一种对原有低温空分装置进行改装用以提高低压纯氮气产量的方法与流程

文档序号:11726353阅读:446来源:国知局
一种对原有低温空分装置进行改装用以提高低压纯氮气产量的方法与流程

本发明涉及低温精馏空分工艺及装置。



背景技术:

近年来,一些冶金企业,钢铁企业由于产品调整的原因,在对纯氧和/或纯液氧产量要求不变的情况下,对低压纯氮气的产量要求大幅增加。采用低温精馏空分工艺,在双压力空分塔中生产纯氧、纯液氧、低压纯氮气以及污氮气等产品是十分普遍的,而且各种产品相互之间的比例是由空分塔的设计来决定的,在运行中不会产生非常大的变化。

如果想要大幅增加现有的空分装置中低压纯氮气的产量,一般的做法包括a)用新的空分装置替代旧的空分装置,但此举会大量增加资本投入,且造成对旧的空分装置的浪费;b)投资新的设备用于提纯污氮气以生成低压纯氮气,但此举会同时增加资本投入和运营成本。

因此,对原有的空分装置进行改装以提高低压纯氮气产量的方法是有益的。

中国发明专利cn103277981b公开了一种提高空分装置氮氧产品比例的装置和方法。通过取消安装在原上塔上的辅塔,将原上塔增高30%,并将输送从上塔产生的氮气和污氮气的管道进行切换,达到了使氮氧产品比例由1:1提高到了2:1的目的。但是这一公开只针对特定的产量改变,并且在改装中没有考虑各股流体在过冷器中的平衡,以及其它管道的通量,所以不具有普遍适用性。



技术实现要素:

本发明所要解决的技术问题是在尽量控制资本投入和运营投入的前提下,根据低压纯氮气产量增加的需要,提供不同的针对现有生产装置的改装方案。

为了解决上述技术问题,针对一种原有的低温精馏空分装置,该装置包括:在第一压力下操作的一塔和在相对较低的第二压力下操作的二塔,置于一塔顶部的冷凝蒸发器和置于二塔顶部的直径小于二塔的原纯氮塔,以及用来产生输送至一塔的进料空气的主压缩机、空气净化和冷却系统、主换热器、膨胀机。该装置还包括使一塔产生的富氧液空、原污液氮、原纯液氮和二塔产生的原低压纯氮气、原污氮气及纯液氧进行换热的过冷器,所述过冷器包括原污液氮流经的第一组通道和原纯液氮流经的第二组通道,并且第一组通道的总换热面积大于第二组通道的总换热面积。还包括将原污液氮从一塔输送至过冷器第一组通道的直径为d的管道和将冷却后的原污液氮输送至二塔的上部的直径为d’的管道以及将原纯液氮从一塔输送至过冷器第二组通道的直径为d的管道和将冷却后的原纯液氮输送至纯氮塔顶部的直径为d’的管道,其中d>d,d’>d’。本发明的一个方式为:根据低压纯氮气产量的需要增加原纯氮塔的直径和/或高度,使改装后的纯氮塔的低压纯氮气的生产能力提高并在过冷器的两端将输送改装后的污液氮和改装后的纯液氮的管道进行切换,从而使改装后的纯液氮流经过冷器的第一组通道,改装后的污液氮流经过冷器的第二组通道。

本发明的另一个方式为在上述改装方法的基础上,增加一个附加换热器,将经过冷器升温后的改装后的低压纯氮气分成两部分,第一部分进入原主换热器的冷端,第二部分进入附加换热器的冷端,经过加压净化的空气也分成两部分,第一部分进入原主换热器的热端,第二部分进入上述的附加换热器的热端,并分别与改装后的低压纯氮气的第一部分和第二部分进行间接换热。

本发明又一方式还包括分别在前两种改装方法的基础上,对运输改装后的纯液氮和改装后的污液氮的管道进行切换,具体方式为:使来自一塔的改装后的污液氮先后通过所述直径为d的管道,直径为d的管道,过冷器的第二组通道,直径为d’的管道,第一节流阀,直径为d’的管道,最后进入二塔的上部;使来自一塔的改装后的纯液氮先后通过直径为d的管道,直径为d的管道,过冷器的第一组通道,直径为d’的管道,第二节流阀,直径为d’的管道,最后进入纯氮塔的顶部。对管道进行切换时,管道切换处距离一塔和二塔本体的距离应尽量小,但不小于100mm。

