采用两步毛细管节流和贮液器的回路的制作方法

文档序号:4763686阅读:171来源:国知局
专利名称:采用两步毛细管节流和贮液器的回路的制作方法
技术领域
本发明涉及一种制冷回路,包括压缩机、冷凝器、蒸发器、两个毛细管以及带热交换器的贮液器。制冷剂被节流,首先从冷凝器到贮液器,然后从贮液器再到蒸发器,在贮液器中,过多的热量通过热交换器被除去。从冷凝器到贮液器的过程中,压力降被分散在两个毛细管之间,并且贮液器中的压力在冷凝器和蒸发器之间浮动,其受热交换器控制。
从US2137260中可以获知采用被热交换器分开的两步毛细管节流的技术。这种结构的好处是在冷凝器的出口处以气体的形式限制制冷剂,但是这种结构对制冷剂的流动没有任何控制作用—制冷剂的流动受设置在蒸发器出口处的吸气收集器控制。
DK174179也采用了被热交换器分开的两步毛细管节流,但在两个方面又不同于US2137260贮液器与热交换器连接设置—以及制冷剂被最终节流到蒸发器之前进行次级冷却。这种结构增加了从贮液器到蒸发器过程中对制冷剂流动的控制作用。
在第一节流阶段,从冷凝器到贮液器过程中,向贮液器中加入热量,其增加了温度和与之相关的压力。吸入气体去除了贮液器中的热量—从而降低了温度和压力。贮液器中的压力和温度迫使加入的热量和去除的热量之间的平衡被打破,在平衡点时,关系式R1成立CP液体*(T冷凝器-T蒸发器)=CP气体*(T贮液器-T蒸发器)+RT*Y(R1)这里CP表示制冷剂的热容量。下标用于标示气体状态或液体状态。
RT表示蒸发的热量。
Y表示蒸发器的出口处,以液体形式表示的制冷率。
所述回路的主要目的是保持蒸发器被充满,其意味着Y是正的。该条件代入R1就得到R2。
R1∧(Y>0)CP液体*(T冷凝器-T贮液器)>CP气体*(T贮液器-T蒸发器)(T贮液器-T蒸发器)<(CP液体/CP气体)*(T冷凝器-T贮液器)(R2)与第一节流阶段相比,关系式R2对第二节流阶段的全部压力降的允许量设定了一个上限。因为在第二节流阶段处,压力的降低还能引起穿过热交换器的温度差,使此压力降尽可能大是十分重要的—以使加热区尽可能的小。
因为贮液器中的温度高于蒸发器中的温度,如果制冷剂从贮液器中直接被节流到蒸发器中的话,那么它会在毛细管中蒸发。在DK174179中,采用自冷却阀解决了这个问题,其包括位于进入和流出毛细管的制冷剂之间的带有热转换器的毛细管。这样,热量穿过毛细管并直接传递到蒸发器中。自冷却阀是通用的,因为其并不依赖于任何形式的外部冷却—但它却需要额外的自带热交换器。
小型制冷器和电冰箱是要被大量生产并以非常低的价格出售的,而DK174179中所描述的特别的调节器既复杂又昂贵。本发明相对更简单,更易于装配以及制造更便宜。本发明包括管状的贮液器,毛细管延伸在其两端。制冷剂分两个阶段被节流第一阶段从压缩机到贮液器的顶部然后再从贮液器的底部到蒸发器。吸气管与管状的贮液器成热接触设置—这样的定位使吸入气体从底部流向顶部,与逆向流形成了热交换器。贮液器底部的液体将次级冷却到接近蒸发器的温度而吸入气体将被过度加热到接近贮液器的温度。当加入的热量和去除的热量之间处于平衡时,关系式R3成立CP液体*(T冷凝器-T蒸发器)=CP气体*(T贮液器-T蒸发器)+RT*Y(R3)回路的主要目的是保持蒸发器被充满,这意味着Y是正的。该必要条件代入R3就得到了R4R3∧(Y>0)CP液体*(T冷凝器-T贮液器)>CP气体*(T贮液器-T蒸发器)
