一种回收氧氮资源的可变多循环氧氮冷能利用装置及方法与流程

文档序号:25996261发布日期:2021-07-23 21:10阅读:121来源:国知局
一种回收氧氮资源的可变多循环氧氮冷能利用装置及方法与流程

本发明属于空分系统先进节能领域,具体涉及一种回收氧氮资源的可变多循环氧氮冷能利用装置及方法。



背景技术:

采取深度低温冷冻法的大型空气分离技术是现代工业化大规模制取氧气、氮气产品的主要途径,该工艺具有产品丰富、综合能耗低,性能稳定等优点,也存在不能随时开停、负荷变动范围小、启动时间长,系统操作复杂等缺点,因此特别适合长期稳定的氧、氮产品供应环境。

但实际生产过程中,大量需求氧氮气的大型化工、钢铁及有色冶炼领域,都存在用户因为各种原因在短时内不用氧气的情况,这会产生大量氧气放散的现象,长期积累下来造成的损失非常巨大。以某有色冶炼企业为例,年需求6.4亿标立氧气规模,由于用户短时间负荷需求的变化,其中每年约3400万标立氧气要放散,经济价值高达上千万元,对企业降成本是一个沉重的压力。

为了应对这种不利状况,这些大型企业纷纷采用各种方法来应对,有采用apc变负荷操作模式,但负荷调整只能在75%~105%区间操作,应对短时间氧气强排放就会遭遇瓶颈,低于负荷下限后就不能再降低氧气排放量;有采用如201420235030.6实用新型专利中提到的采用氮气压缩后膨胀制冷循环产生冷量来回收液化氧气的方法,这种方法可以依据放散量来针对性设计液化量,理论上可以做到零排放,但进行氧气液化能耗高(0.8~1kwh/nm3o2),且回收的液氧采用空温或水浴式复热再利用时存在高品质冷能损失的问题,无形中消耗了大量液化能耗,该方法缺点是系统装备维护投资高,对于电价较高的地区经济性不足;有的是采用液氮与气氧换热后液化回收氧气,汽化的氮气放空,这种方法理论上也可以达到零排放,但其氮气资源得不到合理利用,同样存在回收的液氧采用空温或水浴式复热再利用时高品质冷能损失的问题,经济性明显不足。还有就是氧气应急备用系统一般都采用水浴式或空温式复热法,存在高品质冷能无法回收利用的问题,还存在消耗蒸汽的问题。

同样对于压缩氮气而言,为应对用户的需求变化,一般供应氮气采用多台氮气压缩机进行集中供应,在生产组配上经常会出现一个问题,开n台不足,开n+1台则要放空,且负荷调整范围同样受喘振区限制只能在75%~105%区间操作,为维持正常生产只能采用增开设备来维持用户需求,导致氮气压缩机偏离设计最佳工况或放空或频繁开停氮压机,整体运行的经济性较差。同样以有色冶炼企业为例,年需求2.6亿标立氮气规模,每年放散的氮气量达到1300万标立,经济价值高达100万元。



技术实现要素:

针对现有技术中的问题,本发明提供一种回收氧氮资源的可变多循环氧氮冷能利用装置及方法,旨在解决氧气临时大规模放散时回收利用的经济性问题,同步考虑回收正常运行时压缩氮气不匹配产生的放散、偏离设计最佳工况、协调难及频繁开停氮压机设备等问题,达到高效、低成本全部回收氧氮放散资源的目的,提供一种新的空分负荷调整模式,从而降低空分系统综合能耗。

本发明采用以下技术方案:

一种回收氧氮资源的可变多循环氧氮冷能利用装置,其特征在于,所述装置包括液氮储槽(1)、板式换热器(3)、压缩氮气管网(4)、高压氧气管网(5)、中压氧气管网(6)、低压氧气管网(7)、液氧储槽(8)、低压氮气管网(11)、空气分馏系统(9);液氮储槽(1)与板式换热器(3)通过安装有离心液氮泵(2)及阀门的管道连接,板式换热器(3)与液氮储槽(1)通过安装有阀门的管道连接;板式换热器(3)与压缩氮气管网(4)通过安装有阀门的管道连接,压缩氮气管网(4)与低压氮气管网(11)通过安装有氮气压缩机群(10)的管道连接,板式换热器(3)与低压氮气管网(11)通过安装有阀门的管道连接;低压氮气管网(11)与空气分馏系统(9)通过管道连接,高压氧气管网(5)、中压氧气管网(6)、低压氧气管网(7)分别与空气分馏系统(9)通过管道连接,高压氧气管网(5)、中压氧气管网(6)、低压氧气管网(7)分别与板式换热器(3)通过安装有阀门的管道连接,板式换热器(3)与液氧储槽(8)通过安装有阀门的管道连接。

