流体中被去除物的除去方法

文档序号:4887008阅读:549来源:国知局
专利名称:流体中被去除物的除去方法
技术领域
本发明涉及被去除物的除去方法,更详细地说,是涉及含有0.1μm以下的非常微细的被去除物的流体中被去除物的除去方法。
现在,减少产业废弃物、将产业废弃物分离后再利用或将产业废话物不排放到自然界中,从生态学的观点看,是个重要的课题,也是面向21世纪的企业课题。在该产业废弃物中,存在着含有被去除物,即应被除去的物质的各种流体。
这些可用污水、排水、废液等各种词汇表示出。以下,水或药品等流体中含有作为被去除物的流体称为排水。这些排水可用价格昂贵的过滤处理装置等除去上述被去除物,使排水变成洁净的流体,进行再利用,或将分离的被去除物或不能过滤的残留物作为产业废弃物进行处理。特别是,通过过滤,将该排水作成达到环境标准的洁净状态,再回到河川或海洋等自然界中,或再利用。
可是,从过滤处理等的设备费用、运转成本等问题看,采用这些装置是非常困难的,成为环境上的问题。
由此可见,排水处理技术,从环境污染角度,或再循环观点看,是重要的问题,急切地希望有低初始成本、低运转成本的系统问世。
以下,以一个例子,对于半导体领域的排水处理加以说明。一般,在磨削或研磨金属半导体、陶瓷等板状体时,要考虑防止由于摩擦引起的研磨(磨削)夹具等的温度上升、润滑性增大、磨削屑或切削屑附着在板状体等问题,要将水等流体淋洗在研磨(磨削)夹具和板状体上。
具体地,在切削作为半导体材料的板状体的半导体晶片、进行基底研磨时,采用流动纯净水的方法。对于切削装置,为了防止切削刀片的温度上升,另外,为了防止切削屑附着在晶片上,在半导体晶片上流动纯净水,安装放水用的喷咀,以使纯净水接触刀片,进行淋洗。另外,用基底研磨使晶片厚度变薄时,也是以同样的道理,即流动纯净水。
将混入从上述切削装置和基底研磨装置排出的磨削或研磨屑的排水进行过滤,使其变成洁净的水,回到自然界,或进行再利用,将浓缩的排水进行回收。
在目前的半导体制造中,对于混入以si为主体的被去除物(屑)的排水处理,有凝聚沉淀法、过滤器过滤与离心分离机组合使用的方法。
对于前者的凝聚沉淀法,是将PAC(多氯化铝)或Al2(SO4)3(硫酸铝)等加入到排水中,作为凝聚剂;生成与Si的反应物,除去该反应物,将排水进行过滤。
对于后者的过滤器过滤和离心分离机组合使用的方法,是将排水进行过滤,将浓缩的排水加入到离心分离机中,将硅屑作为渣子回收的同时,过滤排水,将得到的纯净水放回自然界,或再利用。
例如,如图18所示,切削时产生的排水,集中在原水槽201中,用泵202送到过滤装置203中。在过滤装置203中装有陶瓷或有机物系的过滤器F,进行再利用,或放回自然界中。
另一方面,在过滤装置203中,将排水加压后,供给过滤器F,由于在过滤器F上发生堵孔,所以要定期进行清洗。例如关闭原水槽201侧的阀B1,打开阀B3和从回收水槽205送洗涤水的阀B2,用回收水槽205的水反洗涤过滤器F。将混入由此产生的高浓度Si屑的排水,返回到原水槽201中。另外,浓缩水槽206的浓缩水通过泵208送到离心分离器209,通过离心分离器209分离成污泥(渣子)和分离液。由si屑构成的污泥集中到污泥回收槽210,分离液集中到分离液槽211。进而,将集中分离液的分离液槽211的排水,通过泵212送到原水槽201中。
这些方法例如也被用于回收以Cu、Fe、Al等金属材料作为主材料的固形物或板状体、陶瓷等无机物构成的固形物或板状体等的磨削、研磨时产生的屑。
另一方面,CMP(Chemical-Mechanical Polishing)作为新的半导体工艺技术已被公开。该CMP是为实现半导体器件的理想的多层配线结构,使被覆配线的层间绝缘膜上面的平坦化作为目的,机械地及化学地研磨层间绝缘膜上面的凹凸的技术。
通过该CMP技术,第1可实现平坦的器件面形状。其结果,可高精度地形成使用了石印技术的微细图形,另外,使用si晶片的粘贴技术等,可实现三维IC的可能性。
第2,可实现嵌入与基板不同材料的结构。其结果,具有容易实现嵌入配线结构的优点。过去,曾采用在以往的IC多层配线的层间膜的沟中,用CVD法嵌入W,使其表面蚀刻后平坦化的埋钨(W)的技术,但最近,通过CMP平坦化有使工艺简化的优点,从而使CMP面世。
这些CMP技术及应用详述在科学论坛上发行的“CMP的科学”中。