(T贮液器-T蒸发器)<(CP也体/CP气体)*(T冷凝器-T贮液器)(R4)液体的热容量总是高于气体的热容量。该关系示代入R4中就得到了R5R4A∧(CP液体/CP气体)(T贮液器-T蒸发器)<(T冷凝器-T贮液器)T贮液器<T冷凝器(R5)关系式R5总是正确的—并且蒸发器将被完全充满,对贮液器中的温度没有任何限制,就像关系式R2-其在DK174179中是成立的。那意味着贮液器中的温度能选择的更高一些以及加热区更小一些。
如果流体在贮液器的底部被次级冷却,它能被直接节流到蒸发器中而无需任何进一步的冷却—但是满足次级冷却液体的条件是重要的。如果蒸发器被充满那么就满足了该必要条件—因为那时蒸发器正在流出含液体制冷剂的液体。关系式R5确保了平衡时蒸发器被充满—这样剩下的唯一要做的事就是确保在平衡之前蒸发器被充满。如果蒸发器的进口设置在蒸发器底部,那么在停顿期间,所有的制冷剂被收集在蒸发器中—随后启动时,蒸发器将被充满。
附图描述

图1粗略显示了通常用于小型制冷器和冰箱的回路。
1压缩机,2冷凝器,3流体管,4蒸发器,5吸气管,6毛细管,7毛细管和吸气管之间的热接触区。
图2粗略显示了本发明,其仅仅不同于图1之处是由管子形成的贮液器—将毛细管分成两部分。
1压缩机,2冷凝器,3流体管,4蒸发器,5吸气管,8毛细管,9贮液器,10毛细管,11贮液器和吸气管之间的热接触区,12毛细管和吸气管之间的热接触区。
就像图1中大意示出的,小型家用制冷器和冰箱的制造通常采用与吸气管热接触的毛细管作为节流装置。这种结构导致了过热的吸入气体,从而产生了两个优点COP(性能系数)的增加(对大多数制冷剂而言)以及温暖的吸入气体阻止了来自吸气管的冷凝水—否则可能造成制冷器和冰箱后部的损坏。对于本发明,将第一个毛细管设置在与吸气管热接触的区域,如图2中标记(12)所示,可以获得相同的优点。
发明实施本发明包括4个部分,吸气管、管状的贮液器以及2个毛细管。作为一个实施例,对带Danfoss压缩机NLY9KK100W的制冷器计算出合适的尺寸。贮液器中的温度被选择到+10C。
从NLY9KK的数据手册中得到●制冷剂R600A●在30C/-30C(冷凝器/蒸发器)时,制冷效应100W●质量流动1.37kg/h=0.34g/s热量在三个位置被传递到吸气管1.从毛细管Q毛细管=Flow*CP气体*20K=0.34g/s*1.7J/g/K*20K=12W2.从贮液器顶部的冷凝气体Q气体=Flow*CP液体*20K-Q毛细管=0.34g/s*2.3J/g/K*20K-12W=16W-12W=4W3.从贮液器底部液体的次级制冷Q液体=Flow*CP液体*40K=0.34g/s*2.3J/g/K*40K=31W热交换器能够传递的这一热量值Q=U*A*LMTD(6)其中U热传递系数A热传递面积
LMTD温度平均对数比对于像这种管状热交换器U=0.1W/cm2/KLMTD=(dT1-dT2)/LN(dT1/dT2)其中dT1和dT2是热交换器的进口和出口处的温度差。为了简化,热交换器出口处的温度差在这里被选择成dT2=1K对于热交换器而言,其瓶颈在于吸气管的内部面积,R6移项后得到R7就可计算出其最小面积值;,Q=U*A*LMTDA=Q/(U*LMTD)(R7)通过代入R7,计算出吸气管三处位置的最小热接触面积值1.沿着毛细管,见图2中标记12dT1=[20K*(1-CP气体/CP液体)]=5.5K∧(dT2=1K)LMTD=(dT1-dT2)/LN(dT1/dT2)=4.5K/LN(5.5)=2.6KA毛细管>=Q毛细管/(U*LMTD)=12W/(0.1W/cm2/K×2.6K)=46cm2毛细管热交换器的长度必须至少为L毛细管>46cm2/1.5cm=31cm2.