用于通过低温蒸馏分离空气的方法和设备的制作方法

文档序号:4801522阅读:132来源:国知局
用于通过低温蒸馏分离空气的方法和设备的制作方法
【专利摘要】一种通过低温蒸馏分离空气的设备,包括N个空气压缩机(C1、C2、C3),所述空气压缩机连接成接收处于环境压力下的空气并且设计成生产处于高于12bar?abs的第一压力下的空气,N至少等于3,所述压缩机中的每一个由单个异步电动机(M1、M2、M3)驱动,所述压缩机的总功率至少等于10MW。
【专利说明】用于通过低温蒸馏分离空气的方法和设备
【技术领域】
[0001 ] 本发明涉及通过低温蒸馏分离空气的方法和设备。
【背景技术】
[0002]为了控制工程成本和通过重复实现采购节约,已经建立了空气分离设备的标准化范围,达到大约700 Mt/天(兆吨/天)、或甚至1000 Mt/天的吨数。这些标准化生产在输出和/或压力方面不总是准确地对应于客户的需求,但是这些小设备的成本是主要的优化因素,而标准化很好地适应这一关键准则。
[0003]除了这些性能以外,由于能量越来越重要,已经引入所谓的模块化单元,这次的定位在于标准化某些关键部件,但是尽可能遵循客户的要求,并且考虑能量和投资的并行约束。
[0004]EP-A-0504029描述了一种基于具有单一大型高压空气压缩机的单一机器的概念的泵循环。
[0005]与传统泵循环比较,该方法通过利用该单一空气机器引入所有需要的能量显著节省了投资,无论所需的产品的纯度和压力如何,其输出压力可介于大约12bara(绝对压力)和35bara之间。然而,当达到非常高的功率时,该单一机器难于实施并且利用电动机的复杂且昂贵的启动策略(称为调整器)起动。制造商的数量也极少,这虽然没有破坏但是限制了该方法的技术和经济优势。这些问题中的一部分在Wolentarski的“Turbomachinery Limitations for Large Air Separation Plants”,CryogenicProcesses and Equipment Conference, Century2—Emerging Technology Conferences, SanFrancisco, California(1980 年 8 月 19-21 日)中进行了描述。
[0006]为了维护和可靠性的原因,采购所有这些关键设备关于压缩机和电动机的备用零件。完全可以接受的是,对于安装在同一地点或者甚至同一国家的一组相同机器准备单一一组备用零件。
[0007]取决于功率,电动机的技术不同:实际上,超过25丽,在市场上不存在同步以外的电动机,当前异步电动机的技术使得不可能超越该界限而不冒非常大的产业风险。
[0008]1979 年 7 月 CEP 中的文章 “Oxygen Plants:1Oyears of development andoperation”描述了同步电动机的使用,并且解释了储存有三种尺寸的同步电动机以便在停机的情况下替换Air Liquide集团的欧洲压缩机。
[0009]一般而言,具有利用单一高压空气压缩机的循环的空气分离单元的设备成本(除了储存和蒸发容器及高压设施外)分解成四个主要部分:
[0010]i)压缩功能(压缩,电动机,启动设备和相关电气装置):45%至50%。
[0011]ii)冷箱功能和相关设备:30%至35%。
[0012]iii)用于空气的热部分在进入冷箱之前的净化功能:10%至15%。
[0013]iv)杂项:5%M 10% ο
