一种低能耗的同时生产富氧气体和高纯氮气的装置和方法与流程

文档序号:11651118阅读:249来源:国知局

本发明属于气体分离方法与装置技术领域,具体涉及一种低能耗的同时生产富氧气体和高纯氮气的装置和方法。



背景技术:

氧气作为助燃剂、氧化剂是当今工业生产的重要原料。在煤化工、钢铁、化肥、有色冶炼等领域应用广泛。使用纯氧或者富氧,不但有效降低了废气排放量,更能减少能量损失,节约原料成本。

目前工业氧气生产主要有两种方法:深冷空气分离和变压吸附。深冷空气分离一般应用于大型装置中,具有氧气产品纯度高,装置稳定性好,可同时副产氮气以及液氧、液氮、液氩等副产品的特点;变压吸附主要应用于氧气纯度要求不高,氧气产量较小的场合,具有制造周期短,成本低,操作简便的特点。深冷分离方法的性能稳定,可同时生产氮气的特点使其成为大型工业装置优先选择的氧气制取方法。深冷分离方法的制备得到的氧气纯度在99.6%以上,然而很多工业生产过程中并不需要这种高纯度的氧气,为了满足生产需求,往往需要采用向高纯度的氧气中混合大量空气的方法将高纯度的氧气降低到合适的纯度后再进入后续生产。这就造成了能源的浪费,同时增加了生产成本。此外,深冷空气分离方法的原料是空气,其主要的消耗是能源,在能源日益紧张的情况下,如何降低深冷空气分离方法的能耗,已成为迫切需要解决的问题。因此,为了满足现有工业生产中对低纯度氧气的需求和避免资源浪费,迫切需要开发一种低能耗的能够制备低纯度氧气的生产技术。



技术实现要素:

本发明的目的是针对现有技术存在的缺陷和不足,提供一种低能耗的同时生产富氧气体和高纯氮气的装置和方法。通过本发明的技术方案,能够获取高纯氮气的同时,还能获得指定纯度的富氧气体,生产的富氧气体可以直接供后续生产使用,简化了生产工序,同时,本发明的技术方案可以再不增加设备的情况下达到常规深冷空分运行工况,而且运行能耗低。

为实现发明目的,本发明采用的技术方案如下:

本发明提供一种低能耗的同时生产富氧气体和高纯氮气的装置,所述装置包括空气压缩系统、空气预冷系统、分子筛纯化系统、增压透平膨胀机、主换热器、精馏塔和过冷器;所述空气压缩系统、空气预冷系统和分子筛纯化系统为本领域常规的空气压缩系统、空气预冷系统和分子筛纯化系统;所述精馏塔包括上塔、下塔和位于上塔、下塔之间的主冷凝蒸发器,所述主冷凝蒸发器包括上层主冷凝蒸发器k1和下层主冷凝蒸发器k2,上层主冷凝蒸发器k1和下层主冷凝蒸发器k2之间用隔板隔开,上层主冷凝蒸发器k1与上塔下部拼接并连通在一起,下层主冷凝蒸发器k2与下塔顶部拼接在一起;各设备之间通过管道相连通,其连接关系为:

空气压缩系统与空气预冷系统、分子筛纯化系统通过管道依次连通,分子筛纯化系统的出口分为两路:

一路通过101管道与增压透平膨胀机的增压端空气进口连通,增压透平膨胀机的增压端空气出口通过103管道与主换热器的增压空气进口连通,主换热器的增压空气出口通过201管道与增压透平膨胀机的膨胀端空气进口连通,增压透平膨胀机的膨胀端空气出口通过104管道与上塔的膨胀空气进口连通;

