氢气液化的方法及设备的制作方法

文档序号:4792621阅读:12880来源:国知局
专利名称:氢气液化的方法及设备的制作方法
技术领域
本发明涉及氢气液化方法,该方法使用循环流体主要是氢气的冷冻循环系统和液氮冷冻装置。
本文所指的压力为绝对压力值。
众所周知H2太轻以至于难以使用制备和使用都经济的离心或轴向压缩机进行有效地压缩。这就是为什么现在使用的氢气液化机,它的冷冻循环是纯N2,一般使用投资及操作成本都高的往复活塞压缩机来压缩循环H2,其投资及操作成本随装置尺寸增加而增加。例如,对于一套每天生产300吨的液化H2的装置,需要平于使用23台交替使用的压缩机。
本发明的目的是提供一种氢气液化方法,该方法使用离心或轴向压缩机压缩循环流体,并且操作成本及消耗的总能量比较低。
因此,本发明的目的是一种上述类型的方法,其特征在于所述循环流体包括H2和主要由C2烃组成的混合物,并且烃类被液化并膨胀以形成能以几乎连续的方式在-120℃到接近室温间蒸发的流体。
该方法包括以下一个或几个特征—烃混合物由C2、C3、C5和,如果愿意,C4的饱和烃类组成,液化组分具体地说分别在0℃到-10℃,-40℃到-50℃及-110到-120℃下进行膨胀,以形成适宜于蒸发的冷冻液体。
—在所述循环中,循环流体中的一部分在接近室温,及高压力如果愿意在至少一个中等压力下进行压缩。
—至少一种液化馏分被分成两股料流,该料流膨胀到至少两种不同的压力且在每种压力下能形成冷冻流体。
—混合物在稍高于C2及C3烃的凝固温度下用液体丙烷进行洗涤,随后在同样温度下通过吸收除了H2之外的其它所有物料纯化混合物。
—液态洗涤用丙烷由至少一部分来自于冷冻循环的被过冷到洗涤柱温度的丙烷形成。
—液氮冷冻设备包括一个封闭的氮气冷冻循环系统。
—液氮冷冻设备包括一个液氮外源,具体地说是空气分离设备。
本发明的目的也在于提供一种适用于上述H2液化方法的设备。这种设备包括带有其循环流体主要为H2的离心或轴流式循环压缩机的冷冻循环系统,液氮冷冻设备和包括冷却待处理H2的通道及再加热几种冷冻流体的通道的热交换管线,其特征在于所述循环流体由H2及主要是C2烃的混合物组成且整个设备由分离压缩烃的设备及膨胀这些压缩烃和将其引入再加热通道的设备构成。
冷冻循环压缩机优选为离心或轴流式压缩机。参照附图
,描述本发明的一操作例,图中一个数字在图上代表本发明的H2液化设备的一部分。
图中显示的是除了其最冷部分以外的氢气液化装置图,这种最冷部分是常规的并且预冷循环氢在其中冷却、液化并膨胀以产生液化处理后的H2或“过程H2”所必需的冷量。
在图中将看到一氢气循环压缩机1,为离心或轴流式;一氮气循环压缩机2,也为离心或轴流式;以“暖”3及“冷”4两个热交换器形式表示的一组热交换管线,这两个热交换器都为间接、逆流流体热交换器,它们最好是铜焊铝板型;液体丙烷的洗涤柱5;吸收纯化的设备6;由风扇8及转子固定在同一轴上的膨胀式涡轮9组成的涡轮压缩机7;相分离器10到13;空气或水冷冻机14到17,分别与压缩机1和2及风扇8用压缩流体连通的膨胀阀18到25。
待液化的H2在20巴压力下通过管道26引入,在交换器3的通道27中预冷至约-178℃,并在交换器4中的通道28中进一步冷却至约-192℃,并从这儿通过管道29输送到装置中的冷却部分。如图所示,在通道27及通道28的最冷部分装有用于完成氢的邻对位互换反应的催化剂,所以这种放热量很大的互换反应在H2液化前被实现。
现在描述氮气冷冻循环。
在30巴时离开压缩机2最末级的高压氮气被引入冷冻机16使其温度达到接近室温,在8中进一步压缩至50巴,引入17中加热至室温温度附近,再引入交换器3的暖端,它处于交换器3的通道31内。在中间温度,-120℃下,部分高压氮气离开交换器并在涡轮9中膨胀至5巴。其余的高压氮气继续冷却。并液化及过冷直至交换器3中的冷端,然后在24中膨胀至5巴并引入分离器13中。