[0014]因此清楚的是,减少成本和增加压缩机、电动机和启动设备的可靠性是重点所在。[0015]利用如US-A-5475870中所述的使用由涡轮驱动的冷增压器的方法,或者如EP-A-0504029中所述的方法,所有动力通过高压空气压缩机引入。增压器是从高于大气压力的压力压缩空气的压缩机。还可以压缩所有处于高压的空气而不使用增压器或仅使用联接至空气和氮气涡轮的增压器,如EP-A-0504029中那样,从而所有动力通过单一高压空气压缩机引入。热交换管线的布置结构、联接至增压器的涡轮的数量和类型以及蒸馏塔使得生产与客户要求的纯度、压力和生产量相容。

【发明内容】

[0016]本发明源于这样的事实,即,对于要求处于给定生产量、给定纯度和给定压力的产品供应的客户,该供应必然对应于导致给定空气通过量和给定高空气压力的功率/动力。
[0017]为了保存尽可能接近客户需求的优点,但是标准化关键部件以提供该部件重复性的增益和通过供应商的体积效应的增益,而且尤其是工艺的、技术的或甚至经济阈值的这一面(其中存在相当大数量的潜在供应商),高压压缩机的数量N介于3和10之间,以便将空气供应至满足客户需求的分离设备的冷箱。例如,可以使用并联的3、4、5、6、7、8、9或10个压缩机。
[0018]对于例如使用25MW最小压缩(功率)、具有单一相关净化单元的单一冷箱,传统上使用同步类型的单一大型压缩机。本发明提供使用能够通过异步电动机驱动的至少三个足够小的压缩机以便供应该单一冷箱。
[0019]根据本发明的一个主题,提供了一种通过低温蒸馏分离空气的方法,其中:
[0020]i)将大致处于环境压力下的N股空气流分别传送至N个空气压缩机中的一者内,
[0021]ii)所述N个压缩机中的各者将空气压缩至12bar绝对压力以上和30bar绝对压力以下的第一压力,N等于或大于3,所述N个压缩机的总功率大于10丽,
[0022]iii)空气在所述N个压缩机的第一压力下被传送至单一净化单元以便去除水和二氧化碳,经净化的空气在该净化单元中冷却,然后被传送至单一冷箱中的单一塔系统,空气在所述塔系统中通过低温蒸馏被分离,
[0023]iv)从所述塔系统抽取富氧流和/或富氮流,和
[0024]V)通过所述净化单元将空气从所述N个压缩机中的每一个传送至所述塔系统,而不将处于第一压力下的空气传送至由电动机或蒸汽涡轮驱动的空气增压器,和
[0025]vi)所述N个压缩机分别由单个电动机驱动,这N个电动机是异步的并且具有25MW以下的最大功率。
[0026]根据其它可选的方面:
[0027]-被传送至塔系统的所有空气都来自所述N个压缩机,
[0028]-N 等于 4,5,6,7,8,9 或 10,
[0029]-这N个空气压缩机各自将它们压缩的空气的不超过100%/N传送至塔系统,
[0030]-来自所述N个空气压缩机的所有空气被传送至所述单一净化单元并传送至所述单一冷箱以便在冷箱中分离,
[0031]-所述压缩机中的每一者将其空气的至少90%传送至所述塔系统,或者甚至传送至所述塔系统中的同一塔中,
[0032]-所述压缩机中的每一个生产处于相同压力下的空气,[0033]-所述压缩机中的每一个压缩相同的通过量,
[0034]-所述压缩机中的至少两个压缩相同的通过量,
[0035]-只有两个压缩机压缩相同的通过量,
[0036]-每个压缩机压缩不同的通过量,
[0037]-至少一个压缩机压缩的通过量不同于另一压缩机压缩的通过量,
[0038]-来自每个压缩机的空气流的至少一部分在被传送至塔系统之前膨胀,
[0039]-所述电动机中的每一者均连接至给定类型的起动器,用于每个电动机的起动器的类型为直接型、电抗型或自动转换型,
[0040]-所述N个压缩机的总功率小于25XNMW,也就是说对于N个压缩机而言150MW,
[0041]-所述N个压缩机的总功率大于25MW,或者甚至大于40MW。
[0042]将N股空气流压缩至第一压力涵盖以下情形,其中,该第一压力是混合的经压缩的流的压力,并且至少一个压缩机压缩至与该第一压力相差不超过20%或者甚至不超过10%的最终压力。因此,一压缩机的压力的不足可通过来自N个压缩机中的另一者的大于第一压力的输出压力补偿。
