可变流速的情况下生产加压气态氧的方法和装置的制作方法

文档序号:4792651阅读:217来源:国知局
专利名称:可变流速的情况下生产加压气态氧的方法和装置的制作方法
技术领域
本发明涉及一种在可变流速的情况下生产加压气体的方法,在该方法中,空气在包括一台蒸馏设备和热交换管道的空气蒸馏装置中被蒸馏,其中的热交换管道用于将空气与上述蒸馏设备中生成的产品进行热交换而使之冷却;从上述设备中抽取液体,使该液体达到气化压力,使其在此压力下在热交换管道中气化和加热,以便生成具有一定压力的气体,这种气化和加热过程还伴随有在热交换管道的空气液化管路中进行的空气液化过程;其中当与标准流速相比对增压气体的需求减少时,可从蒸馏设备中抽出由其生产的额外的液体,将此部分液体送入液体存贮容器中,并将相应的额外量的已贮存的液空气引入蒸馏设备中;当与标准流速相比对增压的气态氧的需求增加时,可从液体贮存容器中抽取所需要的额外液体,使上述额外液体具有气化压力,并使其在此压力下在热交换管道中气化,将通过上述液化过程液化的相应量的空气贮存在液态空气贮存容器中。
在本文献中,“压力”指的是绝对压力。此外,术语“冷凝”和“气化”或指冷凝或气化作用本身,或指准冷凝或准气化作用,这要看压力是低于临界压力还是超临界压力。
这类方法(例如参见法国专利文献FR-A-1158639)有时称之为“抽吸和空气/氧气或空气/氮气平衡方法”(“Pump andair/oxygen or air/nitrogen balance methods”)。本发明尤其适用于所谓的“补偿级”法(offset-stage methods),在法国专利申请FR-A-2674011;FR-A-2688052和FR-A-2692664和93.04274中描述了这类方法的实例。在这些方法中,空气在气化压力及低于氧气的气化温度的条件下液化,从具体的能量损耗的观点也就是说为了加压生产出给定量的气态氧所需的能量的观点来看,这些方法具有优越性。
本发明的任务在于提供能满足对加压氧气的需求变化的方法,更具体地说,这种方法简单,而且在传热方面(即热交换管道的平衡状态)和空气蒸馏方面的性能基本不会降低。
为此,本发明的主题是上面所提到的那类方法,其特征在于特抽取的液体在压力接近大气压的条件下贮存起来,同时使液态空气贮存时的贮存压力至少等于,最好高于蒸馏设备的最高工作压力。
本发明可包括一个或几个下述特征液态空气贮存步骤中的压力接近所述空气液化时的压力;液态空气贮存容器中的压力处于约30×105帕和35×105帕之间;所有气化液体均从上述液体贮存容器中抽出;上述空气液化过程发生在温度低于在上述气化压力下抽取的液体的气化温度的条件下,而且至少从上述装置中提取一种液态产品;将用作液态空气贮存的空气压缩到上述贮存压力,而将剩余的空气压缩到高于贮存压力的高压。
本发明的另一主题涉及一种实现上述方法以便在可变流速情况下生产加压气体的装置。这类装置包括一台空气蒸馏设备;通过与上述蒸馏设备中生成的产品进行热交换而冷却空气的热交换管道;适于使至少部分待蒸馏的空气具有高压并将其送入热交换管道的空气液化管路的压缩部件;与蒸馏设备相连的液体贮存容器,该容器装有在可调流速的条件下抽取液体使之具有气化压力并将其送入热交换管道的气化管路的部件;以及上游与热交换管道的空气液化管路相连、下游经可调流速的减压部件与蒸馏设备相连的液态空气贮存容器,其特征在于上述抽取液体的容器中的压力接近大气压力,液空贮存容器中的压力显著地高于蒸馏设备的最高工作压力。
本发明的其他特征是上述液态空气贮存容器经一个减压阀与上述空气液化管路相连;上述压缩部件包括一个主空压机,其下游接有一个增压器,用于将不送入液态空气贮存容器的空气部分增压。
下面将结合附图对本发明的典型实施例进行描述,其中

图1示意地表示出本发明的可变流速情况下加压生产气态氧的装置;图2为一种变型的类似示意图。
图1示出的空气蒸馏装置主要包括空压机1;通过吸附作用除去压缩空气中的水和CO2的设备2,该设备包括两个吸附罐2A,2B,其中一个以吸附方式操作,另一个则处于再生状况;增压器透平组件3,它包括一个减压透平4和一台鼓风机或增压器5,它们的轴相互耦连,上述增压器可选择地配有一台冷却器(图中未示出);热交换器6,它构成上述装置的热交换管道;双级蒸馏塔7,它包括被低压塔9包围的中压塔8,气化器/冷凝器10以与塔9的底部液体(液氧)进行热交换的方式调节塔8的顶部蒸气(氮);一个液氧罐11,该罐的底部与一台液氧泵12相连;以及一个液态空气罐13。
上述装置主要用于经管道15提供具有预定高压的气态氧,上述气态氧的压力可以处于约13×105帕和几兆帕之间。
