低能耗内压缩空分装置的制作方法

文档序号:11912381阅读:354来源:国知局

本实用新型涉及一种低能耗内压缩空分装置, 适用于空气的分离,属于低温空分技术领域。



背景技术:

当今世界经济随科技进步而飞速发展,各行各业都向大型化装备发展,大钢铁、大化肥、大石化、大化纤、大乙烯、大芳烃、大炼油、大发电工、大电子、大注氮采油、大煤气

化、大煤化工等等,它们都需要大型、超大型空分设备为之服务;这样的大型空分装置毫无疑问只能是深冷法继续独霸天下,而且都普遍使用带增压机的内压缩流程空分装置。内压缩是用泵压缩低温液体液氧或液氮, 再经复热、气化后送至装置外,相对来说氧气内压缩较为安全,尤其是大型化装备领域的高压力、大流量优势更突出。

空分行业属高耗能行业,空分厂属耗能大户,空分设备的原料是空气,其主要消耗的是能源,能源消耗占生产成本的。随着市场经济的不断完善,空分设备的节能增效已越来越被重视;降低生产成本的主要措施就是降低能耗,节能降耗是企业安全环保、提高效益、增强活力的重要方面。



技术实现要素:

本实用新型的目的在于克服现有技术存在的不足,而提供一种能在相同产品参数下降低空分设备的综合单位能耗,降低生产成本,节能、减排、环保效果好,可有效地提高生产效率及经济效益的、低能耗内压缩空分装置及流程。

本实用新型的目的是通过如下技术方案来完成的,一种低能耗内压缩空分装置,它主要由自洁式空气过滤器,空压机,分子筛纯化器,换热器,低温精馏塔以及连接管道组成,所述自洁式空气过滤器前设置有原料空气吸入口,自洁式空气过滤器后面相接于空压机和空冷塔,所述空冷塔的后面相接有分子筛纯化器;

在分子筛纯化器后面相接有两路空气连接管,一路空气连接管连接于空气增压机对空气继续增压,另一路空气连接管直接连接于板式换热器,并在接出板式换热器后连接低温精馏塔的下塔;所述的空气增压机接出后分叉出两个管路,一个管路连接板式换热器,并从板式换热器的中部接出后连接于增压透平膨胀机的膨胀端,该膨胀端后直接连接低温精馏塔的下塔;另一管路连接增压透平膨胀机的增压端,在该增压端后面通过管路连接板式换热器,接出板式换热器后通过一节流阀后连接低温精馏塔的下塔;

所述的低温精馏塔由上塔和下塔以及中间的主冷凝蒸发器组成,在下塔分别设置有液空接出管、纯液氮接出管和污液氮接出管,所述液空接出管、纯液氮接出管和污液氮接出管在塔外经过一过冷器后连接于低温精馏塔的上塔,并在上塔的塔底设置有液氧接出管,经液氧泵后接入板式换热器,接出板式换热器后接入氧气管网或另接出液氧分管,经过过冷器后连接液氧贮槽;

所述低温精馏塔的下塔顶部设置有压力氮气接出管,该压力氮气接出管连接于板式换热器后,经过该板式换热器连接于一氮气膨胀机的增压端,从该增压端再连接板式换热器,从中间接出后连接于氮气膨胀机的膨胀端,该膨胀端接出后再次连接于板式换热器,并在经过该板式换热器的、给空分提供冷量的冷流体换热流道后接入管压氮气。

作为优选:所述氮气膨胀机的增压端被分接出一路增压氮气管路,该增压氮气管路作为输出压力氮气产品输出管路;

在低温精馏塔的下塔顶部设置有液氮接出管,经过连接过冷器连接于液氮产品贮槽;

在低温精馏塔的上塔中部设置有氩馏份抽取口,该氩馏份抽取口通过管接接入粗氩塔,粗氩塔上设置有粗液氩抽取口,该粗液氩抽取口通过管接连接至纯氩塔中部,并在纯氩塔的塔底部设置有纯液氩接出管路。

在低温精馏塔的上塔上部设置有污氮气接出管,经过连接过冷器和板式换热器后分成两路,一管路连接于分子筛纯化器的加热器,另一路连接水冷塔;

在低温精馏塔的上塔顶部设置有常压氮气抽取口,经过管接连接过冷器和板式换热器后接出至预留氮气产品管路,或连接用户氮气管网,或连接水冷塔。

本实用新型是一种空分新流程,本流程除空气膨胀机体系,同时从下塔中抽取压力氮气经换热器复热后送入氮气膨胀增压机提供空分所需冷量;同时可提供8公斤左右的氮气供下游使用;主要优点是利用了精馏塔的生产潜能,有效降低了能耗,相比常规空分,能耗节约5%-10%。 同时提供了更丰富的产品结构,减少了下游的设备配置。

本实用新型具有能耗低、节能、增效,减排效果好的特点;能有效地减少空分设备总体投资,提高生产效率,降低生产成本,有效的提高了经济效益,有利于环境保护。

附图说明

图1是本实用新型的结构组成流程示意图。

具体实施方式

下面将结合附图对本实用新型作详细的介绍:图1所示,本实用新型所述的一种低能耗内压缩空分装置,它主要由自洁式空气过滤器1,空压机2,分子筛纯化器3,板式换热器4,低温精馏塔5以及连接管道组成,所述自洁式空气过滤器1前设置有原料空气吸入口6,自洁式空气过滤器1后面相接于空压机2和空冷塔7,所述空冷塔7的后面相接有分子筛纯化器3;

