一种通过低温分离空气获得加压氮气的方法和设备与流程

文档序号:18452989发布日期:2019-08-17 01:23阅读:324来源:国知局
一种通过低温分离空气获得加压氮气的方法和设备与流程

该方法特别地涉及从高压柱中提取氮产物的系统。氮产物可以来自两个柱,例如通过直接来自低压柱的和高压柱的气态氮(gan)。或者,至少一部分低压柱氮可以以液态形式(lin-液氮)取出,所述至少一部分低压柱氮进料至高压柱并从中作为气态氮(gan)产物取出。从us2004244417a1的图2、de19933557或ep1022530中已知这种涉及低压柱lin被“泵回”至高压柱的方法。在这种工艺中,主冷凝器和低压柱顶部冷凝器一般被采用,该冷凝器以浴蒸发器在其蒸发侧的形式。这代表了一种经过试验和测试的蒸发器形式,在这种蒸发器中,由于挥发性成分例如丙烷比氧重,因此特别地应该预期没有操作困难。然而,由于液浴中的静液面导致蒸发温度的升高,在能量方面,浴冷凝器不是最优的。

本发明是基于改进就能耗而言在开始提述的方法和相应装置,且同时使系统能够安全运行的目标。

该目标是通过权利要求1的所有特征实现的。

采用强制流动蒸发器作为低压柱顶部冷凝器,允许在蒸发流和冷凝流之间的特别小压力差,同时如同在浴蒸发器中的相同平均温差。这显著地减少了装置的能源消耗,例如,相当于高压柱压力的在10bar氮的产物输出压力的情况下,降低了3.2%;如果再考虑从10bar到60bar的进一步压缩,节能占总能耗的2.2%。

然而,低压柱上方的液浴的损失还伴随着取出净化流和排出高沸点组分,特别是丙烷的可能性的丧失。在本发明中,这通过净化流从高压柱的底部取出来补偿。在这个取出(和进气的进入)的上方,提供阻挡板段,它保留了在高压柱底部的高沸点组分,特别是丙烷。低压柱的富氧液流在阻挡板段的上方被取出,且含有较少的高沸点组分,特别地几乎不再含有丙烷。即使在阻挡板段有两个理论板,假定在空气净化器下游的空气中丙烷含量为0.0075ppm(假设空气净化器分子筛中丙烷保留率约为85%),99.8%的丙烷由净化流除去。在此过程中,84%的n2o也被分离出来(相对于通过空气净化器的n2o量)。其他组分的分离度对于c2h6为69%,对于c2h4为15%,对于甲烷约为2.5%,这并不关键。“高沸点组分”在这里被理解为具有比氧气更高蒸发温度的物质。

原则上,上述措施可以保证装置的安全运行。这些措施本身从wo2016131545a1就已知了,但是这里在较高的工艺压力下使用,结果不会产生预液化,即蒸馏上游进料空气没有液化,而是所有的空气都以气体的形式进入高压柱。

总的来说,在开始提到的根据us2004244417a1的图2与wo2016131545a1的方法有以下不同之处:

这两种方法具有如此不同的性质,因此将它们组合对于本领域普通技术人员是毫无疑问的。

在us2004244417a1中,由于该工艺中的相对较低压力(或与出现自精馏系统的流相对较小的压力差),进料空气在进入高压柱的过程中也含有少量液体成分--即便得到非常少的液体产物或纯气体操作将会如此。因此,如果上述措施(也参见wo2016131545a1)被应用于这些方法之一,相对较多的液体将会出现在高压柱底部。这种量将与净化流一起作为整体取出并显著降低产物生产或对设备能耗具有负面影响。

因此,权利要求1还包含另一个特征,根据该特征,来自高压柱的气态氮流在主热交换器中被加热前,与来自高压柱的富氧液流进行间接热交换在逆流过冷器中被加热。初看起来,似乎不清楚该措施与高沸点组分的排放有什么关系。但是至少,它导致主热交换器入口处的气态氮流的焓增加。由于平衡组的焓差在蒸馏柱系统周围保持不变(具有不变的产物量和来自环境的恒定热输入),这导致主热交换器冷端的温度升高。这就是冷却进料空气流所经历的情况。因此,与逆流过冷器中不加热氮气相比,它同样具有较高的焓和较高的温度。这种焓增加防止或减少了空气的预液化,并且在许多情况下甚至导致空气流在高压柱的入口处稍微过热,即其温度略高于露点温度;在过热的情况下相对于露点的温度差是例如1.4k(在低压柱lin被“泵回”高压柱,氮气产物主要从高压柱中被取出的方法中)。因此,在高压柱的入口处,进料空气不再含有任何液体,并且净化流仅由回流液组成,回流液在底部离开阻挡板段。

