小型撬装式混合制冷剂天然气液化和ngl回收一体系统的制作方法

文档序号:4783238阅读:183来源:国知局
小型撬装式混合制冷剂天然气液化和ngl回收一体系统的制作方法
【专利摘要】本发明公开了一种小型撬装式混合制冷剂天然气液化和NGL回收一体系统;该系统由天然气液化模块、混合制冷剂循环模块和NGL回收模块组成。天然气液化模块包括依次相连的液化冷箱撬块、低温精馏撬块和天然气存储撬块;混合制冷剂循环模块包括混合制冷剂压缩撬块、第二级气液分离器、第二级混合器、第一级制冷剂节流装置、第二级制冷剂节流装置;NGL回收模块包括脱甲烷塔、脱乙烷塔和液化气塔。本发明的小型撬装式混合制冷剂天然气液化和NGL回收一体流程简单,启动快,维护方便,便于设备成撬,能耗较低,同时对不同气源有较强的适应性。
【专利说明】小型撬装式混合制冷剂天然气液化和NGL回收一体系统
【技术领域】
[0001]本发明属于化工与低温工程【技术领域】,具体涉及一种小型撬装式混合制冷剂天然气液化和NGL回收一体系统。
【背景技术】
[0002]天然气与石油、煤炭作为世界上主要的化石能源,在一次能源中占有很大的比率。天然气作为一种优质清洁能源,越来越多的国家开始重视天然气资源的开发和利用。
[0003]随着我国能源结构的不断优化和天然气消费需求的不断增长,加之我国绝大多数天然气田储量都不大的现状,我国天然气供需缺口在不断加大。据预测,到2020年我国天然气的供应缺口将达1000X 108m3。
[0004]另一方面,我国存在大量产储量较小的边际气田、伴生气田、煤层气田,单井储量较小,距离供气管网较远,采用管输方法由于经济上不合理而没有得到有效开发利用,长期以来被点火炬放空。小型撬装式天然气液化装置可以有效利用这些天然气资源,通过技术拓展,小型撬装式天然气液化装置同样适合于生物燃气(包括城市垃圾填埋气)提纯与液化、海上含油田伴生气、部分焦炉煤气液化、煤层天然气(瓦斯)、页岩气开发利用等,市场前景十分广阔。NGL回收流程可以提高液化工厂的经济效益,因此液化天然气流程结合NGL回收流程将大大提高小型撬装式天然气装置的经济效益。

【发明内容】

[0005]本发明的目的在于克服上述现有技术存在的不足,提供一种小型撬装式混合制冷剂天然气液化和NGL回收一体系统。该小型撬装式混合制冷剂天然气液化和NGL回收一体流程具有方法简单,启动快操作与维护方便,便于设备成撬。
[0006]本发明的目的是通过以下技术方案来实现:
[0007]本发明涉及一种小型撬装式混合制冷剂天然气液化和NGL回收一体系统,所述系统包括天然气液化模块、混合制冷剂循环模块和NGL回收模块;所述天然气液化模块包括依次相连的液化冷箱撬块、低温精馏撬块和天然气存储撬块,所述液化冷箱撬块包括与三相分离器11进口端相连的第一级换热器10以及依次相连的第二级换热器14、第三级换热器19、第四级换热器21和天然气节流装置23,所述第二级换热器14与三相分离器11气相出口端相连;所述混合制冷剂循环模块为由混合制冷剂压缩撬块、第二级气液分离器9、并列设置的气、液相制冷剂支路、第二级混合器17、第二级换热器14以及第一级换热器13构成的循环回路,所述液相制冷剂支路由第二级气液分离器9液相出口端、第一、二级换热器10、14、第一级制冷剂节流装置16连接而成,所述气相制冷剂支路由第二级气液分离器9气相出口端、第一、二、三、四级换热器10、14、19、21、第二级制冷剂节流装置22、第四级换热器21、第三换热器19连接而成;所述NGL回收模块包括NGL节流装置12、脱甲烷塔13、乙烷节流装置15、脱乙烷塔18和液化气塔20,所述NGL节流装置12的进口端与三相分离器11液相出口端相连,所述脱甲烷塔13进口端经第一级换热器10与NGL节流装置12的出口端相连,所述脱甲烷塔13的气相出口端依次经第四级换热器21、富甲烷气体节流装置24与低温精馏撬块相连,所述脱甲烷塔13的液相出口端与脱乙烷塔18的进口端、脱乙烷塔18的液相出口端、液化气塔20依次相连,所述脱乙烷塔18的气相出口端经乙烷节流装置15与第一级换热器10相连。
