用于在低于环境温度下分离的方法和设备的制造方法

文档序号:10693843阅读:283来源:国知局
用于在低于环境温度下分离的方法和设备的制造方法
【专利摘要】本发明涉及一种用于在低于环境温度下分离气体混合物的方法。根据所述方法,将气体混合物(1,7)送到隔热室(E)中、冷却并且在放置于该室内部的柱(23)中分离以便产生至少两种流体,该至少两种流体中的每一种富含来自该气体混合物的组分。来自该方法的至少一种流体经由与至少一个加热构件的热交换在该室内部被加热或者被蒸发,该至少一个加热构件包括至少一个具有磁致热特性并且被内置到能够传导磁通量的回路内的元件。该元件交替地与由该有待被加热的流体组成的冷源、以及由比该有待被加热的流体更热的源组成的热源(4)热接触,并且经由磁致热效应的磁通量变化产生电能和/或机械能。
【专利说明】用于在低于环境温度下分离的方法和设备
[0001]本发明涉及一种用于在低于环境温度、或者甚至低温下分离的方法和设备。该分离可以是通过蒸馏和/或通过分凝和/或通过吸收的分离。
[0002]使用至少一个柱进行该分离,该至少一个柱(以其最简单的形式简化)可以是分相器。
[0003 ]磁制冷是基于使用具有磁致热效应的磁性材料。当磁性材料经受施加外部磁场时,可逆的这种效应导致磁性材料的温度变化。使用这些材料的最佳范围位于它们的居里温度(Tc)的附近。这是因为磁化变化以及因此磁熵改变越大,它们温度的改变越大。当该材料被放置在磁场中时当该材料的温度增加时,该磁致热效应被认为是直接的,并且当它被放置在磁场中时当它冷却时,该磁致热效应被认为是间接的。本说明书的剩余部分将对于直接情况给出,而如何将此再应用到间接情况对于本领域的技术人员是显而易见的。存在基于这种原理的若干类似的动态循环。常规的磁制冷循环在于i)磁化该材料以便增加其温度,ii)在恒定磁场中冷却该材料以便散热,iii)使该材料退磁以便使其冷却,并且iv)在恒定(总体上零)磁场中加热该材料以便吸热。
[0004]磁制冷装置使用由磁致热材料制成的元件,当这些元件被磁化时它们产生热量并且当这些元件被退磁时它们吸收热量。它可以使用磁致热材料再生器以便扩大在“热源”与“冷源”之间的温度差:然后该磁制冷被认为是使用主动再生的磁制冷。
[0005]在EP-A-2551005中已知的惯例是使用该磁致热效应来将冷量供给一种用于其低于环境温度分离的方法。
[0006]如果这些磁致热材料经受变化的温度,它们的磁导率变化。使用这些材料的最佳范围位于它们的居里温度(Tc)的附近。
[0007]从Alves等人的“使用NiFe合金和Gd的热磁电动机的模拟(Simulat1n of aThermomagnetic Motor using NiFe Alloy and Gd)”,2012年,关于在环境温度下的磁冷的第五届国际会议(5th Internat1nal Conference on Magnetic Cold at AmbientTemperature),已知的惯例是通过修改由具有磁致热效应的材料创造的磁场将热转化为动力功和/或转化为电力。该场的修改使得有可能创造动力功和/或电流。
[0008]在FR-A-2914503和US-A-8453466中给出了使用具有磁致热效应的材料、使用冷源和热源的发电机的实例。
[0009]热栗是一种热力学装置,该装置使得有可能将一定量的热从被认为是“发射体”的介质(供给介质)(被称为“冷”源)转移至热“接收体”介质(被称为“热”源)中。该冷源是从其中取出热量的介质并且该热源是再注入该热量的介质,该冷源处于比该热源更冷的温度下。
[0010]现有技术中用于这种类型的应用的常规循环是压缩-冷却(冷凝)-膨胀-再加热(蒸发)制冷液的热力学循环。
[0011]环境温度是该方法位于的环境空气的温度,或者可替代地,与该空气温度相连接的冷却水回路的温度。
[0012]低于环境温度是低于环境温度至少10°C。