为此,将经装有控制塔9液位的阀17的管道16从塔9中抽出的液氧贮存在贮液罐11中。借助于泵12将从该贮液罐抽出的液氧在液态下增压至高气化压力,然后使之在高压下在热交换管道6的管路18中气化和升温。
上述气化和升温所需的热量以及使从双级塔中抽取的其它液体升温和可选择地气化所需的热量由待蒸馏的空气在下述条件下提供所有待蒸馏的空气由压缩机1压缩到高于塔8的中等压力但低于上述高压。然后,使在19中预冷到接近环境温度,并在20中冷却到温度为+5℃和+25℃之间的空气在两个吸附罐之一(例如2A)中纯化,并由增压器5全部增加到高压,上述增压器由透平4驱动。
接着将空气引入热交换器6的热端,并使其全部冷却到中间温度。在此温度下,使部分空气继续冷却,并使其在交换器的管路21中液化,再使之从该热交换管道中流出,并经管道22流入罐13中。
经管道24从罐13中抽出的液态空气在热交换管道6的冷却部分被过冷,然后使其在带可调小孔的减压阀25中降到低压,并将其从塔9的中间高度部位送入塔9。在一种变型中,可以将部分液态空气降到中等压力并送入塔8。
经5增压的剩余空气在透平4中降至中等压力,然后经管道26直接送入塔8的底部。
此外,在图1中还可看到双级塔装置的一些常规管道,它们被称之为“minaret型”,也就是说,在生产低压氮时,管道27至29分别将减压“富液体”(富氧空气)、减压“稍贫液体”(不纯氮)和减压“高贫液体”(特纯氮)以增高水平喷入塔9中,这三股流体分别从塔8的底部,中部及顶部抽取,管道30用于从塔9顶部抽取气态氮,而管道31用于从稍贫液体的喷射部位排出剩余气体(不纯氮),低压氮气在热交换器6的管路32中被加热,然后经管道33排出,与此同时,剩余气体W在经管道35排出之前在热交换器的管路34中被加热后被用来再生吸附罐,在本例中用来再生吸附罐2B。
图1还示出了用于从上述装置中除出液氧的管道36,它安装在泵12的输出管道上。
从增压器送出的空气高压处于约25×105帕和借助于在氧气高压下气化氧而使空气冷凝的压力之间。如其它披露了“泵”法和“补偿级”法(“Pump”and“offset stage”methods)(也就是本发明的方法)的专利申请所述,提供热量使氧气化的空气在低于上述氧气的气化温度下冷凝,使装置估算的热量平衡。在热交换管道热端的温度差约为3℃,并从装置中至少抽取一种产品,此例中通过管道36抽取液氧。
在标准操作中,贮液罐13中的液面是恒定的,贮液罐11中的液面也是恒定的。
如果对生产管道15中的加压气态氧的需求发生变化,且由压缩机1压缩的空气流速维持恒定,压缩机的排气压力也维持恒定,其过程如下当对氧的需求量减少时,开大阀25的小孔,以便增加塔9中的液体量。为了维持该塔塔身中的液面,开启阀17,使流入贮液罐11中的液氧的流速增加。
由于贮液罐13中贮存的液态空气处于高压,其液化潜热低,因此,流入塔9中的液态空气的流速的增加(additional flow rate)大体上大于从该罐中抽取的氧的流速的增加。它随液态空气压力的增加而增加。结果使双级塔生产的和送入热交换管道的冷气体量增加,借此使得由于对气态氧需求量减少使管路18中气化氧的流速降低造成的送入热交换管道的冷气体量减少得到了补偿,上述对气态氧需求的减少可通过降低泵12的转速来实现。
最后的结果是贮液罐11的液面上升,贮液罐13的液面下降。
值得注意的是加入额外的液态空气要求双级塔7中的蒸馏能力增加,这可借助于降低6中被气化的液氧的流速而使流入塔8的气体的流速增加来实现的。
反之,在对气态氧的需求量增加的情况中,关小阀25的小孔,这就降低了流入塔9的液态空气流速,关闭阀17,并使泵12的转速增加,因此,贮液罐11的液面降低,贮液罐13的液面增加。
与上面所描述过的原因类似,结果使流入热交换管道的冷气体量减少,这种减少在很大程度上补偿了因被气化的液氧流速的增加而使流入热交换管道的冷量的增加。
可以想到,为了促进上述现象,罐13中贮存的液态空气尽可能达到最高压力是极其有利的。但是,出于技术原因或因为这种高空气压力是超临界压力,在一种变型中,可以在液态空气流入罐13之前使其在管道22上的减压阀37中减至塔8的高空气压力和中间压力之间的居中压力。
在液态空气以中间压力贮存的情况中,从能量观点来看,不将贮存在罐13中的空气压缩到高压较为有利。因此,在图2所示的改型中,经管道38从设备2的出口取出空气并在热交换管道的附加管路21A中冷却液化,然后如前一样经管道22送入罐13。
用作液化高压空气的管路21在热交换管道的冷端装有减压阀25A,用于使从罐13流出的液态空气过冷的管路在同一冷端装有减压阀25。
