坩埚式连续熔解炉的制作方法

文档序号:4581988阅读:220来源:国知局

专利名称::坩埚式连续熔解炉的制作方法
技术领域
:本发明涉及铝、铜、锌等非铁金属熔解用的坩埚式连续熔解炉
背景技术
:由现有熔解用坩埚炉构成的非铁金属瑢解炉,在被筑成圆筒形的炉中配置一个熔解用坩埚,利用加热燃烧器加热该熔解用坩埚的"间歇型"的熔解炉是主流品种,而本申请人提出了"连续熔解型"的熔解保持炉(例如,参照特许文献l)。如图8所示,特许文献1所述的连续熔解型的熔解保持炉具有被熔解材料a的预热塔100、设置在预热塔100的正下方的熔解用坩埚炉101、与熔解用坩埚炉101并置的保持用坩埚炉102。预热塔100在设置于熔解用坩埚炉101上的轨道109上可以移动。熔解用坩埚炉101具备熔解用坩埚104及加热燃烧器105,保持用坩埚炉102具有保持用坩埚107及保持用燃烧器105A。在连续熔解型的熔解保持炉120通常运转时,自加热燃烧器105供给至熔解用坩埚室103内的燃烧气体加热熔解用坩埚104,被导入预热塔100内后通过和固体状的被熔解材料a接触将被熔解材料a预热后,从排气口100A排出。利用熔解用坩埚104的加热生成的熔融液b供给至保持用坩埚炉102的保持用坩埚107。另一方面,从保持用燃烧器105A供给至保持用坩埚室106的燃烧气体加热保持用坩埚107从而对熔融液b进行保温,通过被导入至熔解用柑埚室103内和加热燃烧器105的燃烧气体合流,而作为被熔解材料a的预热源被利用。特许文献l:特开2000-130948号公报
发明内容在这种连续熔解型的熔解保持炉120中,为了增大被熔解材料a的熔解量,可以考虑增大加热燃烧器105的燃烧量的方法和增大保持用燃烧器105A的燃烧量的方法。但是,增大加热燃烧器105的燃烧量后,熔解用坩埚104局部过热、熔解用坩埚104的上下方向的温度差变大、其结果成为熔解用坩埚104产生碎裂和损伤的原因。另一方面,由于保持用燃烧器105A的燃烧量必须根据被熔解材料a的种类和熔融液的保持量、铸造温度、铸造频率等操作条件进行控制,因此保持用燃烧器105A的燃烧量的可调整范围自然而然地被限定。由于这种原因,在现有熔解炉中,控制加热燃烧器105及保持用燃烧器105A从而控制被熔解材料a的熔解量有困难。于是,本发明的目的是提供一种坩埚式连续熔解炉,其可以容易地控制被熔解材料的熔解量。为达到本发明的上述目的,提供一种坩埚式连续熔解炉,其具有容纳被熔解材料、且在上部形成有排气口的预热塔;设置于所述预热塔的下方、且具有接受自该预热塔供给的被熔解材料的熔解用坩埚的熔解用坩埚炉;加热所述熔解用坩埚的加热燃烧器;所述熔解用坩埚炉,具有将所述加热燃烧器的燃烧气体导入至所述预热塔内部的导入部;所述熔解用坩埚,在侧壁具有排出被熔解材料的熔融液的熔融液排出口,其中,所述坩埚式连续熔解炉具有配置在比所述加热燃烧器更靠上方的位置、且将所述被熔解材料预热的预热燃烧器。在该坩埚式连续熔解炉中,优选所述预热燃烧器配置于比所述熔解用坩埚的所述熔融液排出口更靠上方的位置,以向所述熔解用坩埚炉的内部喷射燃烧气体。或者,所述预热燃烧器优选设置于所述预热塔上。另外,所述的坩埚式连续熔解炉还具有配置于所述熔解用坩埚的内部的铁锅,所述铁锅具有流出熔融液的熔融液流出孔,优选以和所述熔解用坩埚之间具有间隙的方式配置。另外,优选所述铁锅在最底部具备贮存比重高的金属的贮存部。另外,优选所述导入部将被导入的燃烧气体向下方引导。例如,在所述熔解用坩埚炉的炉盖下面,由于具有朝向所述熔解用坩埚的内部突出的导向部,因此,所述导入部可以由所述熔解用坩埚和所述导向部的间隙构成。