。
如上所述,在从干燥操作的开始起按照充填量N设置预定温度时,按照这样设置的预定温度来进行图6中示出的控制。首先,将RAM22d中的计数值复位到“0”。在步骤601中,以例如10分钟的间隔周期性地测量通过I/O端口22a从含水量检测装置18得到的信号,在步骤602中,将谷物含水值M与21%的第1含水值进行比较。作为结果,如果谷物含水值M在21%以上,则将控制装置22的RAM 22d中存储的预定温度T0保持为外部风温+20℃。再者,如果在步骤603中谷物的含水值M被判断为在21%以下但在17%以上,则将控制装置22的RAM 22d中存储的预定温度T0改变为外部温度+7℃。同样,如果在步骤604中谷物的含水值M被判断为在17%以下但在15%以上,则相应地将控制装置22的RAM 22d中存储的预定温度T0改变为外部温度+5℃。
在步骤604中含水值被判断为在15%以下时,在步骤601中含水量检测之前在RAM 22d中设置的计数值在步骤605中递增“1”,在步骤601中再次重复含水量检测。这样,由于每当谷物的含水值变化时,改变预定温度T0,故干燥操作可按照谷物含水值在对于谷物的最佳的干燥风温度下进行。最后,在步骤606中,如果三次检测到小于15%的值,就判断为干燥已完成,而且必要的操作结束。在结束时,将停止信号从控制装置22送到燃烧装置14中。而且,在预定的延迟时间之后,将一个信号送到电机驱动电路25中,以停止取出部10的电机25b的工作,在另一个预定的延迟时间之后,也将一个信号送到电机驱动电路25中,以停止吊斗提升器电机25c和风扇电机25a的工作。再者,可按照使用谷物干燥装置的地域和/或条件自由地改变含水值、预定温度、干燥结束的时间、含水量设置的间隔等。
以下,参照图7,说明怎样基于由温度传感器21检测的温度来控制燃烧装置14。在控制装置22的ROM 22c中,存储了如图7中示出的控制流程。通过使用在上述的步骤701中存储在RAM 22d中的预定温度T0作为参照,相对于在步骤702中由温度检测传感器21检测的干燥风温度T进行比较,如果干燥风温度T高于预定温度T0,则在步骤703中从控制装置22送出信号以减少对于燃烧装置14的燃料供给量。相反,当干燥风温度T低于预定温度T0时,则在步骤704中从控制装置22送出信号以增加对于燃烧装置14的燃料供给量。当在步骤705中检测出干燥风温度T与预定温度T0一致时,不送出信号,并重复干燥风温度T的检测。在步骤706中,通过在上述控制装置22中产生的停止信号来停止该控制。
将按照图7的控制流程产生的信号通过控制装置22的I/O端口22a送到图8中示出的燃烧装置14的驱动电路26中。如图8中所示,燃烧装置14包括驱动电路26,作为主要的或中心的元件。在驱动电路26上连接了燃烧器风扇28;光检测元件36;燃料泵37;开闭阀(以下,称为“阀”)38;以及点火变压器39。在从控制装置22接受信号时,驱动电路26驱动燃烧器风扇28,并使燃料泵37、阀38以及点火变压器39工作。连接到燃料罐40上的燃料泵37起到下述的作用,使恒定量的燃料从燃料罐40连续地供给阀38,并且,通过经驱动电路26改变阀38的开闭时间,相应地增加或减少燃料喷出量。在阀38的附近,设置了一对连接到点火变压器39的相对电极,使由阀38的开闭操作喷出的燃料被点火和燃烧。燃烧器风扇28通过其送风作用送出由于燃烧而产生的热风。在驱动电路26中,可引入逻辑电路,该逻辑电路可按照从控制装置22输入的信号使各种不同的元件工作或不工作和使阀38打开或关闭,或者,可在驱动电路26中引入CPU或ROM。
在燃烧装置14中的燃烧按照在图9中示出的和在驱动电路26中被引入或被编程的控制流程来进行。在燃烧装置14中,在接受来自控制装置22的信号时,在步骤901中按照引入到驱动电路26中的逻辑来驱动燃烧器风扇28,用阀的初始值P来驱动燃料泵37,以初始值P来驱动阀38的开闭,驱动点火变压器39,使其点火。一旦通过光检测元件36确认点火了,就停止点火变压器39的工作。在步骤902中,在燃烧装置14如上述那样被点火后,当接受来自控制装置22的燃料增加或减少的信号时,在步骤903中,对于该信号进行判断是增加还是减少燃料。在减少的情况下,在步骤904中通过缩短阀38的打开时间P来减少燃料量。在阀38中,可通过每步2ms的步进方式来缩短每单位时间的阀的打开时间P(例如,P=40ms),这样,通过减少燃烧燃料的量来降低热风温度。