对于100000nm3/h的进料空气量,这种由在逆流过冷器中的加压氮气的加热引起的进料空气过热是相当大的,并且对应于约1000nm3/h液氮的液体产生。因此在不发生预液化的情况下,可以例如约1%的空气量作为液体产物被获得;相反,总的空气量可以以气体形式被引入高压柱。然而,即使在更高量的液氮产生(高达空气量的约2%)下,空气流中仍存在一定量的过热,因为随着液体产物的增加,进料空气压力升高。

在下文中,在对于具有100000nm3/h进料空气和小于进料空气量0.1%的液体产生的设备的具体数字实例中,将本发明与其中加压氮气不通过逆流过冷器的操作模式进行比较。如果这些措施被省去,8.50bar蒸汽含量为0.9966864的96600nm3/h空气流入高压柱,也就是说320nm3/h的空气以液体形式(预液化)进入高压柱。相反,如果方法按照本发明进行,8.55bar下96105nm3/h被送入高压柱中,1.405k的过热(与在逆流过冷器中加压氮气的加热的情况相比,主热交换器的尺寸相似或主热交换器的平均温度相同)。虽然乍一看这个相对于露点的温差看起来很轻微,但它对该过程有很大的影响,因为理所当然的它与流入高压柱的整个空气量有关。

在逆流冷却器中加压氮气的根据本发明的加热作用下,以液体形式进入高压柱的空气的比例因此在会发生更多的预液化方法中减少。这种“减少”可以达到零,或进一步导致进入高压柱的空气的过热,即加热超过露点。本发明不涉及其中在没有加压氮引入逆流冷却器的情况下预液化已经不发生的方法。

就设备而言,所描述的措施相对简单,但非常有效。其采用无论如何都需要的设备逆流式过冷器,并允许从高压柱底取出的净化流的稳定设置,产量高,能耗相对较低。总的来说,这产生了一种获得加压氮气的特别有效的方法。

在根据本发明的方法中的操作压力为:

低压柱(顶部):

例如4.0-7.0bar,优选地是4.5-6.5bar

高压柱(顶部):

例如7-12bar,优选地是8-11bar

在蒸发侧的低压柱顶部冷凝器:

例如1.5-3.5bar,优选地是1.9-3.2bar

借助于本发明,预液化可以被减少。在个别情况下,减少的预液化仍然发生。优选地,不管怎样,预液化通过本发明可以完全被消除;换句话说,进料空气以在露点或轻微过热的完全气态流入高压柱。“轻微过热”在此应理解为意思是至少0.1k的温差,例如(取决于液体产物)0.1k到2.0k的温差,优选地是0.2k到1.8k的温差。

优选地,作为强制流动蒸发器运行的蒸发空间与来自低压柱,特别地来自于低压柱的底部的富氧液体一起运行。在低压柱顶部冷凝器的蒸发空间中产生的气体作为残余气体在主热交换器中优选地被加热至中间温度,随后在残余气体涡轮机(turbine)中以做功方式(work-performingmanner)膨胀,然后被重新引入至主热交换器并被加热至大约环境温度。因此,该方法的冷却可以被经济地获取。

残余气体涡轮机可以通过发电机或压缩机减速。后者可以压缩例如加热的膨胀残余气体或其一部分。

当主冷凝器的蒸发空间也是强制流动蒸发器的形式时,该方法的效率可以进一步提高。

本发明也涉及根据权利要求10的设备,根据本发明的设备可以由对应于单个、多个或所有从属方法权利要求的特征的设备特征来补充。

附图说明

本发明和本发明的进一步细节在下文中通过在附图中示意性地说明的示例性实施方式更详细地解释,其中:

图1a示出了具有发电机涡轮的本发明的第一示例性实施方式,

图1b显示了图1a的变体,其中,液氮产物被获取,

图2示出了具有增压涡轮机(boosterturbine)的本发明的第二示例性实施方式,

图3显示了图2的变体,且

图4显示了本发明的第三个示例性实施方式,其中从两个柱中取出gan(气态氮)产物。

具体实施方式

在图1a中,压缩且清洁的进料空气经管线1到达。空气压缩机、预冷器和空气净化器的初始阶段在此未示出,并且在示例性实施方式中以已知的方式实施。空气1在主热交换器2中几乎冷却至其露点,并通过管线3以一定量的过热流入蒸馏柱系统的高压柱4的底部。蒸馏柱系统还具有主冷凝器5、低压柱6和低压柱顶部冷凝器7。两个冷凝器是以冷凝器-蒸发器的形式;它们的蒸发空间都作为强制流动蒸发器运行。

