以可变能耗低温分离空气的方法和设备与流程

文档序号:11160243阅读:400来源:国知局
以可变能耗低温分离空气的方法和设备与制造工艺
本发明涉及通过低温分离空气以可变的方式获得压缩气体产品的方法和设备。
背景技术
:例如由Hausen/Linde低温技术(Tieftemperaturtechnik)1985年第2版第4章(第281至337页)公开了用于低温分离空气的方法和设备。该设备的蒸馏塔系统可以构造为双塔系统(例如传统的Linde双塔系统),或者构造为三塔系统或多塔系统。除了用于氮氧分离的塔以外还可以具有其他用于生产高纯产品和/或其他空气组分尤其是稀有气体的装置,例如氩生产装置和/或氪氙生产装置。在该方法中,在“内部压缩”的过程中,以液态形式压缩的产品流与传热介质方向相反地蒸发,最终作为(内部压缩的)压缩气体产品获得。该方法也称作内部压缩。其用于生产气态压缩产品。在超临界压力的情况下不发生实际意义上的相变;于是产品流发生“伪蒸发”。产品流例如可以是来自双塔系统的低压塔的氧产品,或者是来自双塔系统的高压塔或来自主冷凝器的液化空间的氮产品,由此将高压塔和低压塔以热交换方式相连接。处于高压的传热介质与(伪)蒸发的产品流方向相反地发生液化(或伪液化,条件是处于超临界压力)。传热介质通常由一部分的空气形成,在此情况下由压缩的进料空气的“第二支流”形成。例如由DE830805、DE901542(=US2,712,738/US2,784,572)、DE952908、DE1103363(=US3,083,544)、DE1112997(=US3,214,925)、DE1124529、DE1117616(=US3,280,574)、DE1226616(=US3,216,206)、DE1229561(=US3,222,878)、DE1199293、DE1187248(=US3,371,496)、DE1235347、DE1258882(=US3,426,543)、DE1263037(=US3,401,531)、DE1501722(=US3,416,323)、DE1501723(=US3,500,651)、DE253132(=US4,279,631)、DE2646690、EP93448B1(=US4,555,256)、EP384483B1(=US5,036,672)、EP505812B1(=US5,263,328)、EP716280B1(=US5,644,934)、EP842385B1(=US5,953,937)、EP758733B1(=US5,845,517)、EP895045B1(=US6,038,885)、DE19803437A1、EP949471B1(=US6,185,960B1)、EP955509A1(=US6,196,022B1)、EP1031804A1(=US6,314,755)、DE19909744A1、EP1067345A1(=US6,336,345)、EP1074805A1(=US6,332,337)、DE19954593A1、EP1134525A1(=US6,477,860)、DE10013073A1、EP1139046A1、EP1146301A1、EP150082A1、EP1213552A1、DE10115258A1、EP1284404A1(=US2003/051504A1)、EP1308680A1(=US6,612,129B2)、DE10213212A1、DE10213211A1、EP1357342A1或DE10238282A1、DE10302389A1、DE10334559A1、DE10334560A1、DE10332863A1、EP1544559A1、EP1585926A1、DE102005029274A1、EP1666824A1、EP1672301A1、DE102005028012A1、WO2007/033838A1、WO2007/104449A1、EP1845324A1、DE102006032731A1、EP1892490A1、DE102007014643A1、A1、EP2015012A2、EP2015013A2、EP2026024A1、WO2009/095188A2或DE102008016355A1公开了内部压缩方法。DE102010052545A1显示了一种稳态内部压缩方法,其中在主热交换器中加热空气流,并送回主空气压缩机。