应用全天候太阳能供热的空调改造系统的制作方法

文档序号:8978095阅读:323来源:国知局
应用全天候太阳能供热的空调改造系统的制作方法
【技术领域】
[0001]本实用新型涉及节能及能源利用技术领域,特别是一种应用于空调供暖行业的空调系统改造方法及设备。
【背景技术】
[0002]目前我国空调系统冷热源型式主要有如下几种:1、单冷空调主机配冷却塔+锅炉空调系统;2、各种类型热泵空调系统;3、溴化锂空调系统;4、冰蓄冷+其他热源空调系统等。其中,在夏季利用单冷空调主机制冷、冷却塔散热,冬季利用锅炉进行供暖的方式的优点是应用方式灵活,不受项目规模约束,初投资低,可以广泛应用在各类建筑中,但是设备有闲置时间段,整体效率不高,锅炉燃烧化石能源,排气有污染。各类热泵空调系统包括空气源热泵、水源热泵、地源热泵、污水源热泵等。其中利用室外空气作为冷热源的空气源热泵应用最简单,其优点是冬夏两季皆可使用,初投资低、应用方式灵活,但是工作状态不稳定,尤其在冬夏两季最不利环境下工作时效率较低,冬季有结霜可能,需要进行电辅助加热方可正常使用。水源热泵利用地表水及地下水作为冬夏两季冷热源来源,工作运行安全可靠、全年工作效率高,但是需要建筑附近有稳定可靠的水源才能使用,目前地下水开采使用已经受到限制。地源热泵常年工作状态稳定,工作效率较高,项目运行费用低,但是需要前期建筑用地面积大、进行打井埋管处理,项目初投资高,受地理环境、地质条件约束大。溴化锂空调系统是利用热能作为机组的能源,可同时提供冷热水,其运行耗电量小,可利用废热作为能源,但其要求项目体量大,年衰减较多,运行费用较高,管理不便。冰蓄冷利用夜间低价电力将冷量通过冰的形式储存起来,白天需要供冷时释放出来,其制冷温度低而稳定,空调效果好,运行经济简单,但是初投资较高,冬季需要其他热源进行采暖。
[0003]比较以上的在常规的空调冷热源中,由于其优点突出,单冷空调主机配冷却塔+锅炉空调系统的应用是最普遍也是范围最广的。在我国大中小型建筑空调系统中占有极大的比重。在夏季,单冷空调主机利用压缩机对制冷剂的压缩将用户系统中冷冻水的热量提取出来转移到冷却水中,再由冷却塔散发到空气中从而不断地为用户系统提供冷量,冬季利用锅炉对用户系统供水加热,从而为用户空调系统提供热源。在我国秦岭淮河以南地区,冬季均不集中供暖,往往是单个建筑或建筑群采用中央空调系统进行供热。在建筑采用空调时期,室外温度低于五度的时间段较少,锅炉出力不完全。在此系统中,整个供暖季节均采用锅炉进行供热,而锅炉的燃烧效率低,所需的化石能源为不可再生能源,在燃烧的过程中排放物中包含有硫化物、氮化物等对环境造成污染的物质。每年冬季由于各种锅炉的燃烧造成的大气污染和雾霾气候的形成,对人类健康造成极大的危害。因此,冬季燃烧锅炉直接造成了环境污染与能源浪费,而同时,冬季单冷空调主机与冷却塔停止使用,造成了设备闲置。
[0004]在冬季,湿冷空气仍然具有一定温度,对于比湿冷空气温度更低的环境而言,这部分湿冷空气仍是一个无穷大的热源,完全可以通过一定方式吸收空气中的热量。同时,太阳能光热是一种无污染、环保高效的热量能源,而冬季太阳光照强烈的时期在此空调系统中太阳能未得到应用,造成极大的能源浪费。
[0005]因此,如果将单冷空调主机与冷却塔进行改造,从而在冬季环境温度高于五度以上时间段内利用单冷机配冷却塔来吸收空气中的热量、充分利用太阳能光热,形成一种全天候的太阳能空调系统对用户进行空调供暖,可以大大减少锅炉使用时间。同时充分利用太阳能对单冷空调主机冷却回水进行加热,提高单冷机进水温度进而提高单冷机制热效率。如此一来,可以将原闲置的单冷空调主机作为高效率供热主机使用,同时利用了无污染的可再生能源,可节省大量费用、减少环境污染,有着极其重要的经济价值和社会价值。