[0008]优选地,所述低温精馏撬块为低温精馏塔25,所述低温精馏塔25的塔底出口与天然气存储撬块相连,所述低温精馏塔25的塔顶出口与第四级换热器21、第三级换热器19、第二级换热器14和第一级换热器10依次相连。
[0009]优选地,所述NGL节流装置12、乙烷节流装置15、第一级制冷剂节流装置16、第二级制冷剂节流装置22和天然气节流装置23为节流阀或液体膨胀机。
[0010]优选地,所述混合制冷剂压缩撬块包括第一级制冷剂压缩机1、第一级制冷剂冷却器2、第一级气液分离器3、第二级制冷剂压缩机4、第二级制冷剂冷却器5、制冷剂泵6、泵冷却器7和第一级混合器8,所述第一级制冷剂压缩机1、第一级制冷剂冷却器2、第一级气液分离器3的进口依次相连,所述第一级气液分离器3的气相出口与第二级制冷剂压缩机4、第二级制冷剂冷却器5依次相连,所述第一级气液分离器3的液相出口与制冷剂泵6、泵冷却器7相连,所述第一级混合器8的进口分别与第二级制冷剂冷却器5、泵冷却器7相连。
[0011]优选地,所述系统还包括制冷剂储存及配比单元、仪控单元、仪表风及PSA制氮撬块。
[0012]优选地,所述系统还包括稳定轻烃储存撬块和LPG储存撬块;所述稳定轻烃储存撬块与液化气塔20液相出口端相连,所述LPG储存撬块与液化气塔20气相出口端相连。
[0013]优选地,所述系统还包括发电机撬块、液氮应急供应单元中的一种或几种。当气源地没有供电系统时,由所述发电机撬块为液化流程提供电能;液氮应急供应单元是作为应急使用的。
[0014]本发明还涉及一种前述的一种小型撬装式混合制冷剂天然气液化和NGL回收一体系统的应用方法,包括如下步骤:
[0015]A、原料天然气经第一级换热器10冷却后进入三相分离器11,三相分离器11顶部出来的气相继续经第二级换热器14、第三级换热器19和第四级换热器21冷却液化;
[0016]B、经所述步骤A冷却液化后的天然气进入低温精馏撬块,经所述天然气节流装置23节流降温后进入低温精馏塔25,低温精馏塔25底部的液化天然气进入第四级换热器21过冷后进入天然气储存撬块;低温精馏塔25顶部的闪蒸气依次返回所述第四级换热器21、第三级换热器19、第二级换热器14和第一级换热器10提供冷量;
[0017]C、经所述中三相分离器11中部得到的液相经NGL节流装置12降压后从第一级换热器10返流提供冷量,随后进入脱甲烷塔13脱除甲烷,脱甲烷塔13顶部的富甲烷气体经第四级换热器21冷却后,通过富甲烷气体节流装置24降压,进入低温精馏塔25;脱甲烷塔13底部的液相进入脱乙烷塔18脱除乙烷,脱乙烷塔18顶部的乙烷气体经乙烷节流装置15降压后为第一级换热器10提供冷量,脱乙烷塔18底部的液体进入液化气塔20,从液化气塔20顶部获得LPG,底部获得稳定轻烃;
[0018]D、混合制冷剂原料经所述混合制冷剂压缩撬块增压、冷却后进入第二级气液分离器9进行气液分离;分离出的气相混合制冷剂经第一级换热器10、第二级换热器14、第三级换热器19和第四级换热器21冷却后经第二级制冷剂节流阀22节流降温,为第四级换热器21和第三级换热器19提供冷量;分离出的液相混合制冷剂经第一级换热器10和第二级换热器14预冷后经第一级制冷剂节流阀16节流降温,与从所述第四级换热器21和第三级换热器19提供冷量后出来的混合制冷剂混合后为第二级换热器14和第一级换热器10提供冷量,从所述第一级换热器10提供冷量后出来的混合制冷剂返回混合制冷剂压缩撬块完成制冷循环。