根据上述的回收氧氮资源的可变多循环氧氮冷能利用装置,其特征在于,所述液氮储槽(1)与离心液氮泵(2)之间的管道安装有离心液氮泵进口阀门(12),离心液氮泵(2)与板式换热器(3)之间的管道安装有自动调节切断阀门(13);离心液氮泵(2)与自动调节切断阀门(13)之间的管道与液氮储槽(1)通过安装有液氮回流阀(14)的管道连接;自动调节切断阀门(13)与板式换热器(3)之间的管道与液氮储槽(1)通过安装有液氮节流自动调节阀门(15)的管道连接;板式换热器(3)与液氧储槽(8)之间的管道安装的阀门为液氧双向流动自动调节阀门(16)。

根据上述的回收氧氮资源的可变多循环氧氮冷能利用装置,其特征在于,所述高压氧气管网(5)与板式换热器(3)之间的管道安装的阀门为高压氧气自动调节阀门(20),中压氧气管网(6)与板式换热器(3)之间的管道安装的阀门为中压氧气自动调节阀门(21),低压氧气管网(7)与板式换热器(3)之间的管道安装的阀门为低压氧气自动调节阀门(19);板式换热器(3)与压缩氮气管网(4)之间的管道安装的阀门为氮气双向流动自动调节阀门(18),板式换热器(3)与氮气双向流动自动调节阀门(18)之间的管道与低压氮气管网(11)通过安装有低压氮气自动调节阀门(17)的管道连接。

一种基于上述的回收氧氮资源的可变多循环氧氮冷能利用装置的利用方法,其特征在于,所述方法包括以下步骤:

步骤(一):首先打开离心液氮泵进口阀门,再依次打开自动调节切断阀门、低压氮气自动调节阀门;控制中压氧气自动调节阀门的开度使安装有中压氧气自动调节阀门的管道、板式换热器与液氧双向流动自动调节阀门之间的管道充压;

步骤(二):当回收中压氧气时,板式换热器中的液氮入口温度降至小于-195℃且板式换热器中的液氧出口温度小于-180℃时,打开液氧双向流动自动调节阀门,控制液氧双向流动自动调节阀门的开度值小于5%;启动离心液氮泵,控制液氮回流阀的开度使离心液氮泵的出口压力高于压缩氮气管网中氮气压力0.05mpa~0.1mpa;将板式换热器中液化后的中压氧气输入到液氧储槽中存储;

步骤(三):当回收高压氧气时,打开高压氧气自动调节阀门,将安装有高压氧气自动调节阀门的管道的压力控制在0.8mpa~1.25mpa;再关闭中压氧气自动调节阀门,打开液氧双向流动自动调节阀门,将板式换热器中液化后的高压氧气输入到液氧储槽中存储;

步骤(四):当回收压力氮气时,关闭自动调节切断阀门,打开液氮回流阀、低压氧气自动调节阀门,打开液氮节流自动调节阀门、液氧双向流动自动调节阀门;控制低压氧气自动调节阀门的开度值为27%~35%;将板式换热器中液化后的压力氮气输入到液氮储槽中存储。

根据上述的回收氧氮资源的可变多循环氧氮冷能利用装置的利用方法,其特征在于,步骤(二)、步骤(三)、步骤(四)中板式换热器中的氮气进出口温度与板式换热器中的氧气进出口温度的差值的绝对值小于15℃;步骤(二)中将液氮回流阀投入定压控制;步骤(二)中和步骤(三)中将液氧双向流动自动调节阀门投入定温控制,液氧双向流动自动调节阀门定温控制的温度设定范围为-180℃~-183℃。