接着,简单地说明CMP的机构。如图19所示,在旋转盘250上的研磨布251上放有半导体晶片252,一边使磨料(浆液)253流动;一边相互研磨,进行研磨加工的同时,进行化学蚀刻,除去晶片252表面的凹凸。通过磨料253中溶剂的化学反应和研磨布与研磨剂中的研磨磨粒的机械研磨作用而平坦化。作为研磨布251,例如可使用发泡聚氨酯、无纺布等,磨料是将二氧化硅、氧化铝等研磨磨粒混入到含有PH调节剂的水中而制得的,一般称为浆液。它是使该浆液253一边流动;一边在研磨布251上旋转晶片252,同时加上一定的压力进行研磨的。另外,254是可保持研磨布251的研磨能力,将研磨布251的表面经常保持加工(调节)状态的调节部。另外,M1~M3是电机、255~257是皮带。
如图20所示,上述机构构成了系统。该系统大致由晶片盒的装入取出部260、晶片移动机构部261、如图19所示的研磨机构部262、晶片洗涤机构部263及控制它们的控制系统构成的。
首先,将装有晶片的盒264放到晶片盒的装入取出部260中,盒264内的晶片可以被取出。接着,用晶片移动机构部261,例如机构手265夹住上述晶片,放置在设有研磨机构部262的旋转盘250,使用CMP技术,将晶片平坦化。在该平坦化操作结束后,为了进行浆液洗涤,可通过上述机构手266,将晶片移到晶片洗涤机构部263上,进行洗涤。然后,洗涤了的晶片放在晶片盒264中。
例如,1次工序所使用的浆液量约为500ml~1l/晶片。另外,在上述研磨机构部262、晶片洗涤机构部263上流动纯净水。然后,将该排水用排水管最终汇在一起,所以在1次平坦化操作中排出约5l~10l/晶片的排水。例如若是3层金属,则金属的平坦化和层间绝缘膜的平坦化约进行7次平坦化操作,完成1个晶片时,要排出7倍的5~10l的排水。
因此,在使用CMP装置时,由于排出相当大量的用纯净水稀释了的浆液,所以要重视能高效处理该废水的方法的研究。目前,该排水是采用以往所用的凝聚沉淀法或如图18所示的过滤器过滤和离心分离组合的方法进行处理。
可是,凝聚沉淀法是加入化学药品作为凝聚剂的,但是要确定使反应完全所需的药品量是非常难的,所以必须要多加药品,从而残留下来未反应的药品。相反地,若药品量少,不能全部凝聚沉淀被去除物,而使部分被去除物不能分离出而残留下来。特别是药品量多时,在上清液中残留药品。将其再利用时,由于过滤流体中残留药品,不利于化学反应,有不能再利用的问题。
例如在切削时,排水是由硅屑和蒸馏水构成的,用凝聚沉淀法进行过滤的水,由于残留药品,若在晶片上流过,会引起不良反应,存在着切削时使用的水不能再利用的问题。
另外,作为药品和被去除物的反应物的絮凝物,宛如藻类的浮游物而生成。形成该絮凝物的条件是要严格控制PH值,所以必须备有搅拌机、PH测定仪、凝聚剂注入装置及控制它们的控制设备等。另外,为了将絮凝物稳定后沉降,需要大的沉淀槽。例如若是3立方米(m3)/1小时的排水处理能力,需要直径3米、深4米左右的槽(约15吨的沉降槽),若构成整个系统,需要作为约11米×11米左右占地的大系统。
而且,不在沉淀槽中沉淀而浮游的絮凝物,有可能从槽中流到外部,而难以全部回收。也就是,存在着设备大、该系统的初始成本高、水的再利用难、使用药品,而导致运转成本高的问题。
另一方面,如图18所示,对于5立方米(m3)/1小时的过滤器过滤和离心分离机组合的方法,由于在过滤装置203中使用过滤器F(称为UF模件的,用聚磺酸系纤维构成的,或陶瓷过滤器),所以可将水进行再利用。但是,在过滤装置203中装有4个过滤器F,从过滤器F的寿命看,需要至少1年更换1次价格高达约50万元(日元)/个的过滤器。而且,过滤装置203前面的泵202,由于过滤器F是用加压型的过滤方法,所以电机的负荷大,泵202是高容量的。另外,在过滤器F中通过的排水内有2/3左右返回到泵水槽201中。进而,由于用泵202输送含有被去除物的排水,所以泵202的内壁被磨损,使泵202的寿命变得非常短。
归纳上述问题,电机的耗电费非常大,泵P和过滤器F也需要更换费用,所以存在运转成本非常高的问题。
进而,在CMP的切削加工中排出大量的排水,而且混在浆液中的磨粒粒径是0.2μm、0.1μm、0.1μm以下的极微细粒子。因此,用过滤器过滤该微细磨粒时,磨粒浸入过滤器孔中,由于频繁堵孔,所以不能大量地处理排水。
如以上所述,为了尽可能除去对地球环境有害的物质,另外,为了将过滤流体和被分离的被去除物进行再利用,排水的过滤装置要追加各种设备,扩大成相当大的系统,其结果,使初始成本、运转成本加大。因此,现今的污水处理装置还不能成为最终可采用的系统。