[0019]优选地,步骤B中,所述液化天然气储存压力为0.40MPa。
[0020]优选地,步骤B中,所述液化天然气需过冷2°C以上。
[0021]本发明系统的工作原理为:天然气经预处理后经第一级换热器降温冷却进入三相分离器,从底部脱除残余杂质,从三相分离器顶部得到的气相经第二、三、四级换热器冷却后液化,通过节流阀降压至液化天然气存储压力后进入低温精馏塔脱除氮气,从塔底获得液化天然气后返回第四级换热器过冷,塔顶闪蒸气返回换热器提供冷量;三相分离器中部获得的液相先经过节流阀节流至脱甲烷塔工作压力,然后为第一级换热器提供冷量后进入脱甲烷塔,脱甲烷塔顶的富甲烷气体经第四级换热器冷却后节流降压进入低温精馏塔,脱甲烷塔底部的液体进入脱乙烷塔,从脱乙烷塔顶部获得的富乙烷气体节流至原料气压缩机入口压力后为第一级换热器提供冷量后返回原料气压缩机循环,脱乙烷塔底部液体进入液化气塔,从塔底获得稳定轻烃,塔顶获得LPG ;混合制冷剂经混合制冷剂压缩撬块增压、冷却,进入第二级气液分离器,气相制冷剂经四级换热器冷却后节流降温为第二级换热器提供冷量,液相制冷剂经两级换热器冷却后通过节流阀节流降温后与从第三级换热器出来的制冷剂混合后为第一、二级换热器提供冷量。
[0022]与现有技术相比,本发明具有的有益效果如下:
[0023]1、本发明所述的一种小型撬装式混合制冷剂天然气液化和NGL回收一体工艺,有效地把天然气液化工艺和NGL回收工艺结合在一起,整体能耗较低,设备方便成撬。
[0024]2、通过油气行业广泛采用的HYSYS软件的模拟计算,证实本工艺能耗较低,对不同气源适应性较强。
【专利附图】

【附图说明】
[0025]通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
[0026]图1为小型撬装式混合制冷剂天然气液化和NGL回收一体工艺流程图;
[0027]其中,I为第一级制冷剂压缩机、2为第一级制冷剂冷却器、3为第一级气液分离器、4为第二级制冷剂压缩机、5为第二级制冷剂冷却器、6为制冷剂泵、7为泵冷却器、8为第一级混合器、9为第二级气液分离器、10为第一级换热器、11为三相分离器、12为NGL节流装置、13为脱甲烷塔、14为第二级换热器、15为乙烷节流装置、16为第一级制冷剂节流阀、17为第二级混合器、18为脱乙烷塔、19为第三级换热器、20为液化气塔、21为第四级换热器、22为第二级制冷剂节流阀、23为天然气节流装置、24为富甲烷气体节流装置、25为低温精馏塔。
【具体实施方式】
[0028]下面结合附图及具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
[0029]本发明的小型撬装式混合制冷剂天然气液化和NGL回收一体系统及其工艺流程如图1所示,该系统包括天然气液化模块、混合制冷剂循环模块和NGL回收模块。
[0030]所述天然气液化模块包括依次相连的液化冷箱撬块、低温精馏撬块和天然气存储撬块,所述液化冷箱撬块包括与三相分离器11进口端相连的第一级换热器10以及依次相连的第二级换热器14、第三级换热器19、第四级换热器21和天然气节流装置23,所述第二级换热器14与三相分离器11气相出口端相连;所述低温精馏撬块为低温精馏塔25 ;所述低温精馏塔25的塔底出口与天然气存储撬块相连,所述低温精馏塔25的塔顶出口与第四级换热器21、第三级换热器19、第二级换热器14和第一级换热器10依次相连。