根据上述的回收氧氮资源的可变多循环氧氮冷能利用装置的利用方法,其特征在于,步骤(二)中液氮回流阀采用定压控制,定压控制的压力设定范围为0.7mpa~0.9mpa;步骤(四)中液氮节流自动调节阀门采用定温控制,定温控制的温度设定范围为-172℃~-175℃。

本发明的有益技术效果:本发明将空分系统产生的液氧、液氮副产品存储在低温容器中,在非正常生产时,利用空分系统产生的液氮通过离心液氮泵加压进入板式换热器,与临时大规模放散的氧气进行换热,液氮复热后变成压缩氮气进入管网供用户使用,这时停开对应的氮气压缩机实现节能(压缩低温液体单位能耗只有压缩同样介质气体单位能耗的5%以内),氧气吸收液氮冷量被液化节流后进入液氧储槽备用;在正常生产时,回收的液氧进入板式换热器与放散压力氮气换热,液氧复热后进入氧气管网供用户使用,压力氮气被液化后节流进入液氮储槽为下一轮氧气回收做准备,期间利用自动变负荷系统,降低制氧机组负荷,同时可以充分发挥氮压机运行在设计工况的优势,实现节能之目的。本发明的方法可以借助氧氮冷能为媒介,能够高效回收氧氮资源进行循环利用,并且可以提供一种有效的空分系统变负荷操作方法,大幅度降低氧气、氮气放散率,有效推动氧氮利用成本的显著下降;只要配置合理回收的规模,就可以实现氧氮资源的全部回收利用,而成本支出比传统的膨胀制冷液化法降低95%以上,同时减少了蒸汽消耗。本发明方法消除了传统利用蒸汽加热液氧汽化进行应急保障的缺点,具有冷能循环回收利用、减少蒸汽消耗的优点,同时可以依据市场需求,选择性的转换液氧、液氮产品,实现更好的经济效益;本发明方法还可以依据用户的特点,配备不同回收的规模,达到最佳的经济效益。

附图说明

图1为本发明装置的结构示意图。

具体实施方式

参见图1,本发明的一种回收氧氮资源的可变多循环氧氮冷能利用装置,包括液氮储槽1、板式换热器3、压缩氮气管网4、高压氧气管网5、中压氧气管网6、低压氧气管网7、液氧储槽8、低压氮气管网11、空气分馏系统9;液氮储槽1与板式换热器3通过安装有离心液氮泵2及阀门的管道连接,板式换热器3与液氮储槽1通过安装有阀门的管道连接;安装有离心液氮泵2的管道与液氮储槽1通过安装有阀门的管道连接;板式换热器3与压缩氮气管网4通过安装有阀门的管道连接,压缩氮气管网4与低压氮气管网11通过安装有氮气压缩机群10的管道连接,板式换热器3与压缩氮气管网4之间的管道与低压氮气管网11通过安装有阀门的管道连接,板式换热器3与压缩氮气管网4之间的管道安装的阀门为氮气双向流动自动调节阀门18。板式换热器3与氮气双向流动自动调节阀门18之间的管道与低压氮气管网11通过安装有低压氮气自动调节阀门17的管道连接。低压氮气管网11与空气分馏系统9通过管道连接,高压氧气管网5、中压氧气管网6、低压氧气管网7分别与空气分馏系统9通过管道连接,高压氧气管网5、中压氧气管网6、低压氧气管网7分别与板式换热器3通过安装有阀门的管道连接,高压氧气管网5与板式换热器3之间的管道安装的阀门为高压氧气自动调节阀门20,中压氧气管网6与板式换热器3之间的管道安装的阀门为中压氧气自动调节阀门21,低压氧气管网7与板式换热器3之间的管道安装的阀门为低压氧气自动调节阀门19。板式换热器3与液氧储槽8通过安装有阀门的管道连接。液氮储槽1与离心液氮泵2之间的管道安装有离心液氮泵进口阀门12,离心液氮泵2与板式换热器3之间的管道安装有自动调节切断阀门13;离心液氮泵2与自动调节切断阀门13之间的管道与液氮储槽1通过安装有液氮回流阀14的管道连接;自动调节切断阀门13与板式换热器3之间的管道与液氮储槽1通过安装有液氮节流自动调节阀门15的管道连接;板式换热器3与液氧储槽8之间的管道安装的阀门为液氧双向流动自动调节阀门16。