或者,由于还具有被夹持在所述熔解用坩埚炉的炉盖下面和所述熔解用坩埚的上端之间的圆筒状的坩埚接合件(坩堝中継含),因此,所述导入部可以由所述坩埚接合件的形成的多个孔构成。另外,所述导入部可以由在比所述熔解用坩埚的侧壁上的所述熔融液排出口更靠上方的位置形成的多个孔构成。另外,坩埚式连续熔解炉还具有与所述熔融液排出口连接的移送部,所述移送部优选包含热传导性良好的材料。再者,在以上的各坩埚式连续熔解中,优选所述熔解用坩埚是石墨坩埚。以上的各坩埚式连续熔解炉还可以具有与所述熔解用坩埚炉并置的保持用坩埚炉,这时,所述保持用坩埚炉优选具有保持自所述熔融液排出口排出的熔融液的保持用坩埚、和对被所述保持用坩埚保持的熔融液进行保温的保持用燃烧器,所述熔解用坩埚炉和所述保持用坩埚炉通过连通部连通,并且所述保持用燃烧器的燃烧气体优选被导入至所述熔解用坩埚炉。根据本发明的坩埚式连续熔解炉,可以容易地控制被熔解材料的熔解量。图l是本发明一实施方式的坩埚式连续熔解炉的概略构成图;图2是坩埚接合件的侧面剖面图;图3是坩埚接合件的另一实施方式的侧面图;图4是另一实施方式的坩埚式连续熔解炉的概略构成图;图5是又一个实施方式的柑埚式连续熔解炉的概略构成图;图6是再一个实施方式的坩埚式连续熔解炉的概略构成图;图7是本发明另一实施方式的连续型熔解保持炉的概略构成图;图8是现有连续熔解型的熔解保持炉的正面剖面图;图9是现有直接烧火式集中熔解炉的正面剖面图;图IO是另一个实施方式的坩埚式连续熔解炉的概略构成图;图11是表示另一个实施方式的坩埚式连续熔解炉的主要部件纵剖面图。符号说明a、被熔解材料b、熔融液1、坩埚式连续熔解炉2、连续型熔解保持炉3、加热燃烧器4、预热燃烧器5、保持用燃烧器11、熔解用坩埚炉12、熔解用坩埚室14、炉盖15、导向部31、预热塔33、开闭盖34、排气口51、保持用坩埚炉52、保持用坩埚室70、圆筒构件71、熔解用坩埚73、坩埚接合件76、保持用坩埚81、连通部具体实施例方式下面,就本发明的实施方式参照附图进行说明。图1是本发明一实施方式的坩埚式连续熔解炉的概略构成图。如图1所示,该坩埚式连续熔解炉1,具有容纳被熔解材料a的预热塔31及设置于预热塔31下方的熔解用坩埚炉11。圆筒状的预热塔31在上部具有形成有排气口34的开闭盖33。在开闭盖33上安装有检测通过排气口34的燃烧气体的温度的热电偶35。开闭盖33的开闭可以通过具备驱动装置的自动开闭机构(未图示)来进行。另外,预热塔31的构成为在下部安装有滑动架36,能够在熔解用坩埚炉11上设置的导轨39上移动。作为被熔解材料a,除铝、锌、铜合金、铅等非铁金属铸块之外,可以列举再生材料、切屑、空罐儿、窗框钢等的碎屑材料和将这些加压加工而减容化的材料、及附带有铁、铅、橡胶、塑料等零件类的非金属材料等。熔解用坩埚炉11具备熔解用坩埚室12,上部由炉盖14构成。熔解用坩埚室12由用轻质隔热材料形成的圆筒状的空间构成,通过炉盖14的开口部和预热塔31的内部连通。在熔解用坩埚室12的上部,设置有将熔解用坩埚炉11的内壁面切口而成的环状的凹部16。另外,熔解用柑埚炉ll具有载置于坩埚台72上的熔解用坩埚71、分别安装在侧壁的加热燃烧器3及预热燃烧器4。熔解用坩埚炉71在本实施方式中,是耐久性和耐氧化性、耐热性等优异的石墨坩埚,具有排出被熔解材料a的熔融液b的熔融液排出口74。熔解用坩埚71的口径比预热塔31及炉盖14的开口部的内径更大而形成。熔解用坩埚71的材质,在被熔解材料a是熔点低的锌等时,也可以是热传导性、耐热性、强度及成本优异的铁或铸铁等。自熔融液排出口74排出的熔融液b可以通过与熔融液排出口74连接的移送部75连续地供给至外部。