[0031]所述混合制冷剂循环模块为由混合制冷剂压缩撬块、第二级气液分离器9、并列设置的气、液相制冷剂支路、第二级混合器17以及制冷剂回流支路构成的循环回路,所述液相制冷剂支路由第二级气液分离器9液相出口端、第一、二级换热器10、14、第一级制冷剂节流装置16连接而成,所述气相制冷剂支路由第二级气液分离器9气相出口端、第一、二、三、四级换热器10、14、19、21、第二级制冷剂节流装置22、第四级换热器21、第三换热器19连接而成;所述混合制冷剂压缩撬块包括第一级制冷剂压缩机1、第一级制冷剂冷却器2、第一级气液分离器3、第二级制冷剂压缩机4、第二级制冷剂冷却器5、制冷剂泵6、泵冷却器7和第一级混合器8,所述第一级制冷剂压缩机1、第一级制冷剂冷却器2、第一级气液分离器3的进口依次相连,所述第一级气液分离器3的气相出口与第二级制冷剂压缩机4、第二级制冷剂冷却器5依次相连,所述第一级气液分离器3的液相出口与制冷剂泵6、泵冷却器7相连,所述第一级混合器8的进口分别与第二级制冷剂冷却器5、泵冷却器7相连。
[0032]所述NGL回收模块包括NGL节流装置12、脱甲烷塔13、乙烷节流装置15、脱乙烷塔18和液化气塔20,所述NGL节流装置12的进口端与三相分离器11液相出口端相连,所述脱甲烷塔13进口端经第一级换热器10与NGL节流装置12的出口端相连,所述脱甲烷塔13的气相出口端依次经第四级换热器21、富甲烷气体节流装置24与低温精馏撬块相连,所述脱甲烷塔13的液相出口端与脱乙烷塔18的进口端、脱乙烷塔18的液相出口端、液化气塔20依次相连,所述脱乙烷塔18的气相出口端经乙烷节流装置15与第一级换热器10相连。
[0033]应用本发明的小型撬装式混合制冷剂天然气液化和NGL回收一体系统的方法具体见以下各实施例:
[0034]实施例1
[0035]天然气摩尔组分67.21 % CH4+14.23 % C2H6+9.36 % C3H8+2.79 % i_C4H10+3.32 %n-C4H10+0.07% 1-C5H12+0.06% n_C5H12+0.04C6H14+2.92% N2、压力 5.04MPa、温度 40°C、流量83.92kmol / h,小型撬装式混合制冷剂天然气液化和NGL回收一体工艺的具体步骤如下:
[0036]1、原料天然气第一级换热器10冷却至-10°C后进入三相分离器11,三相分离器11顶部出来的气相继续经第二级换热器14、第三级换热器19和第四级换热器21冷却至_160°C后液化;
[0037]2、经步骤I冷却液化后的天然气进入低温精馏撬块,经所述天然气节流装置23节流至450kPa后进入低温精馏塔25 ;[0038]3、经步骤2中低温精馏塔25底部获得的液化天然气进入第四级换热器21过冷至-150°C后进入天然气储存撬块;低温精馏塔25顶部的闪蒸气依次返回第四级换热器21、第三级换热器19、第二级换热器14和第一级换热器10提供冷量;
[0039]4、经步骤I中三相分离器11中部得到的液相经NGL节流装置12降压至1.3IMPa后从第一级换热器10返流提供冷量,自身温度上升至25°C,随后进入脱甲烷塔13脱除甲烧;
[0040]5、经步骤4中脱甲烷塔13顶部获得的富甲烷气体经第四级换热器21冷却至_159°C后,通过富甲烷气体节流装置24降压至450kPa后进入低温精馏塔25 ;
[0041]6、经步骤5中脱甲烷塔13底部获得的液相进入脱乙烷塔18脱除乙烷,脱乙烷塔18顶部的乙烷气体经乙烷节流装置15降压至310kPa后为第一级换热器10提供冷量,脱乙烷塔18底部的液体进入液化气塔20,从液化气塔20顶部获得LPG,底部获得稳定轻烃。
[0042]7、混合制冷剂经第一级制冷剂压缩机I压缩至800kPa,然后经第一级制冷剂冷却器2冷却至40°C后进入第一级气液分离器3 ;