[0013]低温是低于-20°C、或者甚至低于_55°C、或者甚至低于-100°C。
[0014]EP-A-2604824描述了一种根据权利要求1的前序部分所述的方法。
[0015]本发明的一个目的是克服以上提出的现有技术缺点中的所有或一些。
[0016]本发明的一个目的是在一种用于在低于环境温度下分离的方法中利用由低温液体的蒸发产生的冷量。
[0017]根据本发明的一个主题,提供了一种用于在低于环境温度、或者甚至低温下分离气体混合物的方法,其中将一种气体混合物送到隔热室中、冷却并且在放置于该室内部的柱中分离,以便产生至少两种流体,该至少两种流体中的每一种富含该气体混合物的组分,来自该方法的至少一种流体通过与至少一个加热构件的热交换在该室内部被加热、或者甚至被蒸发,其特征在于,该至少一个加热构件包括至少一个具有磁致热特性并且被整合到能够传导磁通量的回路内的元件,所述至少一个元件交替地与由有待被加热的流体或者甚至有待被蒸发的液体组成的冷源、以及由比该有待被加热的流体更热的周围环境或另一种源组成的热源热接触,并且经由该磁致热效应的磁通量变化产生电能和/或机械能,该有待被加热的流体是该有待被分离的气体混合物。
[0018]根据其他任选的方面:
[0019]-该气体混合物的一种或多种主组分是以下流体中的至少一种:空气、氮气、氧气、
氩气、二氧化碳、甲烷、氦气、氢气、一氧化碳;
[0020]-该气体混合物包含至少40moI%的以下流体之一:空气、氮气、氧气、氩气、二氧化碳、甲烧、氦气、氢气、一氧化碳;
[0021 ]-该气体混合物包含至少60mol %的以下流体之一:空气、氮气、氧气、氩气、二氧化碳、甲烧、氦气、氢气、一氧化碳;
[0022]-该气体混合物包含至少75moI%的以下流体之一:空气、氮气、氧气、氩气、二氧化碳、甲烧、氦气、氢气、一氧化碳;
[0023]-该有待被加热的流体的一种或多种主要组分是以下流体中的至少一种:空气、氮气、氧气、氩气、二氧化碳、甲烷、氦气、氢气、一氧化碳;
[0024]-该有待被加热的流体包含至少40moI %的以下流体之一:空气、氮气、氧气、氩气、
二氧化碳、甲烷、氦气、氢气、一氧化碳;
[0025]-该有待被加热的流体包含至少60moI%的以下流体之一:空气、氮气、氧气、氩气、
二氧化碳、甲烷、氦气、氢气、一氧化碳;
[0026]-该有待被加热的流体包含至少75moI %的以下流体之一:空气、氮气、氧气、氩气、
二氧化碳、甲烷、氦气、氢气、一氧化碳;
[0027]-来自该方法的流体借助于冷却构件冷却,该冷却构件包括至少一个具有磁致热特性并且被整合到能够传导磁通量的回路内的元件,所述至少一个元件交替地与由该有待被冷却的流体或者甚至有待被冷凝的气体组成的冷源、以及由比该有待被冷却的流体更热的周围环境或另一种源组成的热源热接触;
[0028]-至少一种有待被加热的流体是该气体混合物的至少一部分;
[0029]-至少一种有待被加热的流体是在该柱内部的流体;
[0030]-至少一种有待被加热的流体是源自该柱的富含该气体混合物的组分的流体;
[0031]-该有待被加热的流体是在用于使液氧蒸发的热交换器的中间层级处抽取的空气并且将该加热的空气送回到该热交换器的中间层级中以便最优化该热交换;
[0032]-该流体是液体;
[0033]-使该有待被加热的流体与该具有磁致热特性的元件直接接触;
[0034]-该加热的热交换通过具有已经与该具有磁致热特性的元件接触的热传递流体的热交换器进行;
[0035]-该热交换通过具有已经与该具有磁致热特性的元件接触的热传递流体的中间热传递回路进行。