移送部75由热传导性良好的材质形成,优选铁、铸铁、不锈钢等金属制品,之外,也可以用和石墨坩埚同样的耐火材料、氧化铝和碳化硅等耐火陶瓷材料等形成。另外,也可以在移送部75上涂敷陶瓷类的涂覆剂。加热燃烧器3以燃烧气体绕坩埚台72的周围旋转的方式设置在熔解用坩埚炉U的侧壁下部。另一方面,预热燃烧器4设置在熔解用坩埚炉11的侧壁上部,以使燃烧气体向熔解用坩埚71的熔融液排出口74的更上方的位置喷射、且绕熔解用坩埚炉71的周围旋转。在本实施方式中,预热燃烧器4和熔解用坩埚71的外壁面近接,且按照熔解用坩埚室12的内压不过度上升的方式,设置于熔解用坩埚室12的凹部16。另外,在炉盖14的下面和熔解用坩埚71的上端之间,通过缓冲材料及耐热性粘结剂(都未图示),夹持有由耐火材料构成的圆筒状的坩埚接合件73,两者之间被密封。在坩埚接合件73的侧壁形成有燃烧气体的通气孔73a。如图2所示,该通气孔73a按照将导入至熔解用坩埚71的燃烧气体朝向下方引导的方式,由多个倾斜孔构成。通气孔73a优选形成多个直径细小的孔,以使被熔解材料a不会因局部过热被氧化、或细小的被熔解材料a不会掉落至熔解用坩埚71的外部。另外,为了消除被熔解材料a的上下方向的温度差,通气孔73a优选沿坩埚接合件73的轴方向分散形成。另外,通气孔73a优选以使燃烧气体全部导入至熔解用坩埚71内的方式分散形成于坩埚接合件73的圆周方向。另外,通气孔73a也可以用水平孔及将水平孔和倾斜孔的组合配置代替倾斜孔,孔的直径和数量根据用途可以变更。例如,可以在坩埚接合件73的上部形成倾斜孔,在下部形成水平孔。由此,可以有效良好地预热被熔解材料a,能够防止熔融液b的氧化。另外,通气孔73a的形状不局限于圆形,也可以是方形等。通气孔73a的形成方法也没有特别的限定,例如,如图3所示,在圆筒构件70的一端形成多个方形槽79,也可以通过将该圆筒构件70层叠而构成具有通气孔73a的坩埚接合件73。坩埚接合件73的材质可以是和石墨坩埚同样的材质、耐氧化性和耐磨损性优异的碳化硅(SiC)、氮化硅(Si3N4)、赛隆陶瓷(Si3N4-Al203固溶体)及熔融石英的烧成体或烧结体,另外,从经济性的角度可以使用氧化铝-二氧化硅(Al203-Si02)类耐火物质,可以根据被熔解材料a的种类和操作条件等进行选择。根据以上的构成,本发明的坩埚式连续熔解炉l进行如下的动作。利用本发明的坩埚式连续熔解炉1熔解被熔解材料a时,首先,移动预热塔31以使熔解用坩埚炉11的上方开放,向熔解用坩埚71内供给被熔解材料a后,设置预热塔31使其返回至熔解用坩埚炉11的上方。其次,开启开闭盖33,将所希望量的被熔解材料a供给至预热塔31后,使加热燃烧器3动作从而被熔解材料a开始熔解。通过加热燃烧器3的动作而喷射的燃烧气体对熔解用坩埚71的下部进行加热,将内部的被熔解材料a熔解成为熔融液b。由于熔解用坩埚71为热传导性良好的石墨坩埚或铁制容器等,因此可以容易地将被熔解材料a熔解。喷射的燃烧气体在熔解用坩埚室12内旋转上升后,通过通气孔73a、经由熔解用坩埚71及预热塔31的内部从排气口34向炉外排出。在此期间,为了使被熔解材料a的熔解容易进行,燃烧气体在被熔解材料a浸泡在熔融液b之前将其进行预热。加热燃烧器3的燃烧量可根据被熔解材料a的熔解量进行调节。例如,被熔解材料a的熔解量被增大时,使加热燃烧器3的燃烧量增大。这时,加热燃烧器3的燃烧量急剧增大时,在熔解用坩埚71上产生上下方向的温度差,成为熔解用坩埚71的损伤原因,因此为了防止这种情况的发生,也可以同时调节处于上方的预热燃烧器4的燃烧量。通过预热燃烧器4的动作喷射的燃烧气体,加热熔解用坩埚71的上部且消除熔解用坩埚71的上下方向的温度差。