根据本发明,高压柱4具有阻挡板段8,该阻挡板段被布置在进料空气3被引入的位点的正上方。它由例如1个到5个,优选地2个到3个传统精馏板组成。或者,也可以使用具有规整填料的例如1到5个、优选2到3个理论板的段。该段保留了空气的高沸点成分,特别是丙烷,这些成分通过净化流9a(净化)从高压柱4的底部被取出,并随后从蒸馏柱系统中被除去。为此,如图示,净化流9b可以被引入到热废物流10中。

在阻挡板段8上方,富氧液流11从高压柱4中被取出,在逆流过冷器12中冷却,并经管线13在中间点被送入低压柱6。该流几乎不含丙烷和其他高沸点组分。这也适用于在低压柱中的所有其他富氧部分,特别是底部液体,其可在主冷凝器5(通过管线14)和低压柱顶部冷凝器7(通过管线15和16)中无风险地蒸发。完全蒸发可以在低压柱顶部冷凝器7中进行而没有问题。在阻挡板段中使用两个理论板,假定在空气净化器下游的空气中0.0075ppm的丙烷含量(示例性假设空气净化器分子筛中丙烷保留率约为85%),99.8%丙烷由净化流除去。在此过程中,84%的n2o也被分离出来(相对于通过空气净化器的n2o量)。其他组分的分离度对于c2h6为69%,对于c2h4为15%,对甲烷仅为约2.5%,这并不关键。

在主冷凝器5中,来自高压柱4的氮气顶部气体17的部分18被冷凝。在该过程中获得的液氮19作为再循环流返回至高压柱4。低压柱顶部冷凝器液化来自低压柱6的顶部气体20。在该过程中产生的液氮21返回到低压柱6。其部分再次作为液氮流22立即从低压柱6中取出。(或者,该流也可以直接从低压柱顶部冷凝器7的液化空间中取出)。泵23使液氮流22达到近似高压柱压力。压力液体24经由逆流过冷器12和管线25a/25b被供应到高压柱4的顶部。

来自高压柱4顶部的气态氮气流经管线17/26a/26b取出,并且根据本发明在逆流过冷器12中初始加热。随后,氮气27在主热交换器中被加热至大约环境温度,且在高压柱压力下,可以在28作为气态加压氮气产物被取出。然而,在该实例中,其通过一个或例如两个氮气压缩机29,30被进一步压缩,在每种情况下具有中间冷却或后冷却,使得最终的加压氮气产物31(pgan)在这里显示例如120或者150bar的压力。

由于在低压柱顶部冷凝器7中的低压柱底液体16的蒸发,残余气体32产生,其首先在逆流过冷器12中被加热。随后,它通过管线33流动到达主热交换器2,在主热交换器2中它被加热到中间温度。随后,它在具有旁路37的残余气体涡轮机35中以做功的方式膨胀。膨胀的残余气体以两部分被重新引入至主热交换器中并被加热至大约环境温度。第一部分38作为再生气体通过管线39被供给至空气净化器。其余部分40通过管线10被排放到大气(atm)中。

低压柱6的顶部气体的部分41通过管线42和43,并通过逆流过冷器12和主热交换器2作为密封气体(密封)被排放。

管线44显示了蒸馏柱系统周围的平衡组。它与净化气体管线9a、残余气体管线33和密封气体管线41,尤其是进料空气管线3和加压氮气管线27(这里以粗体示出)相交。h_luft表示空气流的焓,h_prod表示产物流的焓,wpump表示由泵23输入的热量。

图1b与图1a的不同之处仅在于,在逆流过冷器12中加热的液氮22的部分125c作为液体产物lin被取出。或者,整个流25a可以通过管线125c引导;然后,来自低压柱6的全部气态氮产物经由管线41从低压柱6中取出。

图2与图1a的不同之处仅在于涡轮机35由压缩机236减速。后者使加热的膨胀残余气体的部分39达到所需的压力,以便将其用作空气净化器中的再生气体。结果,在蒸馏柱系统中和空气压缩机出口处(未示出)的压力可以被降低,并在空气压缩机处的能量可以被直接节省。例如,在这种情况下,mac处的压力被降低约500mbar或甚至更多。

与图2形成对比,在图3中,整个膨胀和加热的残余气体339在涡轮机驱动的压缩机236中被压缩。压缩的残余气体的第一部分340,如图2,作为再生气体被使用;其余部分341在节流阀中膨胀并释放到大气(atm)中。

在图4的方法中,与前述示例性实施方式形成对比,没有液氮从低压柱6被泵送到高压柱中。相反,低压柱6的整个氮产物通过管线41/42直接以气体形式取出,并在另一个氮气压缩机129中在温态下达到高压柱压力。然后其可以被混合到来自高压柱28的产物或通过管线43单独取出。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1