空调器及其控制方法与流程

文档序号:11129924阅读:314来源:国知局
空调器及其控制方法与制造工艺

本发明涉及空调器设备技术领域,具体而言,涉及一种空调器及其控制方法。



背景技术:

空气源热泵吸收空气中的低温热能,通过压缩机做功转换为高温热能。作为一种高效、节能环保供暖技术,空气源热泵在我国得到越来越多的应用。普通风冷空气源热泵目前大部分制热运行最低环境温度为-15℃,为了拓宽风冷空气源热泵制热的运行范围,多采用喷气增焓技术。采用喷气增焓的风冷热泵制热运行范围最低可达-25℃~-30℃。

空气源热泵通常采用电子膨胀阀作为节流机构。电子膨胀阀是一种通过控制施加于膨胀阀上的电压或电流,从而控制阀针的动作实现阀口流通面积改变达到流量自动调节目的的节流器件。电子膨胀阀常见失效方式包括卡死,此时会造成相关流路没有流量或是流量不受控制。造成电子膨胀阀卡死原因通常为系统内有杂质等,电子膨胀阀卡死对机组可靠性影响较大。卡死在没有流量时很快出现低压保护或者排气高温保护等,机组通常可以快速保护,有效保护压缩机。卡死在流量不受控制时(较大的步数)通常不易判断,若机组无法快速保护而长时间运行会导致压缩机损坏,这时再排查分析发现为电子膨胀阀卡死而导致压缩机损坏为时已晚。

采用喷气增焓的风冷热泵系统喷焓电子膨胀阀位于冷凝器后喷气增焓支路,对喷焓回路冷媒起节流降压作用。当喷焓电子膨胀阀卡死在0B或者较小的步数时喷气过热度会偏大,机组性能会降低,通过提高喷焓量来降低机组排气温度的作用受到影响,长久喷气运行不会对压缩机可靠性造成影响,若导致排气高温保护也可提示机组运行维护人员及时分析排查故障原因,不至于导致压缩机损坏。但是,当喷焓电子膨胀阀卡死在较大的步数时,喷焓回路冷媒增多,会导致喷液运行,喷气过热度为负值。长久喷液运行会造成压缩机液击、因压缩机润滑油膜被稀释导致润滑不足出现磨损等损坏。因而需要及时判断这种喷焓电子膨胀阀卡死在较大步数时的失效行为,及时保护机组停掉压缩机,排查分析喷焓电子膨胀阀卡死原因,及时更换喷焓电子膨胀阀,不至于出现压缩机损坏的严重售后故障。



技术实现要素:

本发明的主要目的在于提供一种空调器及其控制方法,以解决现有技术中压缩机容易损坏的问题。

为了实现上述目的,根据本发明的一个方面,提供了一种空调器控制的方法,方法包括以下步骤:根据空调器的压缩机的喷气过热度以及喷气过热度的持续时间,控制压缩机处于工作状态或停机状态;根据压缩机的停机次数控制压缩机处于停机维修状态以对压缩机的补气管路进行维修。

进一步地,方法包括:当压缩机关机的次数小于或等于第一预设值时,压缩机处于继续工作状态,当压缩机关机的次数大于第一预设值时,压缩机处于停机维修状态。

进一步地,持续时间包括负值持续时间,当喷气过热度持续为负值的负值持续时间达到第二预设值,且在负值持续时间内,压缩机的排气温度保持小于压缩机的排气温度临界值,压缩机停机后自行恢复至工作状态。

进一步地,持续时间还包括偏差持续时间,若喷气过热度持续大于压缩机的过热度偏差值的偏差持续时间小于或等于第三预设值时,偏差持续时间计入负值持续时间。

进一步地,第三预设值为t,其中,0<t≤60s。

进一步地,第一预设值为N,其中,0<N≤2。

进一步地,在空调器的制热模式和/或制冷模式中,持续时间为tc,其中,tc=t1-t0,其中,t1>t0,t0为喷气过热度开始小于过热度偏差值时的时间;或tc=(t1-t0+t),其中,t1为继t0之后喷气过热度开始大于过热度偏差值时的时间,t为喷气过热度大于过热度偏差值的持续时间,当t大于第四预设值时,tc的值清零,tc的值从下一次喷气过热度开始小于过热度偏差值时的时间开始计时。

进一步地,在制冷模式中,当空调器进行化霜模式时,持续时间归零设置,归零设置后的持续时间从第一次喷气过热度开始小于或等于过热度偏差值时计算。

进一步地,压缩机处于停机保护状态时,对压缩机的补气管路上的电子膨胀阀进行维修。

根据本发明的另一方面,提供了一种空调器,空调器为上述空调器,空调器包括:相互连通的压缩机、第一换热器、第二换热器以及补气装置;补气管路,补气管路的第一端与第一换热器的出口端相连通,补气管路的第二端与压缩机的补气口相连通,至少部分的补气管路与补气装置进行热交换以提高补气管路内冷媒的温度。