技术实现要素:本发明尤其是涉及其中将全部的进料空气压缩至明显高于蒸馏塔系统的塔内部的最高蒸馏压力(通常是高压塔压力)的压力的系统。该系统还称作HAP法(HAP–高空气压力)。在此情况下,“第一压力”即其中压缩全部空气的主空气压缩机(MAC)的出口压力例如超出最高蒸馏压力多于4巴,尤其是6至16巴。绝对而言,“第一压力”例如在17与25巴之间。在HAP法中,主空气压缩机通常是单个利用外部能量驱动的用于压缩空气的机器。“单个机器”在此理解为单级或多级压缩机,其压缩级全部与相同的驱动装置相连接,其中所有的压缩级容纳在相同的外壳中或者与相同的传动器相连接。代替此类HAP法的是所谓的MAC-BAC法,其中在主空气压缩机中将空气压缩至比较低的总空气压力,例如至高压塔的工作压力(加上管道损耗)。在利用外部能量驱动的空气增压机(BAC=增压空气压缩机)中将一部分来自主空气压缩机的空气压缩至更高的压力。这部分更高压力的空气(通常称作节流流)提供在主热交换器中使内部压缩的产品(伪)蒸发所需的大部分热量。其在主空气压缩机的下游在节流阀中或者在液体涡轮机(DLE=重液膨胀机denseliquidexpander)中减压至蒸馏塔系统中所需的压力。对于内部压缩的产品的波动的需求经常必须设计以可变的压缩气体生产可变地运行的空气分离设备。反过来可行的是,通过提供具有不同水平的能耗的不同运行模式,虽然恒定地或基本上恒定地生产,仍然可变地运行空气分离设备。此类约束条件的具体例子是在环氧乙烷生产设备中提供内部压缩的氧(GOXIV)及任选存在的其他气态和/或液态产品。在此经常是在EO生产中使氧需求适应于催化剂状态的情况;因此可以在催化剂寿命(通常约为3年)期间在100%与约70%之间改变。在此重要的是,在此时间内空气分离设备以不同的GOXIV产品量(在100%与约70%之间)运行大致相同的时间。因此重要的是,该设备不仅有效地在100%GOXIV的设计情况下运行,而且有效地在欠载情况下运行。由于其他空气分离产品的生产与GOXIV产品无关,使得这一要求变得更加困难;例如对于一种、多种或全部的其他空气分离产品的需求可以保持不变,而GOX生产由100%降低至大约70%。所述“其他空气分离产品”例如可以是一种、多种或全部的以下产品:-内部压缩的氮产品(GANIV),-其他气态压缩产品,例如以气态形式由高压塔排出的压缩氮(HPGAN),其任选在氮压缩机中进一步压缩,-一种或多种液态产品,如液态氧、液态氮和/或液态氩。通过传统的MAC-BAC法可以比较好地实现该目的,这是因为这两个压缩机(MAC和BAC)负责功能上分离的目的。主空气压缩机原则上仅为了分离供应进料空气;空气增压机为了内部压缩(GOXIV,GANIV)及为了液体生产供应能量。这两个机器在此通常可以比较简单地在70%与100%之间调节。在HAP法的情况下,利用单个压缩机实现这两个目的(提供分离空气以及内部压缩/液体生产的能量)。这会导致特定运行情况在压缩机性能特性范围以外而无法实现的状况。空气分离设备的总能量需求不仅由GOXIV产品确定,而且大部分由液体生产或者由其他内部压缩的产品确定。但是GOXIV产品对于分离空气的量通常是决定性的。若GOXIV量明显减少,则也将明显较少的分离空气引入该设备中。但是由此也将明显较少的能量输入该系统中,这在某些情况下不再足以所期望地生产其他产品(液体、GANIV等)。为了虽然空气量明显较少仍然供应足够的能量,必须大幅升高压缩机压力。但是这在HAP法中仅是有限制地可行的,因为a)机器的性能特性是受限制的,及b)不得超过该设备的“热的”部分(预冷却装置,吸附器等)的设计压力。本发明的目的是基于提供将HAP法的优点与如类似地在MAC-BAC法的情况下已知的灵活性相结合的方法和相应的设备。“灵活性”在此尤其是理解为,该系统不仅对于内部压缩的产品的特定生产量可以在能量方面有利地运行,而且可以在比较宽的负载范围内以近似地保持不变的低的比能耗运行。在此尤其是应当使其他空气分离产品的生产保持不变,或者与内部压缩产品的产品量相比至少较小程度地改变。该目的通过权利要求1的特征实现。在本发明的情况下,在第二运行模式中,进料空气量的一部分绕过整个蒸馏塔系统。于是这部分量不参与第一产品流的生产,但是仍然可以引导通过第一涡轮机,从而由此产生足够的冷量或者将足够的能量供应至该系统中,从而能够保持液体生产,或者与第一压缩生产的量相比至少比较小程度地减小。