另外,该燃烧气体和来自加热燃烧器3的燃烧气体合流,预热被熔解材料a。预热燃烧器4的燃烧量优选控制在被熔解材料a在靠近熔融液b的液面的上方不熔解,另外,不会进行被熔解材料a的急剧氧化的程度。来自加热燃烧器3及预热燃烧器4的燃烧气体通过通气孔73a时,沿倾斜面导向熔解用坩埚71内的下方,因此熔融液面附近的被熔解材料a也可以有效地预热。另外,按照使燃烧气体平滑流过的方式在圆周方向及上下方向形成有多个通气孔73a,因此可以使预热塔31及熔解用坩埚71内的被熔解材料a中靠近熔融液面上方的部分大范围均匀地预热,另外,熔解用坩埚室12内的压力不会过度上升。另一方面,已熔解的熔融液b随着熔解用坩埚71内的被熔解材料a被熔解,连续地从熔融液排出口74排出,经由移送部75供给未图示的保持用坩埚炉或砖式保持炉、运输取锅等。这时,通过移送部75的熔融液b利用移送部75保温。由此,由于连续地排出熔融液b,熔解用坩埚71内的熔融液面高度保持一定。另外,由于从加热燃烧器3喷射的燃烧气体能量的大部分消耗在被熔解材料a的熔解中,而在熔融液b的温度上升中几乎不消耗,因此熔融液b的温度可以维持在比被熔解材料a的融点稍微高一点的低温度,可以防止氧化物的产生。又因为移送部75是热传导性良好的材质,因此可以容易地将位于移送部75的熔融液b进行保温。随着被熔解材料a的熔解的进行,预热塔31内的被熔解材料a徐徐下降,浸泡于熔解用坩埚71内的熔融液b内。由此,预热塔31内的被熔解材料a的量徐徐减少时,燃烧气体的能量用于预热的消耗没有了,因此预热塔31内的燃烧气体的温度上升。燃烧气体的温度超过设定范围(例如,500°C)时,热电偶35感知该温度而发出被熔解材料a的投入指示,未图示的自动开闭机构开启开闭盖33,同时停止加热燃烧器3及预热燃烧器4的工作。之后,从预热塔31的开口部自动投入被熔解材料a,投入完了后关闭开闭盖33,加热燃烧器3及预热燃烧器4再一次进行动作。在以上的坩埚式连续熔解炉1中,通过控制加热燃烧器3及预热燃烧器4的燃烧量,可以容易地控制被熔解材料a的熔解量。由此一来,消除了熔解用坩埚71的上下方向的温度差,可以确实地防止损伤。另夕卜,通过控制两个燃烧器,即使没有来自上述现有的保持用燃烧器的燃烧气体的供给也可以进行大量熔解。以上,对本发明的一实施方式进行了叙述,但是,本发明的具体方式也不局限于上述的实施方式。例如,在本实施方式中,预热燃烧器4安装在熔解用坩埚炉11上,但是只要所供给的被熔解材料a可以有效地被预热,则可不特别限定安装位置。作为一例,如图4所示,也可以是安装在预热塔31上的构成。根据该构成,燃烧气体朝向被熔解材料a直接喷射,因此能够有效预热被熔解材料a,可以容易地控制熔解量。这时,为有效利用在预热塔31内上升的燃烧气体,预热燃烧器4优选安装在预热塔31的下部。坩埚式连续熔解炉1在预热燃烧器4安装于预热塔31上时,如图IO所示,也可以是将铁锅61配置在熔解用坩埚71的内部的构成。铁锅61以和熔解用坩埚71间具有间隙的方式配置,形成多个流出熔融液的熔融液流出孔63,在上端部设置有从周缘部向外方延伸出的凸缘62。熔解用坩埚71和铁锅61的间隙优选遍及熔解用钳埚71的内周面整体而存在。在铁锅61的内侧配置有沿铁锅61的内周面的铁网66。另外,在熔解用坩埚炉11的侧壁的内周面,设置有向内方伸出且保持铁锅61的保持部64,在保持部64上形成有通过燃烧气体的气体通过孔67。另外,保持部64具有截面呈-字状的卡合部65,通过在该卡合部65上卡合凸缘62而保持铁锅61。根据该构成,供给至预热塔31内的被熔解材料a落至铁锅61内,在铁锅61内被熔解。已被熔解的被熔解材料a变成熔融液b,从熔融液流出孔63向铁锅61的外部流出,熔融液排出口74排出。