本发明的过冷器中第一组通道相较于第二组通道,其通道数更多;或通道容积更大;或通道有更密集的翅片,从而使第一组通道相较于第二组通道具有更大的总换热面积。

采用本发明公开的改装方法,可以根据需要增加的低压纯氮气的产量,综合考虑增加的产量对纯氮塔的生产能力,塔的压降,管道流通能力,过冷器和主换热器的负荷和平衡,以及空气压缩机的负荷的影响等多方面因素,分步选择合适的改装方法,以达到在最少的资本投入和运营成本的前提下,减少污氮气的产量,增加低压纯氮气的产量,实现空分装置的平稳、高效、低能耗的运行。

附图说明

本公开中的附图仅作为对本发明的示意,供理解和解释本发明的精神,但不在任何方面对本发明加以限定。

图1是改装前的低温精馏空分装置的示意图。

图2是本发明的一个实施方案的示意图,其中,对改装后的污液氮和改装后的纯液氮在过冷器中流经的通道进行了切换。

图3是本发明的又一个实施方案的示意图,其中,不仅对改装后的污液氮和改装后的纯液氮在过冷器中流经的通道进行了切换,而且对输送改装后的污液氮和改装后纯液氮的管道的主要部分也进行了切换,并且增加了一个附加换热器。

具体实施方式

在本公开中,术语“进料空气”意指主要包含氧和氮的混合物。术语“低压纯氮气”覆盖了氮气含量不低于99摩尔百分比的气态流体且该气态流体的压力低于1.5bara;术语“污氮气”覆盖了氮气含量不低于95摩尔百分比的气态流体且该气态流体的压力低于1.5bara,并且“污氮气”中氮气的含量小于“低压纯氮气”。

术语“富氧液空”指氧的摩尔百分比大于30的液态流体,术语“纯液氧”覆盖了氧的摩尔百分比大于70的液态流体,并且“纯液氧”中氧的含量高于“富氧液空”。

术语“纯液氮”指氮的摩尔百分比大于99的液态流体,术语“污液氮”指氮的摩尔百分比大于96的液态流体,并且“污液氮”中氮的含量小于“纯液氮”。

本公开的低温精馏是至少部分在温度为150k或低于150k下进行的精馏方法。此处的“塔”意指一蒸馏或分馏塔或区,其中液相和气相逆流接触以有效地分离流体混合物。本公开中的“一塔”的操作压力一般为5~6.5bara,高于“二塔”的一般操作压力1.1~1.5bara。二塔可以垂直地安装在一塔顶部或两个塔并排安装。位于一塔顶部的冷凝蒸发器意指从塔中液体产生蒸气的热交换装置。二塔的顶部相对于二塔的其余部分具有缩小的横截面积,本公开中称为“纯氮塔”,其与二塔的其它部分是完全联通,没有隔断的。

在双压力空分塔中生产氮气的一般过程包括如图1所示:将初步冷却、加压和净化后的压力为5.5bara左右的中压空气的一部分10在主换热器1中与经过冷器2升温后的低压纯氮气8、污氮气9、以及经过液氧泵增压的液氧29等流股进行换热,成为一塔入口空气17,并输送至一塔3的底部。将另一部分上述中压空气进一步分成两条流股11和13,其中11经压缩生成压力为26bara左右的流股12,经主换热器1冷却后生成流股18,18的一部分送入一塔3的中下部,另一部分19经过冷器2过冷后送入二塔4的中上部。流股13进入膨胀压缩机的压缩端,经压缩后生成压力为12bara的流股16,该流股在主换热器1中经部分冷却生成流股14,并输入上述膨胀压缩机的膨胀端,膨胀后生成流股15。入口空气17和18的一部分,经一塔3分离形成从一塔3顶部引出的纯液氮6,从一塔3中部引出的污液氮7,和从一塔3底部引出的富氧液空23。其中,纯液氮6和污液氮7分别流经过冷器2的通道ii和通道i,经节流阀膨胀后,进入纯氮塔5的中上部和二塔4的上部稍低于纯氮塔5处,并在纯氮塔5的顶部产生压力为1.2bara左右的低压纯氮气8,在二塔4的顶部靠近纯氮塔5处产生压力为1.2bara左右的污氮气9。富氧液空23,在经过冷器2过冷后,与流股15混合,并输入二塔4的中部。低压纯氮气8和污氮气9分别经过冷器2升温后,继续进入主换热器1与各流股进行间接换热,随后低压纯氮气可作为产品储存或直接输送给客户,污氮气也可作为产品,或用于空气净化吸附装置的再生,预冷系统的预冷,或直接排入大气中。