回收氧氮资源的可变多循环氧氮冷能利用装置的利用方法,包括以下步骤:

步骤(一):关闭装置中所有阀门,然后打开离心液氮泵进口阀门12,打开自动调节切断阀门13,使液氮沿管道经缓慢自流进入板式换热器3氮通道中对其进行预冷。打开低压氮气自动调节阀门17,液氮储槽1中的液氮进入板式换热器3后得到的汽化后低压氮气进入到低压氮气管网11中。打开中压氧气自动调节阀门21并控制其开度使安装有中压氧气自动调节阀门21的管道、板式换热器3与液氧双向流动自动调节阀门16之间的管道充压。该步骤的要点是保证板式换热器3中的氧通道避免形成负压,各部分降温均匀。采用本发明装置可以回收中压氧气、回收高压氧气、回收压力氮气,具体见步骤(二)-步骤(四)。

步骤(二):当回收中压氧气时,经过充分换热后,当板式换热器3中的液氮入口温度降至小于-195℃且板式换热器3中的液氧出口温度小于-180℃时,手动逐步打开液氧双向流动自动调节阀门16,控制液氧双向流动自动调节阀门16的开度值小于5%。启动离心液氮泵2,控制液氮回流阀14的开度使离心液氮泵2的出口压力高于压缩氮气管网4中氮气压力0.05mpa~0.1mpa;液氮回流阀14采用定压控制,定压控制的压力设定范围为0.7mpa~0.9mpa。将板式换热器3中液化后的中压氧气输入到液氧储槽8中存储。操作要点是板式换热器3中的氮气进出口温度与板式换热器3中的氧气进出口温度的差值的绝对值小于15℃。

同时将板式换热器3进入低压氮气管网11的低压氮气自动调节阀门17关闭,逐步打开板式换热器3至压缩氮气管网4的氮气双向流动自动调节阀门18。打开液氧双向流动自动调节阀门16。这时就可以利用液氮冷能和中压氧气热能,达到液氮汽化变成压力氮气进入压缩氮气管网4供用户使用的目的,中压氧气液化后经过板式换热器3与液氧储槽8之间管道进入液氧储槽8中存储。操作要点是将板式换热器3与液氧储槽8之间管道上安装的液氧双向流动自动调节阀门投入自动,采用定温控制模式,温度设定为-180℃~-183℃,当温度降低时阀门开大,温度升高时阀门关小,同时确保板式换热器3中的氮气进出口温度与板式换热器3中的氧气进出口温度的差值的绝对值小于15℃。

步骤(三):当回收高压氧气时,缓慢打开高压氧气自动调节阀门20,将安装有高压氧气自动调节阀门20的管道的压力控制在0.8mpa~1.25mpa;再关闭中压氧气自动调节阀门21,打开液氧双向流动自动调节阀门16,将板式换热器3中液化后的高压氧气输入到液氧储槽8中存储;液氧双向流动自动调节阀门16采用定温控制模式,温度设定为-180℃~-183℃。这时就可以利用液氮冷能和高压氧气热能,达到液氮汽化变成压力氮气进入压缩氮气管网4供用户使用的目的,高压氧气液化后经过板式换热器3与液氧储槽8之间管道进入液氧储槽8中存储。操作要点是将高压氧气管网5至板式换热器3氧通路中高压氧气自动调节阀门20投入自动,采用定压控制模式,当板式换热器3中氧通道压力值高于设定值时阀门关小,低于设定值时阀门开大,其它阀门操作和自动设定不变。板式换热器3中的氮气进出口温度与板式换热器3中的氧气进出口温度的差值的绝对值小于15℃。