[0043]根据本发明的另一主题,提供了一种通过低温蒸馏分离空气的设备,包括:位于单一冷箱中的单一塔系统;N个空气压缩机,所述空气压缩机连接成接收处于环境压力下的空气并且设计成生产处于12bar绝对压力以上的第一压力下的空气,N至少等于3,所述压缩机中的每一个由单一异步电动机驱动,所述压缩机的总功率为至少IOMW ;用于净化来自所述N个压缩机的处于第一压力下的空气的单一净化单元;用于将经净化的空气从所述净化单元传送至所述塔系统的管道;用于从所述塔系统抽取富氮流的管道;用于从所述塔系统抽取富氧流的管道;所述设备不包括驱动空气增压器的任何电动机或蒸汽涡轮。
[0044]每个压缩机可包括至少4个级。
[0045]每个压缩机可包括相同的级数。
[0046]可选地,所述N个压缩机中的一者可不将其空气的一部分供应至塔系统。同样,该塔系统也可接收来自所述N个压缩机之外的一压缩机的空气。
[0047]在一变型中,塔系统仅接收来自所述N个压缩机的空气并且/或者所述N个压缩机将其全部空气传送至该塔系统。
[0048]高压压缩机将空气从大气压力压缩至介于12bar绝对压力和35bar绝对压力之间。
[0049]所述N个压缩机可全部具有相同的型号,该型号优选由制造商定义。或者,压缩机中的至少一个可具有一个型号,至少另一个压缩机可具有另一型号,用于压缩经压缩的空气使用的型号的总数量不超过2或3或4或5。
[0050]通过结合这3至10个压缩机(已知对于每个型号,关于通过量存在约20%的潜在灵活性,关于输出压力存在约30 %的潜在灵活性),通过选择压缩机下游使用的元件,例如涡轮、增压器、交换器、泵和蒸馏塔,以及以本领域技术人员已知的方式选择这些元件的连接方式,可以覆盖在对应于大约10丽功率的产品、通过量、压力和纯度方面的任何需求所需的所有功率总和。例如,可以使用一设备,其中,所有空气被压缩至单一高压,处于该高压的空气的一部分在交换管路中冷却,剩余部分在增压器中被压缩和然后在驱动该增压器的涡轮中膨胀,然后被传送以便蒸馏。其它可能的变型包括使用将空气传送至大气的辅助空气涡轮或联接至待用于蒸馏的空气涡轮的冷增压器。
[0051]对于将要在世界或在给定国家建造的大多数空气分离设施,在待压缩空气的输出压力和通过量方面可以使用相同类型的压缩机。根据设备,可以使用更多或较少数量的相同压缩机。这使得可以减少备用零件的库存,因为用于设备的压缩机的零件将不仅用于相同设备的其它压缩机,而且用于其它设备的压缩机。
[0052]通过恰好在这些机器的技术阈值之前、例如恰好低于25MW定位,则仅可安装异步电动机,由此获得可靠性,这些机器比同步电动机更加耐用。
[0053]功率相对较小,可以实现这些机器的电动机的直接起动,或通过电抗或自动转换起动器,而不是经过用于非常高容量电动机的非常昂贵的调整器或软起动器。
[0054]所述压缩机可以是离心式或轴流式压缩机。
【专利附图】

【附图说明】
[0055]下面将参照附图更详细地描述根据本发明的设备,该附图示出示意性图示。【具体实施方式】
[0056]在图1中,空气分离设备的单个冷箱BF容纳单一塔系统和一交换器,该交换器用于将空气冷却至蒸馏温度。待蒸馏的空气7先前已经在单一净化单元E中被净化以便去除水和二氧化碳。
[0057]该设备生产至少一种产品9,该产品可以是气态氧和/或气态氮和/或液态氧和/或液态氮和/或气态氩和/或液态氩。
[0058]处于大气压力下的空气在三个压缩机Cl、C2、C3中被压缩。这些压缩机中的每一者优选具有相同的容量。每个压缩机将空气压缩至净化压力,其优选等于至少12bar绝对压力,优选小于35bar绝对压力。在压缩机C1、C2、C3中压缩的三股空气流1、2、3在单个流6中汇合并且一起在单元E中净化。