从涡轮9中来的氮气送至分离器13,13中的气相在通道32中从交换器3的冷端到暖端被再加热,然后通过管道33送至压缩机2中间级的入口。
分离器13中收集的液相在交换器4中的通道34中过冷,在25中膨胀至近大气压,在交换器4的通道35中蒸发。然后在通过管道37送至压缩机2的第一级入口之前从交换器3的冷端至暖端过程中在通道36中进行再加热。
现在描述H2循环。
压缩机1的第一级在1巴压力下引入以下混合物H2=66.8%C2H6=14.2%C3H8=11.5%C5H12=7.5%在6巴压力下,向压缩机1的第一中间级的入口处加入以下混合物H2=83.2%C2H6=5.0%C3H8=4.6%C5H12=7.2%从而混合物具有以下平均组成H2=81.5%C2H6=6%C3H8=5.3%C5H12=7.2%这种混合物在20巴压力下从压缩机1的第二中间级的出口处排出,在14中调至近室温温度并引入分离器10中。该分离器的蒸气相通过管道38送至该压缩机的下一级的入口处,而主要由烃中最重组份组成的液相则过冷至约-5℃,在18中膨胀至约6巴,在交换器3的通道39中的暖部在该压力下蒸发,并通过管道40返回到压缩机1的上述第一中间级的入口处。
从压缩机1的最末级来的高压混合物在15中调至室温温度附近并引入分离器11中。
在分离器11中收集的液相过冷至约-45℃,并分成两部分。第一部分在19中膨胀至约6巴后在通道39中进行蒸发并与来自膨胀阀18中的混合物进行再合并。另一部分在20中膨胀至约1巴后在交换器3的通道41中蒸发并再加热,然后通过管道42返回到压缩机1的第一级入口处。
从分离器11来的蒸气相冷却至约-120℃,同时在交换器3中的通道43中被部分液化,然后引入分离器12中。在分离器12中收集的液相按序被分成两部分,这两部分分别在21和22中膨胀至约6巴和约1巴后分别在通道39和41中蒸发,然后与前面提到的部分在通道较高温区再合并。
从分离器12来的蒸气相,由含1ppm的丙烷及0.3%的乙烷的H2组成,再引入交换器3中,在热交换器3的通道44中冷却至该交换器的冷端温度,然后引入柱5的底部,柱5的顶部通过管道45引入来自氢气循环中补充丙烷的储罐中的过冷液体丙烷。柱5在高于乙烷及丙烷的固化温度几度的温度,例如3到5℃,下操作。
柱5底部的液体,由乙烷及丙烷和微量氢气组成,在23中膨胀至约1巴,然后在靠近这些通道的冷端引入通道41中。这一液体占循环混合物流体的一小部分,如小于1%。
在柱5顶部的蒸气,由通常含有少于5ppm烃的H2组成,在6中通过吸收进行最后纯化,然后在交换器4的通道46中冷却,然后送至本装置的冷部。在图中标出了通道47和48,分别处于6巴及1巴的压力,用于再加热从该冷部返回的循环氮,这些通道被连接在交换器3的通管39和41的冷端。
因此获得了从-120℃到室温的整个温度范围内的准连续蒸发过程,它在同样程度上在这一温度范围内减轻了氮气循环,并可以在例如在+5到-40℃下省去任何附加的冷冻循环。氮气循环的冷却负荷因此相对于由除了这一循环外还包括一纯氮循环组成的装置实际上可以降低一半。
然而,应该注意,循环混合物中无甲烷及氮气存在使得通过简单冷凝就可以除去除了H2之外的几乎所有组分,及在交换器3的冷端获得足够纯的混合物,从而吸收器6仅在长时间间隔内,如每周一次,在室温下再生即可。这一优势如上所解释通过液态丙烷洗涤柱5的存在而被加强。
然而应当注意到循环混合物能够(如果希望)一方面含有非常少量的甲烷和/或氮气(小于1%总可以),另一方面含C6+烃。