[0036]根据本发明的另一个主题,提供了一种用于在低于环境温度、或者甚至低温下分离气体混合物的设备,该设备包括隔热室、放置于该室内部的热交换器和至少一个分离柱、用于将该气体混合物送到该热交换器用于其冷却的管、用于将该冷却的混合物送到该柱的管、用于抽取至少两种流体的装置、位于该室内部的用于加热来自该方法的至少一种流体的构件,该至少两种流体中的每一种富含来自该柱的气体混合物的组分,其特征在于,该至少一个加热构件包括至少一个具有磁致热特性并且被整合到能够传导磁通量的回路内的元件,以及用于从经由磁致热效应的磁通量变化产生电能和/或机械能的装置,所述至少一个元件交替地与由有待被加热的流体或者甚至有待被蒸发的液体组成的冷源、以及由比该有待被加热的流体更热的周围环境或另一种源组成的热源热接触,该有待被加热的流体是该有待被分离的气体混合物。
[0037]根据本发明的其他主题:
[0038]-该柱是蒸馏和/或分凝和/或吸收柱;
[0039]-该柱是分相器;
[0040]-该设备是一种空气分离设备;
[0041]-该设备是一种用于分离气体混合物的装置,该气体混合物包含至少40mol%的以下流体之一:空气、氮气、氧气、氩气、二氧化碳、甲烧、氦气、氢气、一氧化碳;
[0042]-该至少一个分离柱是具有顶部冷凝器和/或底部再沸器的简单柱;
[0043 ]-该设备包括用于加热该柱的底部再沸器的液体的加热构件,该加热构件包括具有磁致热特性的元件;
[0044]-该设备包括用于冷却该柱的顶部冷凝器的顶部气体的冷却构件,该冷却构件包括具有磁致热特性的元件;
[0045]-将该加热构件和/或该冷却构件放置于该隔热室内部。
[0046]本发明还可以涉及包括以上或以下特征的任何组合的任何替代装置或方法。
[0047]其他细节和优点将在阅读下文中参照附图给出的说明书时显现出来,在附图中:
[0048]-图1表示图解和局部视图,该视图说明了根据本发明的用于生产气体的设施的第一实例的结构和操作;
[0049]-图2和3表示图解和局部视图,这些视图对应地说明了根据本发明的用于生产气体的设施的第二和第三实例的结构和操作。
[0050]图1示出了一种用于通过低温蒸馏分离空气的方法。在这个实例中,将空气I在压缩机3中压缩、在冷却器5中冷却以形成冷却流7并且在纯化单元9中纯化。该纯化的空气进入隔热室E并且在热交换器17中冷却。将在低温下冷却的空气送到蒸馏柱23的中间层级中。蒸馏柱23是一种简单柱,该简单柱配备有顶部冷凝器8和底部再沸器10。借助于加热构件G加热底部再沸器10,该加热构件包括至少一个具有磁致热特性并且被整合到能够传导磁通量的回路内的兀件。该兀件交替地与由穿过再沸器1的在柱2 3的底部中的有待被蒸发的液体组成的冷源、和由比该有待被蒸发的液体更热的流体4组成的热源热接触。该元件中经由磁致热效应的磁通量变化产生电能和/或机械能。因此这使得有可能产生有待被输出或者有待被用于该方法中的电力,或者产生用于驱动例如该方法的旋转机器或发电机的机械會K。
[0051]柱23的头部的冷却还可以通过用于冷却该柱的顶部冷凝器8的冷却构件M提供,该冷却构件包括至少一个具有磁致热特性的元件。因此,该柱的顶部的气体构成该冷却机构的冷源并且该冷源由穿过气体2的周围环境组成。
[0052]图2示出了一种用于通过低温蒸馏分离空气的设备。该设备包括热交换管线17和双空气分离柱,该双空气分离柱包括借助于再沸器27热连接的中压柱23和低压柱25。
[0053]在压缩机3中将空气I压缩至5.5巴的绝对压力。
[0054]在冷却器5中冷却该压缩空气以便形成冷却流7,纯化该冷却流以便在吸附单元9中去除水和二氧化碳。
[0055]该纯化的空气进入隔热室E并且被分成四份。一部分8A冷却到热交换器17的中间温度,然后被送到加热机构G,该加热机构包括至少一个具有磁致热特性并且被整合到能够传导磁通量的回路内的元件。该元件交替地与由在该交换器的中间温度下的空气8A组成的冷源、和由比空气8A更热的周围环境或另一种源组成的热源4热接触。经由磁致热效应的磁通量变化产生电能和/或机械能。将由构件G加热的空气8A在比从该热交换器抽取该空气的温度更高的温度下送回到该热交换器中。使用在该氧气蒸发平台的层级处可获得的过量制冷量(frigories)产生在该交换器中的流(8A)的加倍以便设法尽可能多地吸收这种冷量(通过改进该交换图)并且将其转化为电能。