本发明是鉴于上述课题而进行的,其目的在于提供可大大降低初始成本及运转成本的污水处理方法。
本发明的目的在于从混入半导体、金属、无机物或有机物等被去除物的流体(排水)中,使用与被去除物不同的固形物构成的过滤器除去被去除物。
另外,本发明的目的在于在流体中混入固形物,使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器,除去含在上述流体中的被去除物。
另外,本发明的目的在于准备含有与流体中的被去除物不同的固形物的过滤器,使用上述过渡器除去上述流体中的被去除物。
进而,本发明的目的在于将含有被去除物的流体和与该被去除物不同的固形物导入到具有第1过滤器的槽内,使上述流体通过上述第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器,除去上述流体中的上述被去除物。
在本发明中,所说的被去除物是指含有应过滤的排水中的固体物质,所说的固形物是指为了过滤混入上述被去除物的排水,像砂一样地集中固体物质,形成层状的过滤膜的构成物质。例如,作为固形物,希望是为了在第1过滤膜上叠层,叠层的膜具有比第1过滤膜的过滤精度更高的过滤精度,在给与外力时可各自被分离。
具体地,被去除物是大量混入约0.3μm、0.2μm、0.1μm或其以下的粒子的,例如是通过CMP所用的磨粒和磨削产生的半导体材料屑、金属屑和/或绝缘膜材料屑。
更具体地,被去除物是将结晶锭切切割成晶片状时,半导体晶片切削时,基底研磨时等产生的屑,主要是半导体材料、绝缘材料、金属材料,如si、氧化si、Al、SiGe、封装树脂等有机物及其他的绝缘膜材料或金属材料。另外,对于化合物半导体,如GaAs等的化合物半导体材料。
另外,最近,在CSP(芯片大小的封装)的制造中,采用切削,所以该切削时产生的半导体材料、陶瓷材料、封装树脂也成为被去除物。
进而,在半导体领域以外,也有多处产生被去除物。例如在使用玻璃的产业中,液晶屏、EL显示装置的屏等,由于进行玻璃基板的切削、基板侧面的研磨,所以此时产生的玻璃屑相当于被去除物。另外,在电力公司和钢铁公司,使用煤作为燃料,由煤产生的粉末相当于被去除物,进而,混入在烟囱出来的烟中的粉末也相当于被去除物。另外,由矿物加工、宝石加工、墓石加工产生的粉末也是如此。进而,用车床等加工时产生的金属屑、陶瓷基板等的切削、研磨等产生的陶瓷屑等也同样如此。
这些屑是由于研磨、磨削或粉碎等加工产生的,为了除去屑,将其混入到水或药品等液体中,作成排水进行处理。
另外,固形物是在比被去除物(CMP的磨粒)的粒径分布(~约0.14μm)更广的范围(~约500μm)下分布的物质,例如是si等的半导体材料、氧化铝等的绝缘物质、金属等的切削屑、研磨屑或粉碎屑,另外,是具有上述径度分布的固形物质,例如硅藻土或沸石等。
在此,本发明之一是在于用含有与流体中被去除物不同的固形物的过滤器,除去流体中被去除物。
本发明之2是在于用含有比流体中被去除物粒径分布广的固形物的过滤器,除去上述流体中的上述被去除物。
本发明之3是在于将固形物混入到流体中,使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器,除去上述流体中的上述被去除物。
一般,为了除去如混在CMP的浆液中的磨粒那样的0.1μm级颗粒体,通常采用比该颗粒体小的孔的过滤器。但是,本发明是将与被去除物相同程度及比其尺寸大的固形物叠层在上述第1过滤器表面上,形成第2过滤膜,将在第2过滤膜上形成的多个间隙作为流体的通路使用的。另外,本发明,由于第2过滤膜本身是固形物的集合体,所以可将造成堵孔原因的被去除物及固形物表层,从第2过滤膜上脱离,从而保持过滤能力。
本发明之4在于混入比流体中被去除物粒径大的固形物,使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器,除去含在上述流体中的上述被去除物。
只要用第1过滤膜,就可在其上叠层由固体构成的因形物。因此,可用该固形物构成的第2过滤膜,除去被去除物。
本发明之5是在于准备含有与被去除物不同的固形物的过滤器,使用上述过滤器,除去上述流体中的被去除物。
本发明之6是在于形成含有与流体中被去除物不同的固形物的过滤器后,使用上述过滤器除去该流体中的被去除物。
