低充量封装式制冷系统的制作方法

文档序号:21785925发布日期:2020-08-07 20:30阅读:8507来源:国知局
低充量封装式制冷系统的制作方法

本申请是申请日为2015年7月2日、申请号为201580036543.1(国际申请号为pct/us2015/039111)、发明名称为“低充量封装式制冷系统”的发明专利申请的分案申请。

本发明涉及工业制冷系统。



背景技术:

现有技术的工业制冷系统,例如用于冷藏仓库的制冷系统,特别是氨基制冷系统,是高度分隔的。蒸发器盘管经常安装在制冷空间的天花板上,或者收集在制冷空间的屋顶上的屋顶室中,冷凝器盘管和风扇通常安装在包含所述制冷空间的建筑物的屋顶上的单独空间中,并且压缩机、接收罐、油分离罐和其它机械系统通常收集在远离公共空间的单独的机房中。由于氨对人类的毒性、由人为错误或机械完整性引起的释放的影响以及恐怖主义的威胁,含有大量氨的氨基工业制冷系统受到高度调节。含有超过10,000lbs氨的系统需要epa的风险管理计划(riskmanagementplan,rmp)和osha的过程安全管理计划(osha'sprocesssafetymanagementplan),并可能导致联邦机构的检查。加利福尼亚州对含有超过500lbs氨的系统有额外的限制/要求。导致100磅或更多的氨排放的任何制冷系统泄漏,必须报告给epa。



技术实现要素:

本发明是一种封装式泵送液体循环制冷系统,其每吨制冷容量的致冷剂充量为10lbs或更少。本发明是一种低充量封装式制冷系统,其中压缩机和相关部件位于预封装式模块化机房中,并且其中冷凝器紧密地联接到预封装式模块化机房。根据本发明的实施例,可以用安放在预封装式模块化机房中的液体-蒸汽分离结构/装置替代用于分离从蒸发器离开的致冷剂蒸汽和致冷剂液体并且存储备用致冷剂液体的、现有技术的大型接收器容器。根据一个实施例,液体-蒸汽分离结构/装置可以是单相或双相气旋分离器。根据本发明的另一个实施例,标准节能器容器(其收集来自冷凝器的液体)还可以任选地由也安放在预封装式模块化机房中的单相或双相回旋分离器替换。蒸发器盘管优选地形成有内部增强,以改进致冷剂液体通过管道的流动,增强热交换并减少致冷剂充量。根据一个实施例,冷凝器可以由优选地形成有内部增强的盘管构成,所述内部增强改进通过管道的致冷剂蒸汽的流动,增强热交换并减少致冷剂。根据更优选实施例,蒸发器管增强和冷凝器管增强彼此不同。名称为“internallyenhancedtubesforcoilproducts(用于盘管产品的内部增强管)”的共同未决临时申请62/188,264的全部内容通过引用并入本文。根据替代实施例,冷凝器系统可以采用微通道热交换器技术。冷凝器系统可以是本领域中已知的用于将致冷剂蒸汽冷凝成液体致冷剂的任何类型。

根据各种实施例,所述系统可以是液体过量供给系统或直接膨胀系统,但是最优选具有过量供给率(进入蒸发器的液体致冷剂质量流率与产生冷却效果所需的蒸汽质量流率相比的比率)的非常低充量或“临界充注”系统,其中过量供给率为1.05:1.0至1.8:1.0,优选的过量供给率为1.2:1。为了保持这种低过量供给率,例如在美国专利申请14/221,694和14/705,781(该两个申请的全部内容均通过引用并入本文)中描述的那些电容传感器可以设置在系统中的各个点处,以确定液体和蒸汽的相对量,从而可以相应地调节系统。这种传感器优选地位于液体-蒸汽分离装置的入口处和/或蒸发器的出口处,和/或位于蒸发器的出口和液体-蒸汽分离装置之间的致冷剂管线中的某处和/或压缩机的入口处和/或在液体-蒸汽分离装置的蒸汽出口和压缩机之间的致冷剂管线中的某处。

另外,冷凝器系统和机房优选地紧密联接到蒸发器。在其中蒸发器位于制冷空间上方的“屋顶室”室中的屋顶室蒸发器布置的情况下,机房优选地连接到预制的屋顶室蒸发器模块。在制冷空间中的天花板安装式蒸发器的情况下,集成冷凝器系统和模块化机房安装在蒸发器单元正上方的地板或屋顶上(所谓的“分离系统”)。