[0043]8、经步骤7分离得到的气相经第二级制冷剂压缩机4压缩至3000kPa,然后经第二级制冷剂冷却器5冷却至40°C;经步骤7分离得到的液相经制冷剂泵6增压至3000kPa,然后经泵冷却器7冷却至40°C ;
[0044]9、经步骤8增压后的气相制冷剂和液相制冷剂在第一级混合器8中混合后进入第二级气液分离器9 ;
[0045]10、经步骤9分离出的气相混合制冷剂经第一级换热器10、第二级换热器14、第三级换热器19和第四级换热器21冷却至-160°C后经第二级制冷剂节流阀22节流至272.8kPa,温度降低为-171.8°C,然后第四级换热器21和第三级换热器19提供冷量并复温至-70.18°C;分离出的液相混合制冷剂经第一级换热器10和第二级换热器14预冷至-65°C后经第一级制冷剂节流阀16节流至252.SkPa后与从第四级换热器21和第三级换热器19提供冷量后出来的混合制冷剂混合后为第二级换热器14和第一级换热器10提供冷量。
[0046]经过模拟计算得出,该小型撬装式混合制冷剂天然气液化和NGL回收一体工艺的单位能耗为0.51 kWh / Nm3,产品回收率为97.19%。
[0047]实施例2
[0048]天然气摩尔组分77.16 % CH4+12.51 % C2H6+4.42 % C3H8+0.07 % i_C4H10+0.09 %n-C4H10+0.02% 1-C5H12+0.02% n_C5H12+0.01C6H14+3.80% N2、压力 5.0OMPa、温度 45°C、流量90.82kmol / h,小型撬装式混合制冷剂天然气液化和NGL回收一体工艺的具体步骤如下:
[0049]1、原料天然气第一级换热器10冷却至-20°C后进入三相分离器11,三相分离器11顶部出来的气相继续经第二级换热器14、第三级换热器19和第四级换热器21冷却至-160°C后液化;
[0050]2、经步骤I冷却液化后的天然气进入低温精馏撬块,经所述天然气节流装置23节流至450kPa后进入低温精馏塔25 ;
[0051]3、经步骤2中低温精馏塔25底部获得的液化天然气进入第四级换热器21过冷至-150°C后进入天然气储存撬块;低温精馏塔25顶部的闪蒸气依次返回第四级换热器21、第三级换热器19、第二级换热器14和第一级换热器10提供冷量;
[0052]4、经步骤I中三相分离器11中部得到的液相经NGL节流装置12降压至1.3IMPa后从第一级换热器10返流提供冷量,自身温度上升至25°C,随后进入脱甲烷塔13脱除甲烧;
[0053]5、经步骤4中脱甲烷塔13顶部获得的富甲烷气体经第四级换热器21冷却至_159°C后,通过富甲烷气体节流装置24降压至450kPa后进入低温精馏塔25 ;
[0054]6、经步骤5中脱甲烷塔13底部获得的液相进入脱乙烷塔18脱除乙烷,脱乙烷塔18顶部的乙烷气体经乙烷节流装置15降压至310kPa后为第一级换热器10提供冷量,脱乙烷塔18底部的液体进入液化气塔20,从液化气塔20顶部获得LPG,底部获得稳定轻烃。
[0055]7、混合制冷剂经第一级制冷剂压缩机I压缩至800kPa,然后经第一级制冷剂冷却器2冷却至40°C后进入第一级气液分离器3 ;
[0056]8、经步骤7分离得到的气相经第二级制冷剂压缩机4压缩至3000kPa,然后经第二级制冷剂冷却器5冷却至40°C;经步骤7分离得到的液相经制冷剂泵6增压至3000kPa,然后经泵冷却器7冷却至40°C ;
[0057]9、经步骤8增压后的气相制冷剂和液相制冷剂在第一级混合器8中混合后进入第二级气液分离器9 ;