[0056]一部分8B在完全穿过交换管线17时冷却至大约_170°C的温度并且与流8A混合并且然后以气体形式被送到该中压柱中。一部分8C在完全穿过交换管线17时冷却并且然后充当用于具有磁致热效应的热栗31的冷源。将剩余部分21送至在柱23中以气体形式分离。
[0057]该部分8C通过在热栗31中的热交换冷却并且液化。该部分8C被分成送到中压柱23中的一部分8D和送到低压柱25中的一部分8E。
[0058]本发明还可以应用于用于分离其他混合物的方法。例如在图1和2中,该空气可以被混合物取代,该混合物包含作为主要组分的甲烷和氮气和/或二氧化碳。
[0059]将富含氧气的液体33从中压柱23的底部抽取出来、在子冷却器43中冷却并且送到低压柱25中。将富含氮气的液体35从中压柱23的顶部抽取出来、在子冷却器43中冷却并且送到低压柱25的顶部中。
[0060]将空气11在升压器13中升压、在交换管线17中冷却、在涡轮机15中膨胀并且送到低压柱25中。
[0061 ]将富含氮气的气体45从低压柱25的顶部抽取出来、在子冷却器43中和交换管线17中加热并且至少部分地送到纯化9的再生中。将富含氮气的气体49从中压柱23的顶部抽取出来、并且在交换管线17中加热并且用作产品。将液氧47从低压柱25抽取出来、通过栗29加压并且在交换管线17中部分地加热。然后将该加热的液体从交换管线17中移除、至少部分地在热栗31中蒸发并且送回到交换管线17中,用于完成该蒸发和加热、或者单独地用于加热。
[0062]图3说明了一种为了生产富含二氧化碳的气体产品通过蒸馏而分离富含二氧化碳的气体混合物的方法。分离含有至少60 % 二氧化碳以及还有至少一种轻杂质的气体混合物3以便形成更富含二氧化碳的流体,该至少一种轻杂质可以是氧气、一氧化碳、氮气、氩气、氢气或这些成分中的至少两种。该气体混合物来自源1A,该源可以是氧燃烧单元,接着是纯化单元,以便去除水和其他污染物,如灰尘、SOx或N0X。源IA可以是压缩机。根据需要例如将气体混合物3A在大于6巴的绝对压力下压缩。将加压的气体混合物3A送至隔热室E内并且在钎焊铝板热交换器5A中冷却。根据需要,在分离装置7A中处理该冷却的气体混合物。这种分离装置7A可以由一个分相器或若干个串联的分相器构成,以便增加柱1A上游的气体混合物的二氧化碳含量,例如以便对于来自分相器的液体达到至少80 %的二氧化碳。分离装置7A可以可替代地或附加地包括蒸馏柱(例如用于去除NOx的柱)、或者另外用于至少部分地冷却该气体混合物或衍生自该气体混合物的一部分的流体的交换器。
[0063]将富含二氧化碳的液体9A送至低温分离柱1A的顶部。在该柱的顶部处抽取顶部气体13A并且该顶部气体相对于液体9A富含轻质组分。它在交换器5A中加热。
[0064]该底部液体含有多于90%的二氧化碳并且被分离成三个部分。一部分12A被送到加热构件G,该加热构件包括至少一个具有磁致热特性并且被整合到能够传导磁通量的回路内的元件。该元件交替地与由有待被蒸发的液体12A组成的冷源、和由比液体12A更热的周围环境或另一种源组成的热源4A热接触。经由磁致热效应的磁通量变化产生电能和/或机械能。由构件G产生的热量使得有可能使液体12A蒸发并且该蒸发的液体被送回到柱1A的底部。
[0065]底部液体IlA的剩余部分被分成两份以便形成一部分15A和一部分19A。该部分15A在阀17A中被膨胀并且蒸发,然后在该热交换器中加热以便形成富含二氧化碳的气体产品。剩余部分19A被送到热交换器5A的中间层级,在其中蒸发并且然后加热以便形成任选地与该第一富含C02的气体产品组合的富含二氧化碳的气体产品,在压缩之后,从而形成该部分23A。
[0066]对于所有这些图,该元件中经由磁致热效应的磁通量变化可以产生有待被输出或有待被用于该方法中的电能。另外或附加地,该变化可以产生用于驱动例如该方法的旋转机器或发电机的机械能。