与现有技术相比,本文所述的特征的组合提供了非常低充量的制冷系统。具体地,本发明构造成每吨制冷容量需要少于6磅的氨。根据优选实施例,本发明每吨制冷可需要少于4磅的氨。根据最优选的实施例,本发明可以以每吨制冷容量小于2磅而有效地操作。相比之下,现有技术的“棒式建造”系统的每吨制冷需要15-25磅氨,并且现有技术的低充量系统需要大约10磅/吨制冷。因此,对于50吨制冷系统,现有技术的棒式建造系统需要750-1,250磅的氨,现有技术的低充量系统需要大约500磅的氨,而本发明需要小于300磅的氨,并且优选小于200磅的氨,更优选小于100磅的氨,epa的报告阈值(假设系统中的所有氨都泄漏出来)。实际上,根据本发明的50吨制冷系统,系统中的全部量的氨可以排放到周围区域,而不会对人类或环境造成显著损害或伤害。

附图说明

图1是根据本发明的实施例的制冷系统的示意图。

图2是图1的左上部分的放大图。

图3是图1的左下部分的放大图。

图4是图1的右下部分的放大图。

图5是图1的右上部分的放大图。

图6是根据本发明的实施例的组合式蒸发器模块和预封装式模块化机房的三维透视图。

图7是根据本发明的另一实施例的组合式蒸发器模块和预封装式模块化机房的三维透视图。

图8是根据本发明的实施例的预封装式模块化机房和冷凝器单元的内部的三维透视图。

图9是根据本发明的另一实施例的预封装式模块化机房和冷凝器单元的内部的三维透视图。

图10是根据本发明的另一实施例的组合式蒸发器模块和预封装式模块化机房的三维透视图。

图11示出了组合式蒸发器模块和预封装式模块化机房的三个不同实施例的三维透视图,其中左侧的实施例包括顶部安装的空气冷却冷凝器系统。

图12示出了根据本发明的另一实施例的预封装式模块化机房的内部的三维剖视图。

图13示出了组合式屋顶室蒸发器模块和预封装式模块化机房的内部的三维剖视图。

具体实施方式

图1是根据本发明一实施例的低充量封装式制冷系统的工艺和仪表图。图1的四个四分之一部分的放大图分别示于图2至图5中。该系统包括分别包括蒸发器盘管4a、4b的蒸发器2a和2b、冷凝器8、压缩机10、膨胀装置11a和11b(其可以以阀、计量孔或其它膨胀装置的形式提供)、泵16、液体-蒸汽分离装置12和节能器14。根据一个实施例,液体-蒸汽分离装置12可以是再循环容器。根据其它实施例,液体-蒸汽分离装置12和节能器14中的一者或两者均可以以单相或双相回旋分离器的形式提供。前述元件可以使用标准致冷剂配管以图1-5所示的方式连接。如本文所使用的,除非另有说明,术语“连接到”或“经由…连接”意指直接或间接连接。可选的除霜系统18包括乙二醇罐20、乙二醇泵22、乙二醇冷凝器盘管24和乙二醇盘管6a、6b,它们也使用致冷剂配管根据图1所示的布置而连接到彼此以及系统中的其它元件。根据其它可选的替代实施例,可以提供热气或电除霜系统。还可以提供蒸发器进料泵/再循环器16,以提供迫使液体致冷剂通过蒸发器热交换器所需的额外能量。