步骤(四):当回收压力氮气时,关闭自动调节切断阀门13,打开液氮回流阀14、低压氧气自动调节阀门19,打开液氮节流自动调节阀门15、液氧双向流动自动调节阀门16,液氧双向流动自动调节阀门16依据需要在1%~100%进行调节;液氮节流自动调节阀门15采用定温控制,定温控制的温度设定范围为-172℃~-175℃。控制低压氧气自动调节阀门19的开度值为27%~35%;将板式换热器3中液化后的压力氮气输入到液氮储槽1中存储。这时就可以利用液氧冷能和压缩氮气热能,达到液氧汽化变成低压氧气进入低压氧气管网7供用户使用的目的,压缩氮气液化后经过板式换热器3与液氮储槽1之间管道进入液氮储槽1中存储。操作要点将板式换热器3至液氮储槽1之间的自动调节阀门投入自动,采用定温控制模式,温度设定范围是-172℃~-175℃,当出板式换热器3的液氮温度高于设定温度时,阀门关小,低于设定温度时阀门开大,同时确保氮气进出口温度与板式换热器3中的氧气进出口温度的差值的绝对值小于15℃。

本发明的利用方法将不同压力等级的氧气、液氧、氮气、液氮四种介质,通过低温液体存储系统、加压系统、换热系统、管网系统、空分装置、自控装置的重新组配,能最大限度的循环利用氧、氮冷能。在非正常生产过程中,将需要放散的高、中压常温氧气,通过与加压的液氮介质进行充分换热,将氧气液化冷却至约-183℃后节流存储至低温常压液氧储槽,复热的压力氮气则进入压缩氮气管网,这时停开氮气压缩机实现节能;在正常生产过程中,利用回收至储槽的液氧与氮气压缩机放散的氮气进行充分换热,将氮气液化冷却至约-174.5℃后节流存储至低温常压液氮储槽,复热的氧气则进入低压氧气管网,这时可以降低制氧机组负荷实现节能,也可以通过增开氮压机回收液氧冷能来实现氧气应急调峰功能,避免蒸汽气化液氧调峰带来的蒸汽损耗和冷能损失。本发明的利用方法可以实现可变多循环氧氮冷能利用功能,过程中由于换热不可逆带来的少量冷量损失由空分系统液氧或液氮来提供。

本发明装置必须有液氮、液氧冷能储备系统,且液氧存储系统总容积要满足在空分系统不停机的条件下,能连续全部回收所放散的氧气、以及等同于放散氧气1.2倍以上的液氮存储系统。换热系统中的低温氧氮液体介质与气态氧氮介质的各种工况条件下相变传热温差需满足不低于10℃的要求,以降低冷能不可逆损失。板式换热器换热面积的设计不但要满足回收最大放散压力等级的氧气需要,也要满足设备调峰时最大氧气需求增量所需的换热面积,同时还需要满足最高回收介质承压等级。参与循环氧氮冷能利用的气体介质不能含有水分等杂质且必须都有使用需求,防止板式换热器出现冻堵现象,同时实现资源的合理利用。本发明装置必须配置带变频器的离心液氮泵,保证其良好的压力适应范围和多循环负荷复杂变化情况;也必须配置有氧气梯级减压系统和完善的氧气、氮气并联管网系统,满足能回收、释放各类氧气、氮气资源的需要。可以依据用户的需求,按需配置不同的回收规模和参数,应满足板式换热器热端温差不大于15℃,以降低不可逆损失。

实现中压、高压氧气回收时,注意要利用变频器将液氮压力逐步调高,利用液氮回流阀定压控制来适应用户氮气需求的变化,防止出现气蚀现象;通过液氧双向流动自动调节阀门和汽化的氮气量来控制回收放散的氧气量。依据汽化的氮气量来停开相应的氮气压缩机,降低氮压机电能消耗。对比气体和液体压缩效能,离心液氮泵所需能耗小于氮气压缩机能耗的5%,就能实现同等的压缩效果。

实现富裕压缩氮气回收时,停开离心液氮泵,注意通过控制压缩氮气管网的压力不低于0.66mpa来调节液氧的进入量,达到将所需放散压缩氮气全部回收至液氮储槽中的效果。经过液氧双向流动自动调节阀门释放回收的液氧,经压缩氮气加热汽化后进入低压氧气管网,这时可以降低空分系统整体负荷,达到节能的目的。通过增开氮压机,利用压缩氮气进行来进行氧气负荷调峰,则可以避免利用蒸汽汽化液氧系统补充氧气造成的大量的蒸汽能源浪费,并用氮气来回收优质液氧冷能存储备用,其能耗指标约为空分装置生产氧气能耗的25%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1