二塔4的回流液进入置于一塔顶部的冷凝蒸发器20后,经精馏生成主冷出口液氧25。其中的一部分经过冷器2过冷后作为液氧产品27输出,另一部分29直接通过液氧泵增压后进入主换热器1升温,最后作为气态的纯氧产品30输出。

在换热器包括过冷器的使用过程中,与温度较低的各流股连接的一端称为冷端,与温度较高的各流股连接的一端称为热端。

一塔3的设计规格,包括塔高、直径、填料层数、填料种类等决定了它空气分离的最大能力。对于一定量的进料空气,由一塔3产生的污液氮7和纯液氮6这两股流股的流量总量是大致不变的,但二者之间的比例可以在较大的范围内进行调节。相似的,由二塔4产生的低压纯氮气8和污氮气9这两股流股的流量总量是大致不变的,但二者之间的比例也可以在较大的范围内进行调节。例如,如果在位置靠上的纯液氮6出口处抽取更多的纯液氮6,则在位置靠下的污液氮7出口处抽取的污液氮7的量就会相应减少。而当有更多的纯液氮6作为回流液进入纯氮塔5,理论上就能生产出更多的低压纯氮气8,由二塔4产出的污氮气9的量即会相应减少。

但是,对于一套低温精馏设备而言,低压纯氮气和污氮气的最高产量和它们之间的比例,在设备的设计和施工阶段就已经确定了,而且一般为了节省投入和运行成本,设备的各个组成部分的最大容量、尺寸、选材等,都尽量和设计的最高要求相匹配,而不会留有太多的富余。例如,较普遍的情况是,塔的操作弹性可以覆盖增加5%的产量;过冷器、主换热器等换热设备一般是铝制板翅式换热器,其通道的流量以及换热容量一般在定制的时候保留10%的富余;管道的通量和管道的直径的平方成正比,且一般在市售的型号中进行选择;节流阀的选择也尽量和节流的流量相匹配。

因此,如果需要在一套现有的低温精馏设备中大幅度地增加低压纯氮气的产量,将有可能面临以下几个问题:原纯氮塔没有足够的能力来制造需要的低压纯氮气;当生产低压纯氮气的改装后的纯液氮的流量增加时,改装后的污液氮的流量会相应减少,这会造成过冷器的失衡;自二塔出来的改装后的低压纯氮气流量增加会造成在主换热器中的摩擦压降呈指数型增长,使二塔内压力显著增大,导致主空气压缩机需要超负荷运行;当改装后的纯液氮的流量有大幅增加时,可能会超出原有的输送原纯液氮的管道的最大通量和原节流阀的节流能力。

根据改装后的低压纯氮气的产量以及其对原有的低温精馏设备的各个部分的运行能力和效果的影响,本公开提供了对原有的低温精馏设备的分阶段的改装方案。

当改装后的纯液氮6’的流量没有超过原有输送管道的最大通量且改装后的低压纯氮气8’的产量没有对过冷器2和主换热器1的换热功效产生任何负面影响时,可以采用如图2所示的改装方法。其中,通过对原纯氮塔5的直径和/或高度的增加来提高该塔的生产能力,并且改装后的纯氮塔5’的塔高和/或直径可以通过改装后需达到的低压纯氮气8’的产量来计算。但是由于在改装后的纯氮塔5’中作为回流的改装后的纯液氮6’只是二塔4中的回流液的一部分,改装后的纯氮塔5’的直径仍然小于二塔4的直径。原过冷器2中包含有用来冷却原污液氮7的第一组通道和用来冷却原纯液氮6的第二组通道,且第一组通道的总换热面积大于第二组通道的总换热面积。由于改装后的纯液氮6’流量增加需要更大的换热面积,可以在过冷器2的入口处和出口处进行管道的互换,从而使改装后的纯液氮6’在过冷器2的第一组通道中进行冷却,而改装后的污液氮7’在过冷器2的第二组通道中进行冷却。即假设改装前,原污液氮7通过直径为d的管道和过冷器第一组通道的入口相连,原纯液氮6通过直径为d的管道和过冷器第二组通道的入口相连,则改装时使直径为d的管道和过冷器的第二组通道的入口相连,使直径为d的管道和过冷器的第一组通道的入口相连。同理,改装前,过冷器第一组通道的出口和直径为d’的管道和相连,过冷器第二组通道的出口和直径为d’的管道和相连,则改装时使直径为d’的管道和过冷器的第二组通道的出口相连,使直径为d’的管道和过冷器的第一组通道的出口相连。在改装时可以使用变径接头来连接不同直径的管道。