[0058]10、经步骤9分离出的气相混合制冷剂经第一级换热器10、第二级换热器14、第三级换热器19和第四级换热器21冷却至-160°C后经第二级制冷剂节流阀22节流至272.8kPa,温度降低为-171.8°C,然后第四级换热器21和第三级换热器19提供冷量并复温至-69.27V;分离出的液相混合制冷剂经第一级换热器10和第二级换热器14预冷至_65°C后经第一级制冷剂节流阀16节流至252.SkPa后与从第四级换热器21和第三级换热器19提供冷量后出来的混合制冷剂混合后为第二级换热器14和第一级换热器10提供冷量。
[0059]经过模拟计算得出,该小型撬装式氮膨胀天然气液化工艺的单位能耗为
0.41 kWh / Nm3,该工艺的产品回收率为96.33%。比较实施例1和实施例2可以发现,该液化工艺可以适应原料气在一定范围内的变化,只需要调整工艺中的某几个参数,证明该液化工艺对不同气源有较强的适应性。
[0060]以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。
【权利要求】
1.一种小型撬装式混合制冷剂天然气液化和NGL回收一体系统,其特征在于,所述系统包括天然气液化模块、混合制冷剂循环模块和NGL回收模块;所述天然气液化模块包括依次相连的液化冷箱撬块、低温精馏撬块和天然气存储撬块,所述液化冷箱撬块包括与三相分离器(11)进口端相连的第一级换热器(10)以及依次相连的第二级换热器(14)、第三级换热器(19)、第四级换热器(21)和天然气节流装置(23),所述第二级换热器(14)与三相分离器(11)气相出口端相连;所述混合制冷剂循环模块为由混合制冷剂压缩撬块、第二级气液分离器(9)、并列设置的气、液相制冷剂支路、第二级混合器(17)、第二级换热器(14)以及第一级换热器(13)构成的循环回路,所述液相制冷剂支路由第二级气液分离器(9)液相出口端、第一、二级换热器(10、14)、第一级制冷剂节流装置(16)连接而成,所述气相制冷剂支路由第二级气液分离器(9)气相出口端、第一、二、三、四级换热器(10、14、19,21)、第二级制冷剂节流装置(22)、第四级换热器(21)、第三换热器(19)连接而成;所述NGL回收模块包括NGL节流装置(12)、脱甲烷塔(13)、乙烷节流装置(15)、脱乙烷塔(18)和液化气塔(20),所述NGL节流装置(12)的进口端与三相分离器(11)液相出口端相连,所述脱甲烷塔(13)进口端经第一级换热器(10)与NGL节流装置(12)的出口端相连,所述脱甲烷塔(13)的气相出口端依次经第四级换热器(21)、富甲烷气体节流装置(24)与低温精馏撬块相连,所述脱甲烷塔(13)的液相出口端与脱乙烷塔(18)的进口端、脱乙烷塔(18)的液相出口端、液化气塔(20)依次相连,所述脱乙烷塔(18)的气相出口端经乙烷节流装置(15)与第一级换热器(10)相连。
2.根据权利要求1所述的小型撬装式混合制冷剂天然气液化和NGL回收一体系统,其特征在于,所述低温精馏撬块为低温精馏塔(25),所述低温精馏塔(25)的塔底出口与天然气存储撬块相连,所述低温精馏塔(25)的塔顶出口与第四级换热器(21)、第三级换热器(19)、第二级换热器(14)和第一级换热器(10)依次相连。
3.根据权利要求1所述的小型撬装式混合制冷剂天然气液化和NGL回收一体系统,其特征在于,所述NGL节流装置(12)、乙烷节流装置(15)、第一级制冷剂节流装置(16)、第二级制冷剂节流装置 (22)和天然气节流装置(23)为节流阀或液体膨胀机。