根据本发明,不是将进料空气的一部分导入所述蒸馏塔系统中,而是送回主空气压缩机中,其中-多级压缩机由主空气压缩机形成,-第一工艺流由全部的进料空气形成,及-第二工艺流由进料空气的做功减压的第一支流的一部分形成。不是将过量的空气导入蒸馏塔系统中,而是在涡轮机中减压之后直接送回热交换器中,随后无需节流,送至主空气压缩机的适当位置(例如在第二级或第三级下游)。因此,不是由大气压力,而是例如由约5巴起压缩所需量的“过量”空气,节省了相当多的能量。另一种可能的方案(在不存在低压GAN压缩机的情况下)在于,将过量的空气导入蒸馏塔系统中并进行分离。在此可以获得在该空气量中存在的氩。过量的氧在此可以作为低压氧由低压塔排出,并送至UN2流。在此原则上仅损失用于获得额外的氧分子的分离功(Trennarbeit),但是同时产生明显更多的氩。但是,还可以将可变地送回空气与将氮于中间送入相应的压缩机中相结合,其中-将第三工艺流在氮产品压缩机中由入口压力压缩至最终压力,及-至少暂时将第四工艺流在氮产品压缩机的第一级的下游与第三工艺流混合,其中-第三工艺流由来自低压塔的第一气态氮流形成,及-第四工艺流由来自高压塔的第一气态氮流形成。有利的是,在多级压缩机的中间级将第二工艺流与第一工艺流或者将第四工艺流与第二工艺流混合。此外,在第二运行模式中可以由低压塔的下部区域排出氧气流,与来自低压塔的上部区域的氮富集的流混合,将该混合物在主热交换器中加热。此外,在本发明的特定的实施方案中,可以使用第二空气涡轮机,其中将在主空气压缩机中压缩的进料空气的第三支流在主热交换器中冷却至中间温度,在第二空气涡轮机中做功减压,将做功减压的第三支流的至少第一部分导入所述蒸馏塔系统中。此外,可以将在主空气压缩机中压缩的进料空气的第二支流在主热交换器中冷却至中间温度,在作为制冷压缩机运行并且利用第二涡轮机驱动的第二增压机中增压至高于第一压力的第三压力,在主热交换器中冷却,(伪)液化,随后减压及导入所述蒸馏塔系统中。以此方式可以进一步提高第二支流的压力,无需消耗外部能量。可以达到相应更高的内部压缩压力。此外,可以将在主空气压缩机中压缩的空气的第四支流在第一压力下在主热交换器中冷却,随后减压及导入所述蒸馏塔系统中。通过此类第二节流流使主热交换器中的热交换过程进一步最优化。在使用第二涡轮机的另一个实施方案的情况下有利的是,使第三支流在第二空气涡轮机中减压至比高压塔的工作压力高至少1巴的压力,将做功减压的第三支流在主热交换器中进一步冷却,随后减压及导入所述蒸馏塔系统中。通过此类第三节流流使主热交换器中的热交换过程进一步最优化。在根据本发明的方法中,尤其是在由第一运行模式至第二运行模式转变的过程中,在主空气压缩机中压缩的总空气量与压缩氧产品量相比根本不减小或者较小程度地减小,其中-在第一运行模式中在主空气压缩机中压缩第一量的进料空气,及-在第二运行模式中在主空气压缩机中压缩第二量的进料空气,其中-相对于第二量的第一压缩气体产品与第一量的第一压缩气体产品之间的比例,第二量的进料空气与第一量的进料空气的比例更大,尤其是超出至少3%,尤其是超出多于5%。在较低水平的GOXIV生产的运行情况下,“人工地”升高进入冷箱中的进料空气量,换而言之相对于用于生产针对该运行情况指定的压缩氧产品所需的量,将更多的空气引入该设备的低温部分。若以“过量”操作进料空气,则可以降低压缩机出口处的压力,这是因为于是不是利用空气压力,而是利用空气量,为了使GOXIV产品(伪)蒸发而供应能量。在此重要的是,不仅简单地以过量操作空气(在主空气压缩机中压缩,在热交换器中冷却,在涡轮机中减压至高压塔压力,重新在热交换器中加热,最终节流至大气压力),而且通过其他上述特征还获得其他优点。此外,通过该措施,提供足以生产其他产品的空气。例如可以产生足够的冷量,以提供保持不变的量的液态产品。根据本发明,在主空气压缩机中压缩的进料空气的第一支流在其引入主热交换器中的上游在以热状态(imWarmen)运行并且利用第一涡轮机驱动的第一增压机中增压。因此第一涡轮机的入口压力明显高于第一压力,全部空气被压缩至该第一压力。与此不同,用于第二涡轮机的空气例如不进行增压,即其入口压力处于比第一压力更低的水平。此外,本发明涉及根据权利要求10的设备。