在此改型中,通过控制阀25和阀25A可使空气/氧气运行平衡,其具体运行与上面参考图1所描述的情况类似。
从热交换管道6的热平衡及蒸馏条件中的热平衡的观点来看,最佳压力范围在大约30×105帕和35×105帕之间。
本发明亦适用于抽取液氮、液氩或其它液体的情况。
权利要求
1.可变流速的情况下生产加压气体的方法,该方法中,在包括一台蒸馏设备(7)和热交换管道(6)的空气蒸馏装置中对空气进行蒸馏,其中的热交换管道用于将空气与上述蒸馏设备中生成的产品进行热交换而使之冷却;从上述设备中抽取液体,使之达到气化压力,使其在此压力下在热交换管道中气化和加热,以便生成加压气体,这种气化和加热过程还伴随有在热交换管道的空气液化管路中使空气液化的过程,其中当与标准流速相比对增压气体的需求量减少时,可从蒸馏设备中抽取由其生产的额外的液体,将此部分液体送入液体贮存容器(11)中,并将相应的额外量的已被贮存的液态空气(13)引入蒸馏设备(7)中;以及当与标准流速相比对增压气态氧的需求量增加时,可从液体贮存容器(11)中抽取所需要的额外液体,使上述额外液体具有气化压力(在12中),并使其在此压力下(在18中)在热交换管道(6)中气化,将通过上述液化过程液化的相应量的空气贮存在液态空气贮存容器(13)中,其特征在于将抽取的液体在压力接近大气压的条件下贮存起来,同时使液态空气贮存时的贮存压力至少等于,最好高于蒸馏设备的最高工作压力。
2.如权利要求1所述的方法,其特征在于液态空气贮存容器(13)中的压力接近上述空气发生液化时的压力。
3.如权利要求1或2所述的方法,其特征在于液态空气贮存容器(13)中的压力在大约30×105帕和35×105帕之间。
4.如权利要求1-3中任一项所述的方法,其特征在于所有被气化的液体均从液体贮存容器(11)中抽取。
5.如权利要求1-4中任一项所述的方法,其特征在于上述空气的液化过程发生在温度低于在所述气化压力下抽取的液体的气化温度的条件下,并且至少从蒸馏设备中提取一种液态产品。
6.如权利要求1-5中任一项所述的方法,其特征在于将用于液态空气贮存容器(13)的空气(在1中)压缩到到上述贮存压力,而将剩余的空气压缩到高于贮存压力的高压。
7.在可变流速情况下生产加压气体的装置,它包括一台空气蒸馏设备(7);通过与上述蒸馏设备中生成的产品进行热交换而冷却空气的热交换管道(6);从上述设备中抽取液体的部件(16,17);使至少部分待蒸馏空气具有高压并将其送入热交换管道的空气液化组件(21;21,21A)的部件(12);一个液体贮存容器(11),该容器与蒸馏设备(7)相连,并装有在可调流速的情况下抽取液体使之具有气化压力并将其送入热交换管道的气化管路(18)的部件(12);和一个液态空气贮存容器(13),该容器的上游与热交换管道的空气液化组件(21;21,21A)相连,其下游经具有可调流速的减压部件(25)与蒸馏设备相连,其特征在于上述抽取液体的容器(11)中的压力接近大气压力,液态空气贮存容器(13)中的压力显著地高于蒸馏设备(7)的最高工作压力。
8.如权利要求7所述的装置,其特征在于液态空气贮存容器(13)中的压力接近空气实现液化时的压力。
9.如权利要求7或8所述的装置,其特征在于液态空气贮存容器(13)中的压力在约30×105帕和35×105帕之间。
10.如权利要求7-9中任一项所述的装置,其特征在于上述贮存液体的容器(11)介于空气蒸馏设备(7)和使所有待气化液体具有气化压力的部件(12)之间。
11.如权利要求7-10中任一项所述的装置,其特征在于液态空气贮存容器(13)经减压阀(37)与上述空气液化组件(21;21A)相连。
12.如权利要求7-11中任一项所述的装置,其特征在于上述压缩部件(1,5)包括一台主空压机(1),其下游接有一个使不供入液态空气贮存容器(13)的空气部分增压的增压器(5)。
全文摘要
本发明涉及一种在可变流速下生产加压气体的装置,它包括一台空气蒸馏设备(7);热交换管道(6);从上述设备中抽取液体的部件(16,17);一个液体贮存容器(11),该容器与蒸馏设备(7)相连,并装有在可调流速的情况下抽取液体的部件(12);以及一个液态空气贮存容器(13),贮存在容器(11)中的被抽液体的压力接近大气压,而液态空气贮存容器(13)中的压力显著地高于蒸馏设备(7)的最高压力。
文档编号F25J3/02GK1154463SQ9511526
公开日1997年7月16日 申请日期1995年7月28日 优先权日1994年7月29日
发明者M·格里尼尔 申请人:乔治·克劳德方法的研究开发空气股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1