进一步地,补气管路上设置有电子膨胀阀、压力传感器,第一温度传感器中的至少一个。

进一步地,压缩机的排管路上设置有第二温度传感器。

进一步地,补气管路上设置有第三温度传感器,第三温度传感器位于第一换热器的出口端与补气装置之间。

应用本发明的技术方案,空调器控制的方法,该方法包括根据空调器的压缩机的喷气过热度以及喷气过热度的持续时间,控制压缩机处于工作状态或停机状态。根据压缩机的停机次数控制压缩机处于停机维修状态以对压缩机的补气管路进行维修。采用这样的设置方式能够有效地对压缩机工况进行正确的判断,使得当压缩机能够得到及时的维护,避免压缩机因在恶劣工况下运行造成损坏,增加了压缩机及空调器运行的可靠性。

附图说明

构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1示出了根据本发明的空调器系统在制热模式下的实施例的示意图;

图2示出了图1中的空调器系统在制冷模式下的实施例的示意图;

图3示出了图1中的空调器的压缩机工作流程框图;

图4示出了图1中的空调器分别在制冷和制热模式下的工作流程框图。

其中,上述附图包括以下附图标记:

10、压缩机;20、第一换热器;30、第二换热器;40、补气装置;50、补气管路;51、电子膨胀阀;52、压力传感器;53、第一温度传感器;54、第二温度传感器。

具体实施方式

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。

现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。

结合图1至图4所示,根据本发明的实施例,提供了一种空调器控制的方法。

具体地,该空调器控制的方法,包括根据空调器的压缩机的喷气过热度以及喷气过热度的持续时间,控制压缩机处于工作状态或停机状态。根据压缩机的停机次数控制压缩机处于停机维修状态以对压缩机的补气管路进行维修。

在本实施例中,采用这样的设置方式能够有效地对压缩机工况进行正确的判断,使得当压缩机能够得到及时的维护,避免压缩机因在恶劣工况下运行造成损坏,增加了压缩机及空调器运行的可靠性。

其中,该方法还包括当压缩机关机的次数小于或等于第一预设值时,压缩机处于继续工作状态,当压缩机关机的次数大于第一预设值时,压缩机处于停机维修状态。这样设置能够有效避免由于压缩机自身在正常工况下发生停机,且该停机不会对空调器的正常运行和压缩机的零件造成损伤的情况下产生误判,采用这样的控制方式能够提高空调器运行的可靠性。

进一步地,当压缩机关机的次数小于或等于第一预设值时,压缩机处于继续工作状态,当压缩机关机的次数大于第一预设值时,压缩机处于停机维修状态。这样设置能够有效地达到对压缩机工况的检测和控制的作用,能够对压缩机及空调器管路进行及时的维护处理。

其中,第一预设值为N,其中,0<N≤2。即当压缩机存在两次或一次停机时,可以控制压缩机处于停机维修状态或是继续的工作状态。

持续时间包括负值持续时间,当喷气过热度持续为负值的负值持续时间达到第二预设值,且在负值持续时间内,压缩机的排气温度保持小于压缩机的排气温度临界值,压缩机停机后自行恢复至工作状态。

当计算的喷气过热度持续为负值的时间达到最大设定值并且在计算的喷气过热度持续为负值的时间内一直保持排气温度小于排气温度临界值时,压缩机停机后并自行恢复至工作状态。计算喷气过热度持续为负值的时间tc时,若持续喷气过热度大于过热度偏差值的时间小于或等于第三预设值,这段时间计入过热度持续为负值的时间。这样设置能够起到有效地保证空调器运行的可靠性,避免了因运行工况等而造成误判的情况。

其中,第三预设值为t,其中,0<t≤60s。本实施例中t=60s。

如图3和图4所示,在空调器的制热模式和制冷模式中,持续时间记为tc,其中,tc的计算方式如下:

其中,TG为喷气过热度;TP为过热度偏差值;t0为喷气过热度开始小于或等于过热度偏差值时的时间;t1为t0之后喷气过热度开始大于过热度偏差值时的时间;已知t1>t0,即tc从TG≤TP时刻t0开始计时,若一直保持TG≤TP到时间t1,则时间(t1-t0)计入tc;若t1时刻TG>TP且此后TG>TP持续时间没有超过t,则继续计时即tc=(t1-t0+t);若t1时刻TG>TP且此后TG>TP持续时间有超过t,则已计算tc清零,tc重新从下一个TG≤TP时刻开始计时,此后按照以上方法计算。

在制热模式中,当空调器进行化霜模式时,持续时间归零设置,归零设置后的持续时间从第一次喷气过热度开始小于或等于过热度偏差值时计算。

优选地,压缩机处于停机保护状态时,可以对压缩机的补气管路上的电子膨胀阀进行维修。这样能够有效地提高了压缩机管路的补气的可靠性。有效地提高了压缩机的压缩性能。

根据本发明的另一方面,提供了一种空调器,空调器为上述实施例中的空调器。该空调器包括相互连通的压缩机10、第一换热器20、第二换热器30以及补气装置40。补气管路50的第一端与第一换热器20的出口端相连通,补气管路50的第二端与压缩机10的补气口相连通,至少部分的补气管路50与补气装置40进行热交换以提高补气管路50内冷媒的温度。采用该空调器能够有效地提高空调器的运行可靠性和使用寿命。