根据本发明的设备可以通过对应于从属方法权利要求的特征的设备特征加以补充。“在第一运行模式与第二运行模式之间转换的装置”是复合的闭环和开环控制装置(Regel-undSteuerungsvorrichtungen),它们一起能够在这两种运行模式之间至少部分地自动转换,例如通过相应地编程的过程控制系统。附图说明下面基于在附图中所图示的实施例更详细地阐述本发明以及本发明的其他细节,其中:图1所示为本发明的其中在第二运行模式中将涡轮机空气送回主空气压缩机的实施例;图2所示为并非在此请求保护的本发明的部分而是用于进一步阐述本发明的方法改变方案,其中将来自高压塔的气态氮引入氮产品压缩机中,及图3和4所示为用第三节流流对图1的修改。具体实施方式首先基于图1描述根据本发明的方法的第一实施方案的第一运行模式。由主空气压缩机2经由过滤器1吸取大气空气(AIR)。该主空气压缩机在本实施例中具有五级,将总空气流压缩至例如22巴的“第一压力”。将总空气流3在主空气压缩机2的下游在第一压力下在预冷却装置4中冷却。预冷却的总空气流5在净化装置6中净化,尤其是通过一对可转换的分子筛吸附器形成。将净化的总空气流7的第一部分8在以热状态运行的具有后冷却器10的空气增压机9中增压至例如28巴的第二压力,随后分成“第一支流”11(第一涡轮机空气流)和“第二支流”12(第一节流流)。将第一支流11在主热交换器13中冷却至第一中间温度。经冷却的第一支流14在第一空气涡轮机15中由第二压力做功减压至大约5.5巴。第一空气涡轮机15驱动热的空气增压机9。将做功减压的第一支流16导入分离器(相分离器)17中。将液态部分18经由管道19和20导入蒸馏塔系统的低压塔22中。该蒸馏塔系统包括高压塔21、低压塔22和主冷凝器23以及通常的具有粗氩塔25和纯氩塔26的氩生产装置24。该主冷凝器23构造为冷凝器-蒸发器,在具体的例子中构造为级联蒸发器。在本实施例中在高压塔的塔顶处的工作压力为5.3巴,在低压塔的塔顶处为1.35巴。将进料空气的第二支流12在主热交换器13中冷却至高于第一中间温度的第二中间温度,及经由管道27导入制冷压缩机28,在此增压至约40巴的“第三压力”。将增压的第二支流29在高于第二中间温度的第三中间温度下再次导入主热交换器13中,在此直至冷端进行冷却。冷的第二支流30在节流阀31中减压至大约为高压塔的工作压力,及经由管道32送入高压塔21。再次排出一部分33,在逆流过冷器34中冷却,及经由管道35和20送入低压塔22中。将进料空气的“第三支流”36在第一压力下导入主热交换器13中,在此冷却至在本实施例中略低于第一中间温度的第四中间温度。经冷却的第三支流37在第二空气涡轮机37中由第一压力做功减压至大约为高压塔压力。第二空气涡轮机38驱动制冷压缩机28。将做功减压的第三支流39经由管道40送入高压塔21的塔底。“第四支流”41(第二节流流)在第一压力下由热端至冷端流过主热交换器13。冷的第四支流42在节流阀43中减压至大约为高压塔的工作压力,及经由管道32送入高压塔21。高压塔21的氧富集的塔底液体在逆流过冷器34中冷却,及经由管道45导入任选存在的氩生产装置24中。将由此产生的蒸汽46和留下的液体47送入低压塔22中。高压塔21的塔顶氮48的第一部分49在主冷凝器23的液化空间中与来自低压塔的塔底的在蒸发空间中蒸发的液态氧方向相反地完全地或基本上完全地液化。将在此产生的液态氮51的第一部分51作为回流送至高压塔21。第二部分52在逆流过冷器34中冷却,及经由管道53送入低压塔22中。液态低压氮53的至少一部分用作低压塔21中的回流;另一部分54可以作为液氮产品(LIN)获得。由低压塔22的塔顶排出气态低压氮55,在逆流过冷器34中及在主热交换器13中加热。将热的低压氮56在由两个区段组成并且具有中间冷却和后冷却(58,60)的氮产品压缩机(57,59)中压缩至所期望的产品压力,在本实施例中为12巴。氮产品压缩机的第一区段57例如由两个或三个具有所属的后冷却器的压缩级组成;第二区段59具有至少一个压缩级,优选同样进行中间冷却和后冷却。由低压塔22中间位置排出气态不纯氮55,在逆流过冷器34中及在主热交换器13中加热。热的不纯氮62可以排放(63)至大气(ATM)和/或用作净化装置6的再生气64。管道67和68(所谓的氩输送)将低压塔21与氩生产装置24的粗氩塔25相连接。