原料空气自吸入口6吸入,经自洁式空气过滤器1除去灰尘及其它机械杂质。过滤后的空气进入离心式空压机2,经压缩机2压缩后进入空气冷却塔7冷却清洗;经空冷塔7冷却后的空气进入切换使用的分子筛纯化器3,空气中的二氧化碳、乙炔和水分被吸附;分子筛纯化器3为两只切换使用,其中一只工作时,另一只再生。

在分子筛纯化器3后面相接有两路空气连接管,一路空气连接管8连接于空气增压机9对空气继续增压,另一路空气连接管10直接连接于板式换热器4,并在接出板式换热器4后连接低温精馏塔5的下塔51;所述的空气增压机9接出后分叉出两个管路,一个管路11连接板式换热器4,并从板式换热器4的中部接出后连接于增压透平膨胀机的膨胀端12,该膨胀端12后直接连接低温精馏塔5的下塔51;另一管路13连接增压透平膨胀机的增压端14,在该增压端14后面通过管路连接板式换热器4,接出板式换热器4后通过一节流阀后连接低温精馏塔5的下塔51;

所述的低温精馏塔5由上塔52和下塔51以及中间的主冷凝蒸发器53组成,在下塔51分别设置有液空接出管15、纯液氮接出管16和污液氮接出管17,所述液空接出管15、纯液氮接出管16和污液氮接出管17在塔外经过一过冷器18后连接于低温精馏塔5的上塔52,并在上塔52的塔底设置有液氧接出管19,经液氧泵20后接入板式换热器4,接出板式换热器4后接入氧气管网21或另接出液氧分管,经过过冷器后连接液氧贮槽;

所述低温精馏塔5的下塔51顶部设置有压力氮气接出管22,该压力氮气接出管22连接于板式换热器4后,经过该板式换热器4连接于一氮气膨胀机的增压端23,从该增压端23再连接板式换热器4,从中间接出后连接于氮气膨胀机的膨胀端24,该膨胀端24接出后再次连接于板式换热器4,并在经过该板式换热器4的、给空分提供冷量的冷流体换热流道后接入管压氮气网。

本实用新型所述氮气膨胀机的增压端23被分接出一路增压氮气管路25,该增压氮气管路25作为输出压力氮气产品输出管路;

在低温精馏塔5的下塔51顶部设置有液氮接出管26,经过连接过冷器18连接于液氮产品贮槽;

在低温精馏塔5的上塔52中部设置有氩馏份抽取口27,该氩馏份抽取口27通过管接接入粗氩塔28,粗氩塔28上设置有粗液氩抽取口29,该粗液氩抽取口29通过管接连接至纯氩塔30中部,并在纯氩塔30的塔底部设置有纯液氩接出管路31。

在低温精馏塔5的上塔52上部设置有污氮气接出管32,经过连接过冷器18和板式换热器4后分成两路,一路33连接于分子筛纯化器3的加热器,另一路34连接空冷塔7;

在低温精馏塔5的上塔52顶部设置有常压氮气抽取口,经过管接连接过冷器和板式换热器后接出至预留氮气产品管路,或连接用户氮气管网,或连接空冷塔7。

本实用新型的工作过程是:由增压机增压的空气被冷却后分为两部分,一部分进入换热器换热后从中部抽出送入增压透平膨胀机的膨胀端,膨胀后送入下塔;另一部分进入增压透平膨胀机的增压端继续增压,再次冷却后进入板式与高压液氧换热,换热后的高压液空经节流阀节流后送入下塔。

空气经下塔初步精馏后,获得液空、纯液氮和污液氮,并经过冷器过冷后节流进入上塔。经上塔进一步精馏后,在上塔底部获得液氧,经液氧泵压缩后进入板式换热器,复热后出冷箱,进入氧气管网。另抽取部分液氧过冷后作为液氧产品送入液氧贮槽。

从下塔顶部抽出液氮,经过冷器过冷后作为产品进入贮槽。

下塔顶部抽出的压力氮气分为两部分,一部分经板式换热器复热后出冷箱,而后送入氮气膨胀机增压端增压,得到8公斤得氮气,其中小部分可作为产品送出,大部分送入板式换热器冷却至低温后进入氮气膨胀挤膨胀端膨胀,得到得低温常压气体作为冷流体送入板式换热器复热后,作为常压氮气产品,当有需要时送往用户氮气管网,不需要时送往水冷塔。另一部分作为4公斤氮气产品送出。

从上塔上部引出污氮气经过冷器、板式换热器复热出冷箱后分成两部分:一部分进入分子筛系统的加热器,作为分子筛再生气体,其余污氮气去水冷塔。

从上塔顶部抽出常压氮气,经过冷器、板式换热器复热出冷箱作为预留氮气产品,当有需要时送往用户氮气管网,不需要时送往水冷塔。

在上塔中部抽取一定量的氩馏份送入粗氩塔,粗氩塔在结构上分为二段,第二段粗氩塔底部的回流液体经液氩泵加压后送入第一段顶部作为回流液;氩馏份经粗氩塔精馏后得到粗液氩,并送入纯氩塔中部,经纯氩塔精馏后在塔底部得到纯液氩。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1