贮液器顶部的冷凝(dT2=40K)∧(dT2=1K)LMTD=(dT1-dT2)/LN(dT1/dT2)=39/LN(40)=10.6KA冷凝>=Q冷凝/(U*LMTD)=4W/(0.1W/cm2/K*10.6K)=4cm2根据下述,吸气管和贮液器顶部的接触区必须至少为L贮液器顶部>4cm2/1.5cm=3cm3.用于贮液器底部的次级制冷(dT1=40K)∧(dT2=1K)
LMTD=(dT1-dT2)/LN(dT1/dT2)=39/LN(40)=10.6KA冷凝>=Q冷凝/(U*LMTD)=31W/(0.1W/cm2/K*11K)=28cm2据此,吸气管和贮液器底部的接触区必须至少为L贮液器底部>28cm2/150cm2/m=19cm计算显示1.毛细管和吸气管之间的热接触区必须至少是31cm。
2.贮液器和吸气管之间的接触区的范围必须至少22cm(3cm+19cm)。
通过选择50cm长的贮液器,制冷剂的深度最高能达到28cm-并仍能符合该必要条件至少22cm可用于热传递。通过选择直径22cm的贮液器,制冷剂的体积能改变75ml,相当于45g。参照图2,列出的组件变为●吸气管6mm×120mm铜管(5,11,12)●贮液器22mm×50mm(9)●第一节流阶段0,7mm×120mm毛细管,其和吸气管(12)之间的热接触区必须至少是31cm●第二节流阶段0,7mm×90mm毛细管本发明提供了一种便宜、有效的调节器,其可以替代小型家用制冷器和电冰箱中用于节流的传统的毛细管。该调节器使得制冷器和电冰箱工作更有效率,更适于不同的温度。本发明很易于适应生产-如图1和2中显示的外观那样,两者唯一的差别在于毛细管的中部设置了一小型贮液器。
权利要求
1.一种闭合的制冷回路,包括压缩机(1),冷凝器(2),蒸发器(4),贮液器(9),冷凝器和贮液器之间的毛细管节流装置(8),以及贮液器和蒸发器之间的毛细管节流装置(10),其中热接触区(11)在吸气管和贮液器之间,且其取向设置使得吸入气体从贮液器底部传到贮液器顶部。
2.如权利要求1的闭合制冷回路,其特征在于热接触区(12)在吸气管和毛细管(8)之间,连接冷凝器和贮液器。
全文摘要
一种温控流体控制器,包括两个毛细管和一个管状的贮液器,贮液器设置在与吸气管热接触的区域。它是一种耐用的、密封的密闭装置,没有任何可移动的组件,无需调试和维护,因此适合于安装在不易被接近的地方-如封装进绝缘泡沫塑料中。流向蒸发器的制冷剂流受贮液器中的压力所控制-而贮液器中的压力又受蒸发器中制冷剂的需要量控制。这一平衡确保了蒸发器被充满,因而可被100%利用-适合于各种填充剂。本发明适用于小型的家用制冷器和电冰箱。尽管需要一点点额外的花费,但本发明取代了传统的毛细管,使得该装置在冷的和热的地区都能产生最佳工作效率,而且本发明对于制冷剂的数量的要求不再象采用传统毛细管的装置那么苛刻了,因而其更容易制造。
文档编号F25B41/06GK1849487SQ200480025787
公开日2006年10月18日 申请日期2004年9月16日 优先权日2003年9月22日
发明者拉斯·克里斯汀·伍尔夫·齐默曼 申请人:拉斯·克里斯汀·伍尔夫·齐默曼
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1