同样,如果在步骤903中对于燃料的增加或减少的燃料信号被判断为增加信号,则在步骤905中增加阀38的打开时间P和增加燃料喷出量。可通过每步2ms的方式增加每单位时间的阀38的打开时间P(例如,P=40ms)以增加燃料供给量来提高热风温度。在步骤906中,在燃烧装置14中确定在控制装置22中产生的停止信号、例如,干燥结束信号是否存在。如果检测到存在停止信号,则停止燃料泵37和阀38的工作,并且,在经过预定的延迟时间后,在步骤907中停止燃烧器风扇28的工作,由此,完成了燃烧装置14的全部停止。可将阀38的打开时间的增加和减小的范围(1步)设置成任意所需要的值。
返回到参照图1至图3,以下说明上述的结构中的热风和干燥风的流动。通过燃烧装置14的工作和排风扇20的吸引,由燃烧装置14产生的热风的温度变为例如100℃,并被直接引入加热部13的通风管12中,这样,由被引入的热风来加热通风管12。通过加热部13的热风被引入后风路16中,通过排风扇20的吸引,将从外部风吸入口17吸入的外部风混合于热风中,所得到的风变成干燥风,其温度约为40℃。然后,将该干燥风从后风路16引入送风路3中,在从送风路3到排风路4通过的同时,干燥风取出经过谷物流下管5流下的谷物的水分。被取出的水分通过排风路4,并利用排风扇20将其排出到装置1的外部。
在谷物从保存罐2流下到干燥室7的同时,它们在配置在保存罐2与干燥室7之间的加热部13处通过直与通风管12接接触而被加热。这样被加热的谷物再被暴露于干燥风中,其水分在通过干燥室7的谷物流管5流下时被取出,然后,利用取出部10的旋转阀8的工作,被干燥的谷物从干燥室7被排出。利用螺旋运送器9横向地运送被排出的谷物,然后,利用吊斗提升器11反馈到保存罐2中。这样,通过保存罐2、加热部13、干燥室7和取出部10的串联路径对谷物进行循环处理,直到达到所设置的含水值。
如已说明的那样,其结构是这样的从配置在加热部13之后的外部风吸入口17引入外部风,使得由燃烧装置14产生的并被引入到通风管12的热风的温度能与干燥风所需要的温度无关地被提高到约100℃的温度。这样,由于加热部13的通风管12的温度能被提升得足够高,故通过通风管12流下的并与其接触的谷物的温度不仅能被加热到足够高的温度,而且即使处于高温的热风也能被调整到合适的低的干燥风温度,这是因为高温的热风可与外部风混合。即,在加热部13中,风可被加热到足够高而无需考虑干燥风的温度。
这里,考虑谷物的温度。在加热部中加热的谷物内部的温度是这样的,在谷物的中心部分的温度与在其表面部分的温度变得均匀。结果,因为在谷物的中心部分与表面部分之间的温度方面没有畸变,故诸如破裂这样的缺陷不会在谷物中发生,其含水量可通过暴露于干燥室7中的干燥风而容易地和安全地被除去。按照谷物的含水值的减少来降低干燥室7中的干燥风的温度。关于干燥风的可变的温度的范围例如在40℃与30℃之间。
虽然这样来进行了上述的说明,即,干燥风通过谷物流下管5从送风路3流到排风路4,但完全可改变后风路16和排风扇20与其它元件的连接,使得风通过谷物流下管5从排风路4流到送风路3。这里重要的是,将已在加热部13中被加热的谷物暴露于由将外部风引入到从加热部13送来的热风中而产生的干燥风中。因此,干燥风的流动不限于所说明的实施例。
如图10中所示,在加热部13的通风管12的内壁上设置了多个使热风的流动处于锯齿形的阻尼板45。通风管12的剖面形状和阻尼板45的形状不限于图10中所示的那样。具体地说,只要通风管使谷物平稳地和均匀地流动,通风管12的剖面形状完全可如图11中所示那样。只要整个通风管12均匀地被加热,阻尼板45的形状完全可以是任何形状。
较为理想的是,在加热部13中的通风管12设有用于喷出一部分热风(约为热风的1%)的风喷出口(孔或缝隙)46。一部分热风从通风管12的喷出口46被直接喷入谷物流中,由此进一步提高谷物的温度。如果热风的温度约为80℃至100℃,则由于由通风管12的加热和从喷出口46喷出的热风,周围温度变为约50℃至70℃的温度。虽然能考虑到由喷出的热风对谷物的有害的影响,但因为不象干燥室7中那样,只在加热部13中出现小的空气流动,故被喷出的热风只引起谷物的温度的提高,而不在这里引起干燥操作。因而,不发生因快速干燥引起的诸如破裂的缺陷。