4.根据权利要求1所述的小型撬装式混合制冷剂天然气液化和NGL回收一体系统,其特征在于,所述混合制冷剂压缩撬块包括第一级制冷剂压缩机(I)、第一级制冷剂冷却器(2)、第一级气液分离器(3)、第二级制冷剂压缩机(4)、第二级制冷剂冷却器(5)、制冷剂泵(6)、泵冷却器(7)和第一级混合器(8),所述第一级制冷剂压缩机(I)、第一级制冷剂冷却器(2)、第一级气液分离器(3)的进口依次相连,所述第一级气液分离器(3)的气相出口与第二级制冷剂压缩机(4)、第二级制冷剂冷却器(5)依次相连,所述第一级气液分离器(3)的液相出口与制冷剂泵出)、泵冷却器(7)相连,所述第一级混合器(8)的进口分别与第二级制冷剂冷却器(5)、泵冷却器(7)相连。
5.根据权利要求1所述的小型撬装式混合制冷剂天然气液化和NGL回收一体系统,其特征在于,所述系统还包括制冷剂储存及配比单元、仪控单元、仪表风及PSA制氮撬块。
6.根据权利要求1所述的小型撬装式混合制冷剂天然气液化和NGL回收一体系统,其特征在于,所述系统还包括发电机撬块。
7.根据权利要求1所述的小型撬装式混合制冷剂天然气液化和NGL回收一体系统,其特征在于,所述系统还包括稳定轻烃储存撬块和LPG储存撬块;所述稳定轻烃储存撬块与液化气塔(20)液相出口端相连,所述LPG储存撬块与液化气塔(20)气相出口端相连。
8.—种如权利要求1所述的小型撬装式混合制冷剂天然气液化和NGL回收一体系统的使用方法,其特征在于,包括如下步骤: A、原料天然气经第一级换热器(10)冷却后进入三相分离器(11),三相分离器(11)顶部出来的气相继续经第二级换热器(14)、第三级换热器(19)和第四级换热器(21)冷却液化; B、经所述步骤A冷却液化后的天然气经所述天然气节流装置(23)节流降温后进入低温精馏塔(25),低温精馏塔(25)底部的液化天然气进入第四级换热器(21)过冷后进入天然气储存撬块;低温精馏塔(25)顶部的闪蒸气依次返回所述第四级换热器(21)、第三级换热器(19)、第二级换热器(14)和第一级换热器(10)提供冷量; C、经所述三相分离器(11)中部得到的液相经NGL节流装置(12)降压后从第一级换热器(10)返流提供冷量,随后进入脱甲烷塔(13)脱除甲烷,脱甲烷塔(13)顶部的富甲烷气体经第四级换热器(21)冷却后,通过富甲烷气体节流装置(24)降压,进入低温精馏塔(25);脱甲烷塔(13)底部的液相进入脱乙烷塔(18)脱除乙烷,脱乙烷塔(18)顶部的乙烷气体经乙烷节流装置(15)降压后为第一级换热器(10)提供冷量,脱乙烷塔(18)底部的液体进入液化气塔(20),从液化气塔(20)顶部获得LPG,底部获得稳定轻烃; D、混合制冷剂原料经所述混合制冷剂压缩撬块增压、冷却后进入第二级气液分离器(9)进行气液分离;分离出的气相混合制冷剂经第一级换热器(10)、第二级换热器(14)、第三级换热器(19)和第四级换热器(21)冷却后经第二级制冷剂节流阀(22)节流降温,为第四级换热器(21)和第三级换热器(19)提供冷量;分离出的液相混合制冷剂经第一级换热器(10)和第二级换热器(14)预冷后经第一级制冷剂节流阀(16)节流降温,而后与从所述第四级换热器(21)和第三级换热器(19`)提供冷量后出来的混合制冷剂混合后为第二级换热器(14)和第一级换热器(10)提供冷量,从所述第一级换热器(10)提供冷量后出来的混合制冷剂返回混合制冷剂压缩撬块完成制冷循环。
9.根据权利要求8所述的使用方法,其特征在于,步骤B中,所述液化天然气储存压力为 0.40MPa。
10.根据权利要求8所述的使用方法,其特征在于,步骤B中,所述液化天然气需过冷2°C以上。
【文档编号】F25J3/02GK103868324SQ201410083220
【公开日】2014年6月18日 申请日期:2014年3月7日 优先权日:2014年3月7日
【发明者】巨永林, 贺天彪 申请人:上海交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1