这时,由于铁锅61以和熔解用坩埚71的内周面间具有间隙的方式配置于烙解用坩埚71的内部,因此所供给的被熔解材料a不直接落至熔解用坩埚71内,而落下至铁锅61。由此,可以防止向熔解用坩埚71落下的冲击的传递,能够防止熔解用坩埚71的损伤。特别是,在被熔解材料a的供给量增加时和被熔解材料a大型化时,因落下的冲击变大而有效果。另外,因为在铁锅61的内侧配置有铁网66,因此,通过铁网66可以容易地从熔融液b中回收被熔解材料a中含有的金属中的未熔融的金属。另外,如图11所示,也可以以在铁锅61的最底部构成有贮存部68的方式,不在铁锅61的底部附近形成熔融液流出孔63,而在熔融液b的液面附近形成。根据该构成,比重高的金属被贮存在贮存部68,因此可以容易地利用比重的不同分离熔融液b中含有的金属成分。例如,将附带有铅的车轮平衡机的铝轮作为被熔解材料a熔融时,在熔融液b中含有铅及铝时,由于铅比重高,因此熔融时沉淀于贮存部68,不从在熔融液b的液面附近形成的熔融液流出孔63流出,由于铝比铅的比重低所以在铅的上方熔融,从熔融液流出孔63流出。这样一来,通过使铅贮存在贮存部68,使铝流向铁锅61的外部,可以将铅和铝分离。同样,铁、不锈钢及锌等也可以利用各自比重的不同进行分离。另外,坩埚式连续熔解炉1如图5所示,也可以是将预热燃烧器4安装于熔解用坩埚炉11和预热塔31的双方的构成。根据该构成,由于利用来自两个预热燃烧器4的燃烧气体,可以扩大被熔解材料a的预热温度和预热范围,因此通过分别控制各自的燃烧量,可以容易地控制熔解量。在本实施方式中,构成为,在炉盖14的下面和熔解用坩埚71之间设置了坩埚接合件73,但是,只要是使燃烧气体朝向熔解用坩埚71内的下方平滑地流过的构成,则可不作特别的限定。例如,如图6所示,在炉盖14的下面设置有以朝向熔解用坩埚71的内方突出的方式形成的导向部15,燃烧气体通过位于该导向部15和熔解用坩埚71间的导入部的构成也可以。根据该构成,因为燃烧气体沿导向部15流向熔解用坩埚71内的下方,因此可以有效地预热熔融液面附近的被熔解材料a。另外,也可以是在熔解用坩埚71的侧壁形成成为燃烧气体的导入部的通气孔73a,且使熔解用坩埚71的上端与炉盖14的下面抵接的构成。根据该构成,通气孔73a和熔解用坩埚71—体制成,因此可以使燃烧气体确实地通过通气孔73a。这时,为了防止熔融液b溢出熔解用坩埚71的外部,优选比形成在熔解用坩埚71的侧壁上的熔融液排出口74更靠上方的位置形成通气孔73a。另外,熔解用坩埚71是铁制时,也可以在表面实施防蚀铝涂覆。另外,熔解用坩埚71中的熔融液排出口74的高度可以进行适当的变更。另外,本实施方式是可以将被熔解材料a的熔融液b连续地供给的连续熔解炉的一例,但是,本发明的坩埚式连续熔解炉1如图7所示,即使是连续型熔解保持炉2也可以实施。连续型熔解保持炉2具有坩埚式连续熔解炉l、保持用坩埚炉51及连通部81。保持用坩埚炉51具有与坩埚式连续熔解炉1的熔解用坩埚炉11并置的保持用坩埚室52,上部由压紧的盖54构成。另外,保持用坩埚炉51具有载置于坩埚台77上的保持用坩埚76、安装于侧壁的保持用燃烧器5。保持用坩埚76例如是石墨坩埚,根据用途也可以制成铁和铸铁等。保持用坩埚室52由用轻质隔热材料形成的圆筒状的空间构成,通过连通部81的内部与熔解用坩埚室12连通。连通部81在熔解用坩埚炉11和保持用坩埚炉51之间形成,以覆盖移送部75的方式构成。根据以上的构成,连续型熔解保持炉2进行如下的动作。因坩埚式连续熔解炉1的动作和上述是同样的,所以省略。用坩埚式连续熔解炉l熔解后的熔融液b从熔解用坩埚71的排出口74排出后,经由移送部75供给至保持用坩埚76。