[0059]被传送至单一冷箱中的所有空气都来自压缩机Cl、C2、C3,并且压缩机Cl、C2、C3将其所有的空气6传送至冷箱BF。
[0060]每个压缩机C1、C2、C3由单一异步电动机M1、M2、M3驱动。每个电动机M1、M2、M3具有各自的起动器Dl、D2、D3,这些起动器是直接在线型、自或自动转换型。没有电动机通过软起动器或调整器起动,这显著简化了安装。
[0061]压缩机C1、C2、C3中的每一个包括至少4个级。
[0062]冷箱、因此所述三个压缩机处理空气以便每天生产至少4000吨氧。因此,每个压缩机每天处理至少6666吨空气。所述三个压缩机由优选在恒定速度下的电动机驱动。
[0063]所述三个压缩机的总功率大于ICMW或大于25丽,或者甚至大于4CMW,但是小于75MW。
[0064]这三个压缩机可以均处理相同的通过量,各处理不同的通过量,或者两个处理相同的通过量而第三个处理不同的通过量。
[0065]这里,每个压缩机将空气从大气压力压缩至相同的第一压力;但是,压力的一定变化是可以容许的。例如,一个压缩机的压力可以与通过混合压缩流形成的流6的压力相差不超过20% (或者甚至不超过10% )。[0066]容易理解的是,本发明可以扩展至具有并行的四个压缩机、五个压缩机、或六个压缩机的设施。图2中示出五个压缩机的具体情况。
[0067]在图2中,空气分离设备的冷箱BF容纳有塔系统和交换器,该交换器用于将空气冷却至蒸馏温度。待蒸馏的空气7先前已经在净化单元E中被净化以便去除水和二氧化碳。
[0068]该设备生产至少一种产品9,该产品可以是气态氧和/或气态氮和/或液态氧和/或液态氮和/或气态氩和/或液态氩。
[0069]处于大气压力下的空气在并行连接的五个压缩机C1、C2、C3、C4、C5中被压缩。这些压缩机中的每一者优选具有相同的容量。每个压缩机将空气压缩至净化压力,其优选等于至少12bar绝对压力,优选小于35bar绝对压力。在压缩机Cl、C2、C3、C4、C5中压缩的五股空气流1、2、3、4、5在单个流6中汇合并且一起在单元E中净化。
[0070]被传送至冷箱的所有空气都来自压缩机Cl、C2、C3、C4、C5,并且压缩机Cl、C2、C3、C4、C5将其所有的空气传送至冷箱BF。
[0071]压缩机C1、C2、C3、C4、C5中的每一个包括至少4个级。
[0072]每个压缩机C1、C2、C3、C4、C5由单一异步电动机M1、M2、M3、M4、M5驱动。每个电动机Ml、M2、M3、M4、M5具有各自的起动器Dl、D2、D3、D4、D5,这些起动器是直接在线型、自或自动转换型。没有电动机通过软起动器或调整器起动,这显著简化了安装。
[0073]这五个压缩机可以均处理相同的通过量,各处理不同的通过量,或者可存在具有相同通过量的成对的压缩机。
[0074]所述五个压缩机的总功率大于ICMW或大于25丽,或者甚至大于4CMW,但是小于125MW。
[0075]单一冷箱、因此所述五个压缩机处理空气以便每天生产至少4000吨氧。因此,每个压缩机每天处理至少4000吨空气。所述五个压缩机由优选在恒定速度下的电动机驱动。
[0076]这里,每个压缩机将空气从大气压力压缩至相同的第一压力;但是,压力的一定变化是可以容许的。例如,一个压缩机的压力可以与通过混合压缩流形成的流6的压力相差不超过20% (或者甚至不超过10% )。
[0077]根据本发明的空气分离设备可包括空气增压器,该空气增压器由例如将膨胀的空气传送至冷箱的塔的空气涡轮或者由氮气涡轮驱动。另一方面,设备不包括由蒸汽涡轮或电动机驱动的空气增压器,因为这将意味着不是通过从所述N个压缩机传送压缩空气来向系统内输入能量。