【主权项】
1.一种用于在低于环境温度、或者甚至低温下分离气体混合物的方法,其中将气体混合物(I,3A,7)送到隔热室(E)中、冷却并且在放置于该室内部的柱(10A,23,25)中分离,以便产生至少两种流体,该至少两种流体中的每一种富含该气体混合物的组分,来自该方法的至少一种流体通过与至少一个加热构件的热交换在该室内部被加热、或者甚至被蒸发,其特征在于,该至少一个加热构件(G)包括至少一个具有磁致热特性并且被整合到能够传导磁通量的回路内的元件,所述至少一个元件交替地与由有待被加热的流体(8A, 12)或者甚至有待被蒸发的液体组成的冷源、以及由比该有待被加热的流体更热的周围环境或另一种源组成的热源(4,4A)热接触,并且经由磁致热效应的磁通量变化产生电能和/或机械能,至少一种有待被加热的流体(8 A)是该气体混合物的至少一部分。2.如权利要求1所述的方法,其中该有待被加热的流体(8A,12)的一种或多种主要组分是以下流体中的至少一种:空气、氮气、氧气、氩气、二氧化碳、甲烧、氦气、氢气、一氧化碳。3.如以上权利要求中任一项所述的方法,其中至少一种有待被加热的其他流体是在该柱内部的流体。4.如以上权利要求之一所述的方法,其中至少一种有待被加热的其他流体(12)是源自该柱的富含该气体混合物的组分的流体。5.如以上权利要求之一所述的方法,其中该流体(12)是液体。6.如以上权利要求之一所述的方法,其中使该有待被加热的流体(12)与该具有磁致热特性的元件(G)直接接触。7.如权利要求1至5之一所述的方法,其中该加热的热交换通过具有已经与该具有磁致热特性的元件(G)接触的热传递流体的热交换器进行。8.如权利要求1至5之一所述的方法,其中该热交换通过具有已经与该具有磁致热特性的元件(G)接触的热传递流体的中间热传递回路进行。9.一种用于在低于环境温度、或者甚至低温下分离气体混合物的设备,该设备包括隔热室江)、放置于该室内部的热交换器(54,17)和至少一个分离柱(1(^,23,25)、用于将该气体混合物送到该热交换器用于其冷却的管、用于将该冷却的混合物送到该柱的管、用于抽取至少两种流体的装置、位于该室内部的至少一个用于加热来自该方法的至少一种流体的构件(G),该至少两种流体中的每一种富含来自该柱的气体混合物的组分,其特征在于,该至少一个加热构件(G)包括至少一个具有磁致热特性并且被整合到能够传导磁通量的回路内的元件,以及用于从经由磁致热效应的磁通量变化产生电能和/或机械能的装置,所述至少一个元件交替地与由有待被加热的流体(8A,12)或者甚至有待被蒸发的液体组成的冷源、以及由比该有待被加热的流体更热的周围环境或另一种源组成的热源热接触,该有待被加热的流体是该有待被分离的气体混合物。10.如权利要求9所述的设备,其中该加热构件(G)和/或用于冷却来自该方法的流体并且包括至少一个具有磁致热特性的元件的冷却构件(M)被放置于该隔热室内部。11.如权利要求9所述的设备,其中该柱是分相器。12.如权利要求9所述的设备,其中该柱是空气分离柱。13.如权利要求9、10或12之一所述的设备,其中该至少一个分离柱是具有顶部冷凝器和/或底部再沸器的简单柱。14.如权利要求9至13之一所述的设备,该设备包括用于加热该柱(10A,23,25)的底部再沸器的液体的加热构件(G),该加热构件包括具有磁致热特性的元件。15.如权利要求9至14之一所述的设备,该设备包括用于冷却该柱的顶部冷凝器的顶部气体的冷却构件(M),该冷却构件包括具有磁致热特性的元件。
【文档编号】F25J5/00GK106062496SQ201480071782
【公开日】2016年10月26日
【申请日】2014年12月19日
【发明人】伯诺瓦·达维迪安
【申请人】乔治洛德方法研究和开发液化空气有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1