从保持用燃烧器5喷射的燃烧气体一边在保持用坩埚室52内旋转上升一边加热保持用坩埚炉76,对内部的熔融液b进行保温,且通过连通部81的内部后,被导入至熔解用坩埚室12内。被导入至熔解用坩埚71内的燃烧气体和来自加热燃烧器3及预热燃烧器4的燃烧气体合流。之后,燃烧气体在熔解用坩埚71内上升被导入至预热塔31内,从排气口34向炉外排出。期间,对被熔解材料a进行预热。保持用燃烧器5的燃烧量可以根据被熔解材料a的种类和熔融液b的保持量及保持温度进行调节。根据这种构成,由于来自保持用燃烧器5的燃烧气体增加,因此通过分别控制各燃烧器,可以容易地控制熔解量。在该实施方式中,保持用坩埚炉51是定置式的,但是,也可以是移动式的。根据该构成,可以根据熔解量和保持量变更保持用坩埚炉51的大小。实施例下面,用实施例及比较例更详细地说明本发明。但是,本发明也不局限于本实施例。通过图7所示的连续型熔解保持炉2(实施例)、图8所示的现有的连续熔解型的熔解保持炉120(比较例1及2)及图9所示的直接烧火式集中熔解炉210(比较例3)将压铸合金ADC12熔解。与实施例并列的比较例1及2使用设计为同样的尺寸的预热塔31、100为550mm(内径)X1000mm(高度)、熔解用坩埚71、104为718mm(口径)X520mm(高度)、及保持用坩埚76、107为855mm(口径)X845mm(高度)。在熔解用坩埚71的上端设置有718mm(内径)X260mm(高度)的坩埚接合件73。坩埚接合件73的通气孔73a是相对于熔融液面呈30°倾斜的直径30mm的孔,在坩埚接合件73的周方向形成16个或8个,这是在高度方向上每5段交互形成的,合计形成有120个孔。比较例3的直接烧火式集中熔解炉210具有预热塔200及设置于预热塔200下方的熔解炉201,熔解炉201由熔解室202及贮液室203构成,具有两根加热燃烧器205及205A和升温燃烧器206。在直接烧火式集中熔解炉210动作时,投入至预热塔200的被熔解材料a在其下方的熔解室202内通过来自两根加热燃烧器205及205A的燃烧气体被熔解,供给至贮液室203内。被供给至贮液室203内的熔融液b通过来自升温燃烧器206的燃烧气体加热至所希望的温度,通过取锅等吸出。通过实施例和比较例,对燃烧器的燃烧量和熔解量的关系进行了比较。表1表示实施例及比较例中各燃烧器的燃烧量及各炉的熔解量。首先,在实施例及比较例1中,如表1所示设定各燃烧器的燃烧量并进行熔解。其结果,从表1可知,实施例及比较例的熔解量分别是lt/h及300kg/h,实施例与比较例1相比可以增大熔解量。其次,在比较例2中,以得到和实施例同样的熔解量为目的,如表1所示,将燃烧器的合计燃烧量设定为和实施例同样而进行熔解。其结果是,在熔解中熔解用坩埚104损伤,在比较例2中不能得到和实施例同样的熔解量。再其次,在比较例3中,和实施例同样将熔解量设定为lt/h,进行熔解。另外,这时将保持用坩埚炉76及贮液室203中的熔融液b的贮液温度也设定为同样,且维持在70(TC。其结果是,从表1可知,比较例3与实施例相比合计燃烧量变大。表1<table>tableseeoriginaldocumentpage18</column></row><table>就实施例和比较例3,对占有的空间也进行了比较。表2表示将比较例3设定为100时,实施例中的高度(自台面至熔解炉的最上部的高度)、占有面积(熔解炉的设置面积)、占有体积(熔解炉的高度X设置面积)及燃烧量各值。从表2可知,在实施例中,与熔解量同样的比较例3相比,实现了节省空间化及节省能量化。