本发明之7是在于将第1过滤器浸渍在流体中,使与流体中被去除物不同的固形物通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器后,导入含有上述被去除物的流体,除去上述流体中的上述被去除物。
预先准备含有固形物的过滤器,立即过滤槽内的流体。另外,在流体内可形成第2过滤器,只要直接导入混有被去除物的流体,就可连续地形成第2过滤器和用第2过滤器进行过滤。
本发明之8是在于将含有被去除物的流体和与该被去除物不同的固形物导入到具有第1过滤器的槽内,使上述流体通过上述第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器,除去上述流体中的上述被去除物。
若仅由被去除物构成第2过滤膜时,则形成过滤孔小的第2过滤膜,而使过滤能力变小。但是,在其中混入固形物后,第2过滤膜形成了各种尺寸的间隙,就可增大被过滤的过滤流体体量。
本发明之9是在于流体是酸性或碱性的,将中和剂混入到上述流体中,中和上述流体。
本发明之10是在于将上述流体循环通过过滤器或第1过滤器。
通过循环,通过可使流体内的被去除物、固形物形成第2过滤膜,并成长,形成具有可捕获到规定粒径的过滤能力的第2过滤膜。
本发明之11是在于上述过滤器或上述第2过滤器含有不同大小的上述固形物或被去除物。
特别是,由于采用大小不同的固形物,这些固形物随意地叠层,所以可增加了间隙数,且间隙大小不同地形成过滤膜。因此,可确保流体的通路,增加过滤流体量。
本发明之12是在于上述固形物或上述被去除物含有不同大小的粒子,上述第1过滤器孔的尺寸比最小的粒子大、比最大的粒子小。
本发明之13在于上述最小的固形物或者上述被去除物的粒径是0.25μm以下,上述最大固形物或者上述被去除物的粒径是10μm以上。
固形物和被去除物是像砂一样地各自分离的,为了用该固形物和被去除物形成膜,必须在下层设置支承体。在此,若将第1过滤膜作为支承体使用时,可在第1过滤膜上形成第2过滤膜。而且,若设定第1过滤膜的孔径比最小的粒子大、比最大的粒子小时,则最初可捕获大的粒子,然后捕获小的粒子。因此,具有第2过滤膜孔径大的,比孔径小的过滤量增大的优点。
本发明之14在于上述固形物或者上述被去除物是具有2个峰的粒径分布,上述第1过滤器的孔是2个峰间的距离。
本发明之15在于比上述第1过滤器孔大的上述固形物或者上述被去除物的比例与比上述第1过滤器孔小的上述固形物或者上述被去除物的比例大。
固形物或被去除物的尺寸分布广,由于有大尺寸的固形物或被去除物,所以在第2过滤膜上可随意地形成宽度大的间隙。因此,可在低吸引压力下过滤。
本发明之16在于使用第1过滤器的过滤工序中开始除去被去除物后,使之循环规定的时间。
其特征是,首先在使用第1过滤器的过滤工序中开始除去被去除物后,在规定的时间内循环,在第1过滤器表面上堆积被去除物,形成第2过滤膜,然后,使用该第1及第2过滤器进行过滤。此时,若知道循环中形成第2过滤膜的时间,在重新设置第1过滤膜时,即使不用其他方法确认膜的形成,而用定时器就可形成第2过滤膜。另外,发生堵孔后,除去第2过滤膜上的堆积物,使之循环,可自动地进行复原操作。即,只要判定通过循环的第2过滤膜复原时间,就可用定时器复修。
本发明之17在于用检测手段检测通过上述第1过滤器的流体中上述固形物或上述被去除物混入的程度,在达到规定值以下时停止循环。
也就是,在知道该被去除物混入程度达到规定值以下,形成孔小的第2过滤膜,发挥充分过滤效果后,停止循环,只要进入过滤工序,就可以自动复原。
即本发明之1的流体中被去除物的除去方法,其特征是包括准备含有与流体中的被去除物不同的固形物的过滤器的工序和、使上述流体通过上述过滤器,除去上述流体中的被去除物的过滤工序。
本发明之2,按1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括在作为基体的第1过滤器上面堆积上述固形物,形成第2过滤器的工序。
本发明之3,按1所述的流体中被去除物的除去方法,其特征是上述固形物含有比流体中被去除物粒径分布广的固形物。
本发明之4,按1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将固形物混入含有被去除物流体的工序和、使混入了上述固形物的上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器的工序。