当改装后的纯液氮6’流量的增加超过原有输送管道的最大通量且改装后的低压纯氮气8’的产量对主换热器1的换热功效产生影响时,可以采用图3所示的改装方法。此处,通过对原纯氮塔5的直径和/或高度的增加来提高该塔的生产能力,并且改装后的纯氮塔5’的塔高和/或直径可以通过改装后需达到的低压纯氮气8’的产量来计算。在一塔3和二塔4的塔体附近对输送改装后的污液氮7’和改装后的纯液氮6’的管道进行切换。具体来说,改装后的纯液氮6’从一塔3流经直径较细的管道d,切换至直径较粗的管道d并进入过冷器2换热面积较大的第一组通道,然后继续流经直径较粗的管道d’,与d’相配的节流阀,最后切换至直径较细的管道d’并流入改装后的纯氮塔5’的中部;改装后的污液氮7’从一塔3流经直径较粗的管道d,切换至直径较细的管道d并进入过冷器2换热面积较小的第二组通道,然后继续流经直径较细的管道d’,与d’相配的节流阀,最后切换至直径较粗的管道d’并流入二塔4的上部略低于改装后的纯氮塔5’处。在切换管道时可以使用变径接头来连接不同直径的管道,并且使切换的位置在不影响塔体的密封下,尽量地靠近塔体,一般为距塔体100mm处。

图3的改装方法还包括增加的附加换热器1b。改装后的低压纯氮气8’经过冷器升温后生成流股8’w,随后分成两股8’a和8’b,其中8’a的流量和原低压纯氮气8的流量大致相等,并通过原管道进入主换热器1中,增加的低压纯氮气构成流股8’b,并进入附加换热器1b的冷端。原中压进料空气10也相应的分成两股10a和10b,其中10a通过原管道进入主换热器1的热端,10b则进入附加换热器1b的热端。10b的流量由8’b决定,并且10a与10b的比例大概为7:3。由于改装后的低压纯氮气8’流量的增加会造成改装后的污氮气9’流量相应的减少,所以在主换热器1和附加换热器1b中,改装后的流股分配依然可以保证两个换热器的平衡。

下面的实施例1对应于一套氧气产量为60000nm3/h的低温精馏空分装置。该装置原低压纯氮气的产量为40200nm3/h,改装后需将低压纯氮气产量提高大约一倍。改装采用如图3所示的方法。原纯氮塔5的参数为:直径2m,高度4m,改装后5’将参数变为:直径2.75m,高度5.1m。表1比较了改装前、后经过切换的四条流股的流量、压力和温度参数,从中可以看出,在完成低压纯氮气的产量从40200nm3/h增加到80800nm3/h,提高超过一倍的前提下,采用本发明的改装方法,各流股的压力、温度参数与改装前几乎一致,说明该低温精馏空分装置的运行未受到任何不利影响。

表1.流股切换前后参数的比较

表2.未经切换的流股改装前后参数的比较

表2比较了改装前、后未经过切换的其它主要流股的流量、压力和温度参数,从中可以看出,各流股的流量、压力、温度参数与改装前几乎一致,说明该改装方法对低温精馏空分装置的运行未产生任何不利影响。

表3列出了改装后的中压空气10’和低压纯氮气8’w在主换热器1和附加换热器1b之间流量的分配,以及相应的压力和温度,并与改装前原中压空气10和经过冷器升温后的低压纯氮气8的相应参数进行了比较。

表3.改装前后主换热器和附加换热器流股的分配及参数

以上是本发明实现的一种实施例,但本发明创造并不限于所述实施例,本领域的技术人员根据本空开所作的种种等同变型或替换,均包含在本申请权利要求所限定的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1