表2<table>tableseeoriginaldocumentpage18</column></row><table>权利要求1.一种坩埚式连续熔解炉,具有容纳被熔解材料、且在上部形成有排气口的预热塔,设置于所述预热塔的下方、且具有接受自该预热塔供给的被熔解材料的熔解用坩埚的熔解用坩埚炉,加热所述熔解用坩埚的加热燃烧器;所述熔解用坩埚炉,具有将所述加热燃烧器的燃烧气体导入至所述预热塔内部的导入部,所述熔解用坩埚,在侧壁具有排出被熔解材料的熔融液的熔融液排出口,其中,所述坩埚式连续熔解炉具有配置在比所述加热燃烧器更靠上方的位置、且对所述被熔解材料进行预热的预热燃烧器。2.如权利要求l所述的坩埚式连续熔解炉,其中,所述预热燃烧器配置于所述熔解用坩埚炉的内部,以向比所述熔解用坩埚的所述熔融液排出口更靠上方的位置喷射燃烧气体。3.权利要求l所述的坩埚式连续熔解炉,其中,所述预热燃烧器,设置于所述预热塔上。4.如权利要求3所述的坩埚式连续熔解炉,其中,还具有配置于所述熔解用柑埚的内部的铁锅,所述铁锅具有流出熔融液的熔融液流出孔,并且以和所述熔解用坩埚之间具有间隙的方式配置。5.如权利要求4所述的坩埚式连续熔解炉,其中,所述铁锅在最底部具有用于贮存比重高的金属的贮存部。6.如权利要求13任一项所述的坩埚式连续熔解炉,其中,所述导入部向下方引导被导入的燃烧气体。7.如权利要求6所述的坩埚式连续熔解炉,其中,在所述熔解用坩埚炉的炉盖下面,具有朝向所述熔解用坩埚的内部突出的导向部,所述导入部由所述熔解用坩埚和所述导向部的间隙构成。8.如权利要求6所述的坩埚式连续熔解炉,其中,还具有被夹持在所述熔解用坩埚炉的炉盖下面与所述熔解用坩埚的上端之间的圆筒状的坩埚接合件,所述导入部由所述坩埚接合件上形成的多个孔构成。9.如权利要求6所述的坩埚式连续熔解炉,其中,所述导入部由在比所述熔解用坩埚的侧壁上的所述熔融液排出口更靠上方的位置形成的多个孔构成。10.如权利要求1~9任一项所述的坩埚式连续熔解炉,其中,还具有与所述熔融液排出口连接的移送部,所述移送部包含热传导性良好的材料。11.如权利要求110任一项所述的坩埚式连续熔解炉,其中,所述熔解用坩埚是石墨坩埚。12.如权利要求111任一项所述的坩埚式连续熔解炉,其中,还具有与所述熔解用坩埚炉并置的保持用坩埚炉,所述保持用坩埚炉具有保持自所述熔融液排出口排出的熔融液的保持用坩埚、和对被所述保持用坩埚保持的熔融液进行保温的保持用燃烧器,所述熔解用坩埚炉和所述保持用坩埚炉通过连通部连通,并且所述保持用燃烧器的燃烧气体被导入至所述熔解用坩埚炉。全文摘要本发明的目的是提供一种坩埚式连续熔解炉,其可以容易地控制被熔解材料的熔解量。该坩埚式连续熔解炉(1)具有容纳被熔解材料(a)、且在上部形成有排气口(34)的预热塔(31);设置于预热塔(31)的下方、且具有接受自预热塔(31)供给的被熔解材料(a)的熔解用坩埚(71)的熔解用坩埚炉(11);加热熔解用坩埚(71)的加热燃烧器(3);熔解用坩埚炉(71)具有将加热燃烧器(3)的燃烧气体导入至预热塔(31)内部的导入部,熔解用坩埚(71)在侧壁具有排出被熔解材料(a)的熔融液(b)的熔融液排出口(74),其中,该坩埚式连续熔解炉具有配置在比加热燃烧器(3)更靠上方的位置、且对被熔解材料(a)进行预热的预热燃烧器(4)。文档编号F27B14/14GK101194139SQ20068002072公开日2008年6月4日申请日期2006年6月8日优先权日2005年6月9日发明者佐佐木忠男,冈田民雄,岸田了一,白川克行,竹内晋之介申请人:日本坩埚株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1