根据图1-5所示的实施例,低压液体致冷剂(“lpl”)由泵16通过膨胀装置11供应到蒸发器。致冷剂从制冷空间接受热,作为低压蒸汽(“lpv”)和液体离开蒸发器,并且被输送到液体-蒸汽分离装置12(其可以可选地是回旋分离器),液体-蒸汽分离装置12将液体与蒸汽分离。液体致冷剂(“lpl”)返回到泵16,并且蒸汽(“lpv”)被输送到压缩机10,压缩机10使蒸汽聚集并将高压蒸汽(“hpv”)发送到冷凝器8,冷凝器8将高压蒸汽压缩成高压液体(“hpl”)。高压液体(“hpl”)被输送到节能器14,其以下述方式提高了系统效率:将高压液体(“hpl”)减少到中间压力液体“ipl”,然后将中间压力液体输送到液体-蒸汽分离装置12,液体-蒸汽分离装置12向泵16供应低压液体致冷剂(“lpl”),从而完成致冷剂循环。在图1-5中还示出了乙二醇流动路径(在任选的乙二醇除霜系统的情况下)和压缩机油流动路径,但是不需要在这里更详细地讨论,除了要指出本低充量封装式制冷系统可以可选地包括在封装系统内的完全除霜和压缩机油再循环子系统。图1-5还包括用于系统的监测和控制的许多控制阀、隔离阀和安全阀以及温度和压力传感器(也称为指示器或计量器)。此外,可选的传感器26a、26b可以位于所述蒸发器2a、2b的下游,在液体-蒸汽分离装置12的入口的上游,用以测量离开蒸发器的致冷剂的蒸汽/液体比。根据替代实施例,可选的传感器26c可以位于液体-蒸汽分离装置12的出口与压缩机10的入口之间的致冷剂管线中。传感器26a、26b和26c可以是在美国序列号14/221,694和14/705,781中公开的类型的电容传感器,该两个文献的公开内容通过引用整体并入本文。图6示出了根据本发明的实施例的组合式屋顶室蒸发器模块和预封装式模块化机房的示例。根据该实施例,蒸发器安放在蒸发器模块中,并且图1-5中所示的系统的其余部件安放在机房模块中。根据本发明可采用的冷凝器系统的各种实施例包括具有可选内部增强管的蒸发冷凝器、具有可选内部增强的空气冷却翅片和管式热交换器、空气冷却微通道热交换器和水冷式热交换器。在空气冷却冷凝器系统的情况下,冷凝器盘管和风扇可以安装在机房模块的顶部上,以用于完全独立的屋顶系统。其它类型的冷凝器系统可以位于机房的内部。根据该实施例,整个系统完全自包含在两个屋顶模块中,使得整个系统使用例如平床允许装载非护送车辆(flatbedpermitloadnon-escortvehicle),非常容易在公路上运输到安装地点。屋顶室和机房模块可以分离用于运输和/或最终放置,但是根据最优选的实施例,屋顶室和机房模块彼此相邻安装以最大化致冷剂充量的减少。根据最优选实施例,屋顶室模块和机房模块集成到单个模块中,但蒸发器空间与机房空间分离并绝热,以符合工业标准。图7、10和11示出了相邻的屋顶室蒸发器模块和机房模块的其它示例。

图8、9和12是根据本发明实施例的预封装式模块化机房和冷凝器单元的内部的三维剖面透视图,其中低充量封装式制冷系统的所有元件除蒸发器之外被包含在集成单元中。如本文所讨论的,蒸发器可以安放在屋顶室模块中,或者其可以悬置在制冷空间中,优选地在机房模块的位置的正下方。根据这些实施例,蒸发器被构造为直接冷却制冷空间中的或者供应到制冷空间的空气。

根据替代实施例(例如,其中最终用户不希望冷却空气与含氨部分/配管接触),蒸发器可以构造为热交换器以冷却辅助非挥发性流体,例如水或水/乙二醇混合物,所述辅助非挥发性流体用于冷却制冷空间中的空气。在这种情况下,蒸发器可以安装在机房的内部。

图13是组合式屋顶室蒸发器模块和预封装式模块化机房的内部的剖面三维透视图。

与现有技术相比,本文所述的特征的组合提供了非常低充量的制冷系统。具体地,本发明构造成每吨制冷容量需要少于6磅的氨。根据优选实施例,本发明的每吨制冷可需要少于4磅的氨。根据最优选的实施例,本发明可以以小于2磅/吨制冷量有效地操作。相比之下,现有技术“棒式建造”系统每吨制冷需要15-25磅的氨,并且现有技术的低充量系统每吨制冷需要大约10磅。因此,对于50吨制冷系统,现有技术的棒式建造系统需要750-1,250磅的氨,现有技术的低充量系统需要大约500磅的氨,而本发明需要小于300磅的氨,并且优选小于200磅氨,更优选小于100磅氨,epa的报告阈值(假设系统中的所有氨都泄漏出来)。实际上,根据本发明的50吨制冷系统,系统中的全部量的氨可以排放到周围区域,而不会对人类或环境造成显著损害或伤害。

尽管本发明主要在其中氨是致冷剂的制冷系统的上下文中进行了描述,但是预期本发明将同样适用于使用其它天然致冷剂(包括二氧化碳)的制冷系统。

本发明的描述本质上仅是示例性的,因此不偏离封装式(一个或两个模块的集成紧凑系统)低致冷剂充量(即,每吨制冷容量小于10磅的致冷剂)制冷系统的构思的变化意图包含在本发明的范围内。以其它方式构成封装式泵送液体循环制冷系统且其中每吨制冷容量具有10lbs或更少的致冷剂的、相对本文描述具体实施例的任何变化不应被视为偏离在所附权利要求中阐述的本发明的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1