作为一种改进,冷冻液氮可以由一外源提供,尤其是通过一在附近的用蒸馏方法分离空气的设备。
如果氢气液化器引入了来自一空气蒸馏装置,如Oxytonne,的液氮,最好将上述氮气在其蒸发和部分再加热至-125℃后返回至蒸馏设备中。
因此,在这些条件下,将这一氮气从-125℃再加热至室温所需的冷量将通过氢气液化器提供,而不是通过蒸馏设备提供。结果,循环H2中烃含量增加,这对循环H2压缩机的工艺(更少的级)及单位能耗都是有利的。在这种情况下,可以通过部分地借助在-125℃下蒸发和被再加热的液氮及部分地借助有待在-190℃~-125℃下被再加热的气态氮向H2液化设备提供必需的冷量进一步改进该系统。
在极端情况下,甚至能在室温至-125℃间从H2液化器中提供蒸馏设备所有必需的冷量(通过在例如室温至-120℃间在氢气液化器中冷却调整补充氮气)。
权利要求
1.氢气液化方法,其中使用循环流体主要包含氢气的冷冻循环系统和液氮冷冻设备;该方法的改进在于所述循环流体由H2及主要是C2烃的混合物组成,并液化及膨胀所述烃以形成能以基本连续方式在-120℃到近室温之间蒸发的流体。
2.根据权利要求1的方法,其中烃混合物由饱和C2、C3及C5烃,和将上述C2,C3和C5烃液化馏分分别在约0℃~-10℃,-40℃~-50℃及-110℃~-120℃的温度下膨胀以形成适于蒸发的冷冻液体。
3.根据权利要求1的方法,进一步包括在上述循环中在高循环压力下压缩临近室温的循环流体馏分。
4.根据权利要求3的方法,其中至少一种液化馏分被分成两股膨胀成至少两种不同的压力以在每个压力下能形成冷冻流体的流体。
5.根据权利要求1的方法,进一步包括在稍高于C2、C3烃的凝固温度的温度下用液体丙烷洗涤混合气,随后在于相同温度下通过吸收除了H2以外的其它所有组分进行纯化混合物。
6.根据权利要求5的方法,其中洗涤用液态丙烷由至少一部分冷冻循环中被过冷至洗涤柱温度的补充丙烷形成。
7.根据权利要求1的方法,其中液氮冷冻设备包括另一个封闭冷冻循环系统。
8.根据权利要求1的方法,其中液氮冷冻设备包括液氮外源。
9.根据权利要求8的方法,其中从冷冻设备中来的气态氮被返回到液氮外源中。
10.氢气液化设备,包括其中循环流体主要包括氢的冷冻循环、液氮冷冻装置及具有待处理氢气的冷却通道及几种冷冻流体的再加热通道的热交换管线;该设备的改进在于所述循环流体由H2及主要是C2烃的混合物组成,并包括分离压缩烃的装置、及膨胀这些分离后的压缩烃并将其分别引入上述再加热通道的装置。
11.根据权利要求10的设备,其中烃混合物由饱和的C2、C3及C5烃构成。
12.根据权利要求10的设备,进一步包括在循环高压及近室温温度下压缩循环流体馏分的装置。
13.根据权利要求10的设备,其中再加热通道处于至少两种不同的压力下。
14.根据权利要求10的设备,它进一步包括在稍高于C2及C3烃的凝固温度的温度下混合物的液态丙烷洗涤柱,随后是一个通过在同样温度下吸收而纯化混合物的装置。
15.根据权利要求10的设备,进一步包括离心或轴流式冷冻循环压缩机。
16.根据权利要求10的设备,其中液氮冷冻装置包括另一氮气封闭冷冻循环系统。
17.根据权利要求10的设备,其中液氮冷冻装置包括一液氮外源。
18.根据权利要求17的设备,它进一步包括将气态氮从冷冻装置中返回到液氮外源的装置。
全文摘要
一种用于H
文档编号F25J1/02GK1119732SQ95108700
公开日1996年4月3日 申请日期1995年7月28日 优先权日1994年7月29日
发明者M·格尔尼尔 申请人:液体空气乔治洛德方法利用和研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1