另一路通过102管道与主换热器的空气进口连通,主换热器的空气出口通过202管道与下层主冷凝蒸发器k2的空气侧进口连通,下层主冷凝蒸发器k2的空气侧出口通过301管道与下塔下部空气进口连通,下层主冷凝蒸发器k2的富氧气体出口通过302管道与主换热器的富氧气体进口连通,富氧气体经主换热器的富氧气体出口排出收集;下塔上部的高纯氮气出口通过401管道与上层主冷凝蒸发器k1的氮气侧进口连通,上层主冷凝蒸发器k1的液氮出口经303管道后分为两路,一路进入303a管道与下塔的液氮进口连通,另一路进入303b管道与过冷器的液氮进口连通,上层主冷凝蒸发器k1的液态富氧出口通过304管道与下层主冷凝蒸发器k2的液态富氧进口连通,304管道上设有截止阀1;上层主冷凝蒸发器k1的高纯氧气出口通过305管道与302管道连通,305管道上设有截止阀2;下塔下部的贫液空出口通过402管道与过冷器的贫液空进口连通,下塔底部的富氧液空出口通过403管道与过冷器的富氧液空进口连通;过冷器的贫液空出口通过502管道与上塔的贫液空进口连通,过冷器的富氧液空出口通过503管道与上塔的富氧液空进口连通,过冷器的液氮出口通过501管道与上塔上部的液氮进口连通;上塔顶部的高纯氮气出口通过601管道与过冷器的高纯氮气进口连通,过冷器的高纯氮气出口通过504管道与主换热器的高纯氮气进口连通,高纯氮气经主换热器的高纯氮气出口排出收集;上塔上部的污氮出口通过602管道与过冷凝器的污氮进口连通,过冷凝器的污氮出口通过505管道与主换热器的污氮进口连通,污氮经主换热器的污氮出口排出。

根据上述的低能耗的同时生产富氧气体和高纯氮气的装置,所述主换热器为铝制板翅式换热器。

根据上述的低能耗的同时生产富氧气体和高纯氮气的装置,所述过冷器为铝制板翅式换热器。

根据上述的低能耗的同时生产富氧气体和高纯氮气的装置,所述上塔和下塔均为规整填料塔或筛板塔。

一种利用上述装置同时生产富氧气体和高纯氮气的方法,所述方法包括以下步骤:

a、来自大气的空气依次经过空气压缩系统,空气预冷系统和分子筛纯化系统进行过滤、压缩、净化,脱除空气中的水分和二氧化碳,得到净化后的干燥空气,所述干燥空气分为两路,一路通过101管道进入增压透平膨胀机,另一路通过102管道进入主换热器;

b、进入增压透平膨胀机的干燥空气在增压透平膨胀机中增压后,经过103管道进入主换热器中进行冷却,冷却后的干燥空气经201管道进入增压透平膨胀机的膨胀端进行膨胀制冷,膨胀后的干燥空气经104管道进入上塔进行精馏分离;

c、进入主换热器的干燥空气在主换热器中进行冷却、降温,降温后的干燥空气经202管道进入下层主冷凝蒸发器k2中作为热源与下层主冷凝蒸发器k2中的液态富氧进行换热,换热后的干燥空气经301管道进入下塔进行初步精馏分离,经过初步精馏分离,在下塔顶部得到高纯氮气,在下部得到贫液空和富氧液空;其中,高纯氮气经401管道进入上层主冷凝蒸发器k1中被冷凝成液氮,冷凝后的液氮由上层主冷凝蒸发器k1下部的液氮出口排出,然后经303管道后分为两路,一路液氮经303a管道返回下塔中作为回流液,另一路液氮经303b管道、过冷器和501管道进入上塔作为回流液进行最终精馏分离;所得的贫液空经402管道、过冷器和502管道进入上塔进行最终精馏分离;所得的富氧液空经403管道进入过冷器中进行冷却,冷却后经503管道进入上塔进行最终精馏分离;