如图1和图2所示,补气管路50上设置有电子膨胀阀51、压力传感器52以及第一温度传感器53。其中电子膨胀阀51用于控制补气管路50上的补气开度的大小,压力传感器52用于检测补气管路50上的压力,第一温度传感器53用于检测补气管路50上的温度,根据常规计算的计算方法计算压缩机的喷气过热度。

进一步地,为了提高计算结果的准确性,还在压缩机10的排管路上设置有第二温度传感器54并用于检测压缩机的排气管路处的排气温度,当第二温度传感器54越靠近压缩机排气口时测量结果越精确。

当然,可以不在补气管路50上设置压力传感器52,改在补气管路50上设置第三温度传感器。第三温度传感器位于电子膨胀阀51与补气装置40之间。

进入板式换热器即补气装置40前的管路上设置温度传感器T3即第三温度传感器,然后和设置在板式换热器出口,压缩机补气口前的温度传感器T1即第一温度传感器53来确定喷液情况,此时TG=(T1-T3)(通常TG控制在3℃~5℃)。这种通过喷焓回路即补气管路50进出换热器(补气管路50)的温差来确定喷焓冷媒状态的判断方法适合对喷液耐受能力更强的压缩机系统。

具体地,对于喷焓节流装置为电子膨胀阀的喷气增焓系统,以附图1为例。补气装置40出口和压缩机入口间设置有温度传感器T1,压力传感器P1,压缩机出口排气管上设置有温度传感器T2,喷气过热度为喷焓温度减去喷气压力对应饱和温度即TG=T1-TB(P1)。

零摄氏度过热度偏差值为TP,其值为(0.5~2℃),依据温度传感器T1精度和实际情况而定,排气温度临界值TL,排气温度过高时通常可通过增大喷焓量来降低排气温度,但排气温度降低后不应低于排气温度临界值,排气温度临界值因压缩机型号不同而定或者由压缩机厂家推荐规定,通常大于90℃。

喷气过热度持续为负值的时间记为tc,喷气过热度持续为负值的时间最大设定值记为tMAX,由试验匹配获得,本实施例中tMAX=20min。

机组正常运行时,控制程序按照喷气过热度最佳值(本实施例中为3℃~8℃)控制,喷焓电子膨胀阀不断调节步数来保持最佳喷气过热度。当喷焓电子膨胀阀正常时,可快速控制喷气过热度在最佳值范围内,通常调节时间<15min。此时机组喷气增焓效果最佳。当喷焓电子膨胀阀卡死在比较大的步数时,会导致喷液情况。此时通过以下处理方法判断这种失效行为。具体地,机组压缩机启动运行后,若tc等于tMAX,并且这个过程中(tc时间内)一直保持排气温度T2<TL,则立即关闭相应系统压缩机,出现此种状况前两次压缩机会自动恢复运行,累计三次后彻底锁定相应系统压缩机,报喷焓电子膨胀阀失效故障,提示运行维护人员及时排查分析,及时更换喷焓电子膨胀阀,保护压缩机。采用此种控制方法基本上不会出现误报情况。具体如流程图3所示。

喷气过热度持续为负值的时间tc计算方法如下,已知t1>t0:制冷运行,压缩机启动,喷焓电子膨胀阀开启后开始统计,tc从TG≤TP时刻t0开始计时,若一直保持TG≤TP到时间t1,则时间(t1-t0)计入tc。若t1时刻TG>TP且此后TG>TP持续时间没有超过一分钟,则继续计时即tc=(t1+-t0+60s)。若t1时刻TG>TP且此后TG>TP持续时间有超过一分钟,则已计算的tc清零,tc重新从下一个TG≤TP时刻开始计时,此后按照以上方法计算。

制热运行,压缩机启动,喷焓电子膨胀阀开启后开始统计,tc从TG≤TP时刻t0开始计时,若一直保持TG≤TP到时间t1,则时间(t1-t0)计入tc。若t1时刻TG>TP且此后TG>TP持续时间没有超过一分钟,则继续计时即tc=(t1-t0+60s)。若t1时刻TG>TP且此后TG>TP持续时间有超过一分钟,则已计算tc清零,tc重新从下一个TG≤TP时刻开始计时,此后按照以上方法计算。若机组制热运行中进入化霜则已计时tc清零,退出化霜转制热运行后tc重新从TG≤TP时刻开始计时计算,此后按照前述方法计算。

精确、快速及时判断喷焓电子膨胀阀卡死在较大步数时的失效情况,及时停掉出现电子膨胀阀失效系统压缩机,提示运行维护人员及时分析、排查、更换喷焓电子膨胀阀,避免压缩机损坏的更严重后果。减少经济损失,避免压缩机损毁重大售后故障。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1