【发明内容】

[0006]本实用新型的目的在于克服上述单冷空调主机配冷却塔+锅炉空调系统的不足,充分利用太阳能光热与太阳能转化存储在湿冷空气中的热量,提供一种能将其改造成为在冬夏两季都能够高效使用的应用全天候太阳能进行替代锅炉供热的空调系统改造方法及设备。
[0007]本实用新型的目的是通过如下途径实现的:
[0008]应用全天候太阳能供热的空调改造系统,包括在由单冷空调主机、冷却塔、锅炉、用户室内空调系统、蒸发器、冷凝器、冷却水泵、冷冻水泵组成的原空调系统,增设板式换热器,增设二级循环泵,增设温度传感器,增设控制器,增设太阳能集热板,增设储能罐;所述板式换热器的一级进水口与原来的冷却水回水管通过增设管路相连接,增设的管路与冷却水回水管的连接点位于冷却水泵与冷却水回水阀之间的管道上;所述板式换热器的一级出水口与原来的冷却水供水管通过增设管路相连接,增设的管路与冷却水供水管上的连接点位于冷却水供水阀与冷却塔之间的管道上;所述板式换热器的二级出水口与原来的冷冻水回水管通过增设管路相连接,增设的管路与冷冻水回水管的连接点位于冷冻水回水阀与蒸发器之间的管道上;所述板式换热器的二级进水口与原来的冷冻水供水管通过增设管路相连接,增设的管路与冷冻水供水管的连接点位于冷冻水供水阀与蒸发器之间的管道上;所述二级循环泵安装在与板式换热器二级出水口相连接的管路上;增设管路,使冷冻水回水管路与单冷空调主机冷凝器进水口相连接,冷冻水回水管路上的连接点位于冷冻水泵与冷冻水回水阀之间的管路上;增设管路,使冷冻水供水管路与单冷空调主机冷凝器出水口连接,冷冻水供水管路上的连接点位于冷冻水供水阀之后的管路上;在冷却塔塔壁外侧加设太阳能集热板,集热板与储能罐通过管路相连;储能罐通过增设的管路安装在位于冷却塔与冷却水泵之间的冷却水回水管路上;
[0009]作为本方案的进一步优化,在连接冷冻水供水管路与单冷空调主机冷凝器出水口的管路与锅炉进水管路之间增设管路,增设的管路上安装有电磁阀,增设的管路与锅炉进水管路上的连接点位于锅炉回水阀与锅炉进水口之间的管道上;
[0010]作为本方案的进一步优化,所述的锅炉回水阀为电磁阀;
[0011]作为本方案的进一步优化,所述的温度传感器安装在冷冻水回水管上,位于冷冻水泵的进水口;
[0012]作为本方案的进一步优化,所述控制器能够调节电磁阀的开度;
[0013]作为本方案的进一步优化,所述的连接板式换热器的管路内填充有防冻液;
[0014]作为本方案的进一步优化,所述的冷冻水管路上的冷冻水供水阀、冷冻水回水阀冬季关闭夏季打开;
[0015]作为本方案的进一步优化,所述的冷却水管路上的冷却水供水阀、冷却水回水阀冬季关闭夏季打开;
[0016]作为本方案的进一步优化,所述的各增设的管路上都装有阀件,阀件冬季打开夏季关闭;
[0017]作为本方案的进一步优化,所述的储能罐与冷却水回水管的连接管路上装有阀件,冬季打开夏季关闭;在冷却水回水管路上、两个连接管路与冷却水回水管路的连接点之间装有阀件,冬季关闭夏季打开;
[0018]作为本方案的进一步优化,所述的锅炉在外界环境温度为五度以下时开启。
[0019]与现有的单冷空调主机配冷却塔+锅炉空调系统相比,应用本改造方法后的空调冷热源系统有如下优点:
[0020]系统构造简单,投资少,只需要在原空调水系统中增设少量管路及部件,不需要对原有设备进行改造,可直接运行原有设备;
[0021]延长了设备使用时间,提高了单冷空调主机与冷却塔的利用率,缩短了锅炉使用时间;
[0022]改变了冷却塔的使用性质,由原来单纯夏季冷却作用变为了无论是晴天、夜晚、雨天等各种天气状况下都可以吸收湿冷空气中的热量,在冬季形成了的全天候太阳能吸热塔;
[0023]结合太阳能光热,充分利用储能罐对太阳能进行存储与利用,无论是有无太阳光照时,都可以利用;
[0024]采用中间循环系统,将冷却水系统与蒸发器隔绝开,可避免蒸发器内因为防冻液浓度低而造成的结冰问题;
[0025]利用冷却塔在冬季的循环,可对雾霾空气起到净化作用;
[0026]合理安排锅炉工作情况,充分保证用户对供热的要求。
【附图说明】
[0027]下面结合附图和实施例对本实用新型作进一步详细说明:
[0028]图1为本实用新型示意图;
[0029]图中,单冷空调主机1、冷却塔2、锅炉3、用户室内空调系统4、蒸发器5、冷凝器6、冷却水泵7、冷冻水泵8、板式换热器9、二级循环泵10、温度传感器11、控制器12、太阳能集热板13、储能罐14。
[0030]虚线段表示原有管路,实线段表示增设管路,箭头表示管道内流体流向。
【具体实施方式】
[0031]如图所示,本实用新型应用全天候太阳能供热的空调改造系统,包括在由单冷空调主机1、冷却塔2、锅炉3、用户室内空调系统4、蒸发器5、冷凝器6、冷却水泵7、冷冻水泵8组成的原空调系统内增设板式换热器9,增设二级循环泵10,增设温度传感器11,增设控制器12、增设太阳能集热板13、增设储能罐14 ;所述板式换热器9的一级进水口与原来的冷却水回水管BI通过增设管路Dl相连接,增设的管路Dl与冷却水回水管BI的连接点位于冷却水泵7与冷却水回水阀C之间的管道上;所述板式换热器9的一级出水口与原来的冷却水供水管B2通过增设管路D2相连接,增设的管路D2.与冷却水供水管B2上的连接点位于冷却水供水阀D与冷却塔2之间的管道上;所述板式换热器9的二级出水口与原来的冷冻水回水管Al通过增设管路El相连接,增设的管路El与冷冻水回水管Al的连接点位于冷冻水回水阀A与蒸发器5之间的管道上;所述板式换热器9的二级进水口与原来的冷冻水供水管A2通过增设管路E2相连接,增设的管路E2与冷冻水供水管A2的连接点位于冷冻水供水阀B与蒸发器5之间的管道上;所述二
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1