[0078]另一方面,可以使用用于氧或氮的产品压缩机,这些压缩机例如由电动机驱动。
[0079]一般而言,本发明应用于其中压缩机的总功率小于150丽的方法。
【权利要求】
1.一种通过低温蒸馏分离空气的方法,其中: i)各处于大致环境压力下的N股空气流被传送至N个空气压缩机(C1、C2、C3、C4、C5)中的一个内, ii)所述N个压缩机中的各者将空气压缩至12bar绝对压力以上和35bar绝对压力以下的第一压力,N等于或大于3,所述N个压缩机的总功率大于10MW, iii)空气在所述N个压缩机的第一压力下被传送至单个净化单元(E)以便去除水和二氧化碳,经净化的空气在所述净化单元中冷却,然后被传送至单个冷箱(BF)中的单个塔系统,空气在所述塔系统中通过低温蒸馏被分离, iv)从所述塔系统抽取富氧流和/或富氮流,和 V)通过所述净化单元将空气从所述N个压缩机中的每一个传送至所述塔系统,而不将处于第一压力下的空气传送至由电动机或蒸汽涡轮驱动的空气增压器,和 vi)所述N个压缩机各自由单个电动机(M1、M2、M3、M4、M5)驱动,这N个电动机是异步的并且具有25MW以下的最大功率。
2.根据权利要求1所述的方法,其中,被传送至所述塔系统的所有空气都来自所述N个压缩机(C1、C2、C3、C4、C5)。
3.根据权利要求1或2所述的方法,其中,N等于4,5,6,7,8,9或10。
4.根据前述权利要求中任一项所述的方法,其中,N个空气压缩机(C1、C2、C3、C4、C5)各自将它们压缩的空气的不超过100% /N传送至所述塔系统。
5.根据前述权利要求中任一项所述的方法,其中,所述压缩机(Cl、C2、C3、C4、C5)中的每一者将其空气的至少90%传送至所述塔系统,或者甚至传送至所述塔系统中的同一塔中。
6.根据前述权利要求中任一项所述的方法,其中,来自每个压缩机(C1、C2、C3、C4、C5)的空气流的至少一部分在被传送至所述塔系统之前膨胀。
7.根据前述权利要求中任一项所述的方法,其中,所述电动机中的每一者(M1、M2、M3、M4、M5)均连接至给定类型的起动器(D1、D2、D3、D4、D5),用于每个电动机的起动器的类型为直接型、电抗型或自动转换型。
8.根据前述权利要求中任一项所述的方法,其中,所述N个压缩机(C1、C2、C3、C4、C5)的总功率小于25XNMW。
9.根据前述权利要求中任一项所述的方法,其中,所述N个压缩机(C1、C2、C3、C4、C5)的总功率大于25MW,或者甚至大于40MW。
10.一种通过低温蒸馏分离空气的设备,包括:位于单个冷箱(BF)中的单个塔系统;N个空气压缩机(C1、C2、C3、C4、C5),所述空气压缩机连接成接收处于环境压力下的空气并且设计成生产处于12bar绝对压力以上的第一压力下的空气,N至少等于3,所述压缩机中的每一个由单个异步电动机(Ml、M2、M3、M4、M5)驱动,所述压缩机的总功率为至少10丽;用于净化来自所述N个压缩机的处于第一压力下的空气的单个净化单元(E);用于将经净化的空气从所述净化单元传送至所述塔系统的管道;用于从所述塔系统抽取富氮流的管道;用于从所述塔系统抽取富氧流的管道;所述设备不包括驱动空气增压器的任何电动机或蒸汽涡轮。
11.根据权利要求10所述的设备,其中,每个压缩机(C1,C2,C3,C4,C5)包括至少4个级。
【文档编号】F25J3/04GK104024775SQ201280062162
【公开日】2014年9月3日 申请日期:2012年12月13日 优先权日:2011年12月21日
【发明者】A·吉亚尔 申请人:乔治洛德方法研究和开发液化空气有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1