再者,如已说明的那样,一部分从喷出孔或缝隙46朝向流下的谷物喷出的热风在谷物流下到干燥室7中时导致邻近于通风管12的谷物的温度的提高。这样,包括谷物温度的提高的实质性的干燥也在加热部13与干燥室7之间实现。这一点意味着其效果与通过增大干燥室7得到的效果相同。再有,虽然干燥室变大,但加热部13被设置在保存罐2中,这样保存罐2和干燥室7的总的结构没有增加。换言之,由于尽管有干燥室7的尺寸的实质性的增加,但装置的尺寸没有增加,故该配置能实质性地缩小干燥装置,再有,能实现更快的干燥。
现在,参照图12和13,说明用于外部风吸入口17的外部风调节装置,即、开闭装置27。以可旋转的方式将开闭板30安装在轴31上,使板30能自由地开闭。在板30上设置了臂32,在臂32的附近设置了电机34,该电机34用于使轴33由此而向上和向下驱动。轴33承载了穿过在支撑臂32中形成的缝隙43的支撑部件35。电机34驱动支撑部件35,使其向上和向下移动,以便使臂32向上和向下移动,利用臂32的动作来操作开闭板30,以便打开或关闭外部风吸入口17。
这里对由开闭装置27操作的外部风吸入口17的功能作进一步的说明。要求外部风吸入口17的打开面积足以维持补偿排风扇20的吸引风量的风量。基本的操作是以恒定的尺寸来固定打开面积,为了做到这一点,用于外部风吸入口17的开闭装置27是这样工作的,即,使来自加热部13的通风管12的输出风量与来自外部风吸入口17的吸收风量的总风量变得与被排风扇20吸引的风量近似相同。预先设置该基本的打开面积,使开闭装置27在正常的情况下不工作。
但是,开闭装置27在下述的情况下工作。即,在含水量较高的初始阶段或在充填发生的阶段中,为了快速地提高进行干燥的谷物的温度以准备干燥,通过使谷物与热风接触比使它们暴露于大量的干燥风中更为有效,为此,这样来操作外部风吸入口开闭装置27,使其转动开闭板30,以便关闭外部风吸入口17。这样,从外部风吸入口17引入的风量变得短缺,该风量的短缺通过从在通风管12的壁上设置的风喷出孔或缝隙46将通风管12中的热风引入到谷物中来补偿。即,如已说明的那样,热风从加热部13漏出到流下的谷物中,增强周围谷物的加热作用。该步骤只是快速地提高谷物温度,该热风不长时间地作用于谷物。适当的时间周期是1至2个被引入的谷物循环。可将下述步骤引入控制装置22的程序中,利用该步骤在干燥的初始阶段内,只在上述的1至2个循环的时间周期内按照输入到控制装置22中的充填量使外部风吸入口17的打开面积变窄。这样,可简单地使相关的操作自动化,当然,也可以手动方式来执行那些操作。
当将干燥信号从输入部29输入到控制装置22时,除了如以上已说明的控制干燥的操作之外,对电机驱动电路25输出信号,使风开闭电机34工作,以关闭外部风吸入口17。可这样来对该信号进行编程,或是与对于干燥的信号的输入同时地被输出,或是在由含水检测装置18检测含水值为例如20%以上时被输出,这样,风开闭电机34开始工作。
如以上所述可清楚地看到,本发明的优点在于下述的配置,即,与使干燥装置小型化的趋势相一致,而且,使用于加热的热风与用于干燥的干燥风在相同的风路中连在一起,通过将被引入的外部风与热风混合在一起来产生干燥风,这样就能维持用于预热的热风的高温。
不管用于预热的热风的温度如何,都可将干燥风的温度设置为预定温度,这样做不仅可具有预热的效果,而且可实现安全和快速的干燥。同样,由于将进行预热的加热部设置在保存罐中,故不象使用远红外线装置的情况那样,不需要设置分离的或附加的用于预热的空间。
由于可使一部分热风与粒状体直接接触,故可在不对粒状体造成损伤的情况下有效地进行加热,而且,可实现粒状体的表面部分和内部的温度都快速上升,因此,允许实施快速的干燥操作。
由于可调节被引入的外部风的量,故可控制一部分在加热部中直接供给粒状体的热风的量,并可调节加热的速度,这样就能依据粒状体来改变被引入的热风的量。因此,这种加热方式可妥善处理多种不同的粒状体。
尽管已用其优选实施例描述了本发明,但应了解,已使用的言词是描述性的而不是限制性的,并可在不偏离如权利要求所限定的本发明的真正的范围的情况下,作出在后附的权利要求的条款范围内的变更。
权利要求