d、经过上塔的精馏分离,上塔顶部得到的高纯氮气,上部得到污氮,下部得到液态富氧;其中,高纯氮气经601管道进入过冷器中进行复热,复热后经504管道进入主换热器中进行复热,复热到常温的高纯氮气由主换热器的高纯氮气出口排出收集,得到高纯氮气产品;污氮经602管道进入过冷器中进行复热,复热后经505管道进入主换热器中进行复热,复热到常温的污氮由主换热器的污氮出口排出收集,得到污氮产品;上塔中的液态富氧则直接进入上层主冷凝蒸发器k1中;打开截止阀1,关闭截止阀2,液态富氧在主冷凝蒸发器k1中进行蒸发,蒸发所得的富氧气体作为上升蒸汽返回上塔参加精馏;在主冷凝蒸发器k1中没有被蒸发汽化的液态富氧经304管道和截止阀1进入下层主冷凝蒸发器k2中被汽化,汽化后得到的富氧气体经302管道进入主换热器中进行复热,复热至常温的富氧气体由主换热器的富氧气体出口排出收集,得到富氧气体产品,供使用。

根据上述的同时生产富氧气体和高纯氮气的方法,步骤d中,在关闭截止阀1,打开截止阀2时,下层主冷凝蒸发器k2不工作,此时装置即为常规的生产高纯氮气和高纯氧气的深冷空气分离装置;即经过上塔精馏分离,在上塔顶部得到高纯氮气,上部得到污氮,下部得到液态高纯氧气,液态高纯氧气全部进入上层主冷凝蒸发器k1中进行完全蒸发,蒸发后得到的高纯氧气经上层主冷凝蒸发器k1的高纯氧气出口、305管道和截止阀2后并入302管道进入主换热器进行复热,复热至常温的高纯氧气由主换热器的富氧气体出口排出收集,得到高纯氧气产品,供使用。

根据上述的同时生产富氧气体和高纯氮气的方法,其特征在于,步骤d中所述高纯氮气产品的纯度≥99.99%。

根据上述的同时生产富氧气体和高纯氮气的方法,其特征在于,步骤d中所述富氧气体产品的纯度为75%-95%。

根据上述的同时生产富氧气体和高纯氮气的方法,其特征在于,所述高纯氧气产品的纯度≥99.6%。

本发明取得的积极有益效果:

(1)采用本发明的技术方案,经过压缩、预冷、净化后的干燥空气,小部分进入增压膨胀机制冷外,大部分干燥空气进入主换热器冷却。从主换热器出来的干燥空气先进入下层主冷凝蒸发器中,作为热源与液态富氧换热,之后再进入下塔下部参加精馏;同时,液态富氧汽化的氧气不再回到上塔,而是直接通过主换热器复温后送出。由于相同液化温度下,相较于氮气,较低的空气的压力即可满足换热要求,所以空气压缩系统中空气压缩机的输出压力得以降低至0.30~0.32mpa,较常规深冷空分装置的空压机0.5mpa左右的压力,降低了19.6~22.3%的能耗,节约了大量的能源,具有显著的经济效益和社会效益。

(2)通过本发明技术方案,在生产高纯氮气的同时,能直接生产氧气纯度在70%-95%范围内的指定纯度的富氧气体,该富氧气体可直接供后续生产使用,因此,本发明技术方案能够同时生产两种产品,减少了设备的重复建设和投资,简化了生产工序,降低了生产成本。

(3)本发明技术方案中上层主冷凝蒸发器的液态富氧经截止阀1与下层主冷凝蒸发器连通,且下层主冷凝蒸发器产生的富氧气体不与上塔、上层主冷凝蒸发器相连通,而是采用直接送出的结构,使得下层主冷凝蒸发器可以根据需要关闭,从而实现了本装置运行工况的调整;而且,当关闭截止阀1,打开截止阀2时,下层主冷凝蒸发器k2不工作时,此时装置即为常规的生产高纯氮气和高纯氧气的深冷空气分离装置,可以同时生产高纯氮气和高纯氧气,因此,本发明的装置实现了一套装置多种用途,减少了设备的重复建设和投资,降低了生产成本。