液态氧69的第一部分70由低压塔21的塔底作为“第一产品流”排出,在氧泵71中施加至例如37巴的“第一产品压力”,在第一产品压力下在主热交换器13中蒸发,最终经由管道72作为“第一压缩气体产品”(GOXIC–内部压缩的气态氧)获得。来自低压塔21的塔底的液态氧69的第二部分73任选在逆流过冷器34中冷却,及经由管道74作为液氧产品(LOX)获得。在本实施例中,来自高压塔21或主冷凝器23的液态氮50的第三部分75也实施内部压缩,其中将其在氮泵76中施加至例如37巴的第二产品压力,在第二产品压力下在主热交换器13中伪蒸发,最终经由管道77作为内部压缩的气态氮压缩产品(GANIC)获得。高压塔21的气态塔顶氮48的第二部分78在主热交换器中加热,经由管道79作为气态中压产品获得,或者如所示用作一个或多个所示的过程用泵的密封气(Sealgas)。若将最大氧生产(根据设计为100%)的运行状态称作“第一运行模式”,则在该运行模式中显示为粗线的管道65/66不工作。于是可以将较低的氧生产(例如75%)看作是“第二运行模式”。在此将做功减压的第一支流16的气态部分17的一部分作为“第二工艺流”经由管道65,66通过主热交换器送回主空气压缩机2的中间级。在本实施例中将回流在主空气压缩机的第二级与第三级之间或者在第三级与第四级之间混入进料空气。(该进料空气是“第一工艺流”。)由此可以将通过涡轮机15的空气量保持比较高,并获得不变的量或者至少较小程度地减小的量的氮产品和液态产品。同样可以将95%的运行水平看作是“第一运行模式”。于是例如以设计值的90%的氧生产实现“第二运行模式”。下表给出图1的设备的两种不同运行模式的示例性数值:GOX-IC量72通过过滤器1的空气量回流量65/66*100%100%0%76%83%4.2%该表中的回流量涉及通过过滤器1时的实际空气量。除非另有说明,所有给出的百分数在此及在其余文本中是指摩尔量。可以通过下述可选的措施进一步提高该方法的灵活性。在此在第二运行模式中由低压塔排出气态氧181,并与来自低压塔的气态不纯氮61混合。在本实施例中在逆流过冷器34的下游进行混合。在第一运行模式中将管道181封闭,或者引导更少的气体通过管道181。在图2中显示了第二方法改变方案的一个实施方案。其与图1的区别在于以下特征。在此缺少空气的回流管道65,66。代替性地在第二运行模式中除了密封气的量79还将来自高压塔的塔顶的气态塔顶氮48的额外部分180作为“第二工艺流”180经由管道178,179引导,最终在氮产品压缩机的这两个区段57,59之间与来自低压塔的氮56混合,其在该改变方案中形成“第一工艺流”。来自高压塔的相应的氮量180不在主冷凝器23中冷凝,不导入低压塔中。因此不参与低压塔中的精馏(既不间接通过塔底氧的蒸发,也不直接通过用作回流液体),由此能够减少氧生产。同时将相同的量(或者仅略少)的空气用于产生冷量和产生氮。在第一运行模式中将较少量的第二工艺流180送至氮产品压缩机的中间位置,或者将管道180完全封闭。可以通过下述可选的措施进一步提高该方法的灵活性。在此,在第二运行模式中由低压塔排出气态氧181,及与来自低压塔的气态不纯氮61混合。在本实施例中在逆流过冷器34的下游进行混合。在第一运行模式中将管道181封闭,或者引导较少的气体通过管道181。下表给出图2的设备的两种不同运行模式的示例性数值:通过管道180的氮量涉及在设计情况下通过过滤器1的空气量。图3与图1的区别在于第三节流流。为此,第二涡轮机38以比较大的出口压力及比较高的出口温度运行。于是做功减压的涡轮机流339具有超出高压塔的工作压力至少1巴,尤其是4至11巴的压力,及高于低压氮流55,61在主热交换器的冷端的入口温度至少10K,尤其是20至60K的温度。然后将该流在主热交换器的冷部进一步冷却。将进一步冷却的第三支流340作为第三节流流在节流阀341中减压至大约为高压塔压力,及经由管道32导入高压塔中。由此可以将主热交换器中的热交换过程进一步优化。不同于图3,在图4中,第三支流436不是在第一压力下,而是在更高的第二压力下,导入第二涡轮机38中。图3和4的额外的措施不仅可以在本发明中使用,而且可以在根据图2的改变方案中使用。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1