1.一种在粒状体的含水量达到预定的含水值之前干燥粒状体的方法,其特征在于,所述方法包括下述步骤保持该粒状体;通过使该粒状体与引入了热风的通风管的外壁接触,对经过所述保持步骤流下的粒状体进行预热;通过混合来自所述通风管的该热风与从外部吸入的风来产生干燥风;所述粒状体在经过所述预热步骤被预热后流下,通过将该粒状体直接暴露于所述干燥风中取出其水分,来干燥该粒状体;以及在由所述干燥步骤进行了干燥后取出该流下的粒状体。
2.如权利要求1中所述的干燥粒状体的方法,其特征在于还包括将在所述取出步骤中取出的该粒状体反馈到所述保持步骤的步骤,重复地进行所述各个步骤,直到所述粒状体的含水值达到预定的含水值。
3.如权利要求1中所述的干燥粒状体的方法,其特征在于检测在所述干燥步骤中的所述干燥风的温度,根据检测出的温度值,控制所述预热步骤中的所述热风的温度,以便将所述干燥步骤中的所述干燥风的温度控制为适当的水平。
4.如权利要求1中所述的干燥粒状体的方法,其特征在于所述预热步骤包括将一部分所述热风直接引入到流下的粒状体中的步骤,使得该粒状体直接暴露于该部分所述热风中。
5.如权利要求1中所述的干燥粒状体的方法,其特征在于所述干燥风产生步骤包括调节从外部吸入的外部风量的步骤。
6.如权利要求5中所述的干燥粒状体的方法,其特征在于所述干燥风产生步骤是这样来进行的,在操作的初始阶段中将从外部吸入的外部风量调节得较小,在运行阶段中将其调节为预定值。
7.一种在粒状体的含水量达到预定的含水值之前干燥粒状体的装置,其特征在于,该装置包括保存装置,用于在其中保存该粒状体;热风产生装置,用于产生热风;预热装置,用于对从所述保存装置流下的该粒状体进行加热,所述预热装置被设置在所述保存装置之下,具有多个水平地配置在该处的通风管,由所述热风产生装置产生的该热风被引入到所述多个通风管的每一个的一端上;干燥风产生装置,被连接到所述多个通风管的另一端,其中,将来自所述通风管的热风与从装置的外部吸入的风混合,以产生干燥风;干燥装置,用于通过将该粒状体直接暴露于所述干燥风中来干燥粒状体,所述干燥装置具有干燥室,将在所述预热装置中已被预热后的粒状体供给该干燥室,将由所述干燥风产生装置产生的干燥风引导到该干燥室的一端;排气装置,被连接到所述干燥装置的所述干燥室的另一端,用于将包含湿气的干燥风排出到装置的外部;以及取出装置,被配置在所述干燥装置之下,用于取出已干燥的该粒状体。
8.如权利要求7中所述的干燥粒状体的装置,其特征在于所述装置还包括用于将从所述取出装置取出的该粒状体反馈到所述保存装置的反馈装置。
9.如权利要求7中所述的干燥粒状体的装置,其特征在于所述装置还包括用于检测由所述干燥风产生装置产生的所述干燥风的温度的温度检测装置和被连接到所述温度检测装置的控制装置,所述控制装置根据由所述温度检测装置检测出的温度值控制所述热风产生装置,使由所述干燥风产生装置产生的所述干燥风的温度保持于预定值。
10.如权利要求7中所述的干燥粒状体的装置,其特征在于所述预热装置的所述通风管的每一个在该处具有多个阻尼板,该阻尼板用于使在该处的热风流处于锯齿状。
11.如权利要求7中所述的干燥粒状体的装置,其特征在于所述预热装置的所述通风管的每一个在该处具有多个开口,该开口用于将所述被引入的热风的一部分喷出到所述通风管的外部。
12.如权利要求7中所述的干燥粒状体的装置,其特征在于所述干燥风产生装置包括外部风调节装置,该装置用于调节从装置的外部吸入的外部风量。
全文摘要
一种用于干燥粒状体的装置,从该装置的顶部开始包括保存部、加热部、干燥风产生部、以及干燥部。将已干燥的粒状体从取出部取出并通过吊斗提升器返回到保存部。该装置还包括用于检测干燥风的温度的检测器。根据检测出的温度,控制装置控制热风的温度,以便将干燥风的温度保持于预定的温度。在将用于加热的热风的温度保持于高温的同时,可将干燥风的温度设置在所希望的温度。可快速地和安全地进行干燥操作。
文档编号F26B9/06GK1263248SQ0010097
公开日2000年8月16日 申请日期2000年1月13日 优先权日1999年1月13日
发明者佐竹觉, 刘厚清, 国信诚, 渡桥启介 申请人:株式会社佐竹制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1