(4)本发明技术方案,不改变既有的高纯氮气生产工艺,对高纯氮气生产没有影响。

附图说明

图1本发明低能耗的同时生产富氧气体和高纯氮气的装置的结构示意图。

图1中,1为空气压缩系统,2为空气预冷系统,3为分子筛纯化系统,4为增压透平膨胀机,5为主换热器,6为上塔,7为下塔,8为主冷凝蒸发器,9为过冷器,10为阀门1,11为阀门2。

具体实施方式

以下结合具体实施例进一步阐述本发明,但并不限制本发明的范围。

实施例1:

参见图1,本发明一种低能耗的同时生产富氧气体和高纯氮气的装置,所述装置包括空气压缩系统1、空气预冷系统2、分子筛纯化系统3、增压透平膨胀机4、主换热器5、精馏塔和过冷器9;所述空气压缩系统、空气预冷系统和分子筛纯化系统为本领域常规的空气压缩系统、空气预冷系统和分子筛纯化系统;所述精馏塔包括上塔6、下塔7和位于上塔、下塔之间的主冷凝蒸发器8,所述主冷凝蒸发器8包括上层主冷凝蒸发器k1和下层主冷凝蒸发器k2,上层主冷凝蒸发器k1和下层主冷凝蒸发器k2之间用隔板隔开,上层主冷凝蒸发器k1与上塔6下部拼接并连通在一起,下层主冷凝蒸发器k2与下塔7顶部拼接在一起;各设备之间通过管道相连通,其连接关系为:

空气压缩系统与空气预冷系统、分子筛纯化系统通过管道依次连通,分子筛纯化系统的出口分为两路:

一路通过101管道与增压透平膨胀机的增压端空气进口连通,增压透平膨胀机的增压端空气出口通过103管道与主换热器的增压空气进口连通,主换热器的增压空气出口通过201管道与增压透平膨胀机的膨胀端空气进口连通,增压透平膨胀机的膨胀端空气出口通过104管道与上塔的膨胀空气进口连通;

另一路通过102管道与主换热器的空气进口连通,主换热器的空气出口通过202管道与下层主冷凝蒸发器k2的空气侧进口连通,下层主冷凝蒸发器k2的空气侧出口通过301管道与下塔下部空气进口连通,下层主冷凝蒸发器k2的富氧气体出口通过302管道与主换热器的富氧气体进口连通,富氧气体经主换热器的富氧气体出口排出收集;下塔上部的高纯氮气出口通过401管道与上层主冷凝蒸发器k1的氮气侧进口连通,上层主冷凝蒸发器k1的液氮出口经303管道后分为两路,一路进入303a管道与下塔的液氮进口连通,另一路进入303b管道与过冷器的液氮进口连通,上层主冷凝蒸发器k1的液态富氧出口通过304管道与下层主冷凝蒸发器k2的液态富氧进口连通,304管道上设有阀门1;上层主冷凝蒸发器k1的高纯氧气出口通过305管道与302管道连通,305管道上设有阀门2;下塔下部的贫液空出口通过402管道与过冷器的贫液空进口连通,下塔底部的富氧液空出口通过403管道与过冷器的富氧液空进口连通;过冷器的贫液空出口通过502管道与上塔的贫液空进口连通,过冷器的富氧液空出口通过503管道与上塔的富氧液空进口连通,过冷器的液氮出口通过501管道与上塔上部的液氮进口连通;上塔顶部的高纯氮气出口通过601管道与过冷器的高纯氮气进口连通,过冷器的高纯氮气出口通过504管道与主换热器的高纯氮气进口连通,高纯氮气经主换热器的高纯氮气出口排出收集;上塔上部的污氮出口通过602管道与过冷凝器的污氮进口连通,过冷凝器的污氮出口通过505管道与主换热器的污氮进口连通,污氮经主换热器的污氮出口排出收集。

其中,所述主换热器和过冷器均为铝制板翅式换热器;所述上塔和下塔均为规整填料塔;所述阀门1和阀门2均为截止阀。

实施例2:

参见图1,实施例2的内容与实施例1基本一样,其不同之处在于,所述上塔和下塔均为筛板塔。

实施例3:

参见图1,一种利用实施例1所述装置同时生产富氧气体和高纯氮气的方法,所述方法包括以下步骤:

a、来自大气的空气依次经过空气压缩系统,空气预冷系统和分子筛纯化系统进行过滤、压缩、净化,脱除空气中的水分和二氧化碳,得到净化后的干燥空气,所述干燥空气分为两路,一路通过101管道进入增压透平膨胀机,另一路通过102管道进入主换热器;

b、进入增压透平膨胀机的干燥空气在增压透平膨胀机中增压后,经过103管道进入主换热器中进行冷却,冷却后的干燥空气经201管道进入增压透平膨胀机的膨胀端进行膨胀制冷,膨胀后的干燥空气经104管道进入上塔进行精馏分离;

c、进入主换热器的干燥空气在主换热器中进行冷却、降温,降温后的干燥空气经202管道进入下层主冷凝蒸发器k2中作为热源与下层主冷凝蒸发器k2中的液态富氧进行换热,换热后的干燥空气经301管道进入下塔进行初步精馏分离,经过初步精馏分离,在下塔顶部得到高纯氮气,在下部得到贫液空和富氧液空;其中,高纯氮气经401管道进入上层主冷凝蒸发器k1中被冷凝成液氮,冷凝后的液氮由上层主冷凝蒸发器k1下部的液氮出口排出,然后经303管道后分为两路,一路液氮经303a管道返回下塔中作为回流液,另一路液氮经303b管道、过冷器和501管道进入上塔作为回流液进行最终精馏分离;所得的贫液空经402管道、过冷器和502管道进入上塔进行最终精馏分离;所得的富氧液空经403管道进入过冷器中进行冷却,冷却后经503管道进入上塔进行最终精馏分离;

d、经过上塔的精馏分离,上塔顶部得到的高纯氮气,上部得到污氮,下部得到液态富氧;其中,高纯氮气经601管道进入过冷器中进行复热,复热后经504管道进入主换热器中进行复热,复热到常温的高纯氮气由主换热器的高纯氮气出口排出收集,得到高纯氮气产品;污氮经602管道进入过冷器中进行复热,复热后经505管道进入主换热器中进行复热,复热到常温的污氮由主换热器的污氮出口排出收集,得到污氮产品;上塔中的液态富氧则直接进入上层主冷凝蒸发器k1中;打开截止阀1,关闭截止阀2,液态富氧在主冷凝蒸发器k1中进行蒸发,蒸发所得的富氧气体作为上升蒸汽返回上塔参加精馏;在主冷凝蒸发器k1中没有被蒸发汽化的液态富氧经304管道和截止阀1进入下层主冷凝蒸发器k2中被汽化,汽化后得到的富氧气体经302管道进入主换热器中进行复热,复热至常温的富氧气体由主换热器的富氧气体出口排出收集,得到富氧气体产品,供使用。

其中,步骤d中制备得到的高纯氮气产品的纯度≥99.99%,制备得到的富氧气体产品的纯度为75%-95%。

实施例4:

实施例2的内容与实施例3基本相同,其不同之处在于,步骤d中,关闭阀门1,打开阀门2,下层主冷凝蒸发器k2不工作,此时装置即为常规的生产高纯氮气和高纯氧气深冷空气分离的装置;即经过上塔精馏分离,在上塔顶部得到高纯氮气,上部得到污氮,下部得到液态高纯氧气,液态高纯氧气全部进入上层主冷凝蒸发器k1中进行完全蒸发,蒸发后得到的高纯氧气经上层主冷凝蒸发器k1的高纯氧气出口、305管道和截止阀2后并入302管道进入主换热器进行复热,复热至常温的高纯氧气由主换热器的富氧气体出口排出收集,得到高纯氧气产品,供使用。其中,步骤d中制备得到的高纯氮气产品的纯度≥99.99%,制备得到的高纯氧气产品的纯度≥99.6%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1