本发明之5,按1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将比含在上述流体的被去除物粒径大的固形物混入含有被去除物流体的工序和、使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器的工序。
本发明之6,按1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括形成含有与流体中的被去除物不同组成的固形物的过滤器的工序。
本发明之7,按1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将与流体中的被去除物不同组成的固形物添加到含有被去除物的流体的工序和、使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器的工序。
本发明之8,按1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将第2过滤器浸渍在含有与上述的被去除物不同的固形物的流体中,使与流体中的被去除物不同的固形物通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器的工序,而后,导入含有上述被去除物的流体,除去上述流体中的上述被去除物。
本发明之9的流体中被去除物的除去方法,其特征是将含有被去除物的流体和与该被去除物不同的固形物导入具有第1过滤器的槽内,使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器,除去上述流体中的上述被去除物。
本发明之10,按1所述的流体中被去除物的除去方法,其特征进而包括当含有上述被去除物的流体是酸性或碱性时,将中和剂混入上述流体中,中和上述流体的工序。
本发明之11,按1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将含有上述被去除物的流体循环通过过滤器或者第1过滤器的工序。
本发明之12,按1所述的流体中被去除物的除去方法,其特征是上述过滤器或者第2过滤器含有不同大小的上述固形物或者被去除物。
本发明之13,按1所述的流体中被去除物的除去方法,其特征是上述固形物或者被去除物含有不同大小的粒子,上述第1过滤器的孔的尺寸比最小的粒子大,比最大的粒子小。
本发明之14,按1所述的流体中被去除物的除去方法,其特征是上述固形物或者上述被去除物含有絮凝状的粒子,上述第1过滤器的孔的尺寸比最小的粒子大,比最大的粒子小。
本发明之15,按1所述的流体中被去除物的除去方法,其特征是上述最小固形物或者上述被去除物的粒径是0.25μm以下、上述最大固形物或者上述被去除物的粒径是10μm以上。
本发明之16,按1所述的流体中被去除物的除去方法,其特征是上述固形物或者上述被去除物是具有2个峰值的粒径分布,上述第1过滤器的孔是2个峰间的距离。
本发明之17,按2所述的流体中被去除物的除去方法,其特征是比上述第1过滤器孔大的上述固形物或者上述被去除物的比例与比上述第1过滤器孔小的上述固形物或者上述被去除物的比例大。
本发明之18,按1所述的流体中被去除物的除去方法,其特征是上述过滤工序中,在开始除去除物后,使之循环规定的时间。
本发明之19,按18所述的流体中被去除物的除去方法,其特征是上述循环工序包括检测通过上述过滤器的流体中被去除物的混入程度的检测工序,在达到第1规定值以下时停止循环。
本发明之20,按19所述的流体中被去除物的除去方法,其特征是上述过滤工序包括检测通过上述过滤器的流体中被去除物的混入程度的检测工序,在达到第2规定值以上时开始循环。
本发明之21,按19所述的流体中被去除物的除去方法,其特征是上述检测工序是使用光传感器,检测上述流体的光透过率的工序。
本发明之22,按1所述的流体中被去除物的除去方法,其特征是上述过滤工序是由使用上述过滤器边吸引边过滤上述流体而构成的。
本发明之23,按22所述的流体中被去除物的除去方法,其特征是上述流体的吸引压力是0.2~0.5kg/cm2。
本发明之24,按2所述的流体中被去除物的除去方法,其特征是包括在上述过滤器的表面给与外力,以便使上述第2过滤器的构成物可以移动的工序。
本发明之25,按24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序,是间歇地给与外力的工序。
本发明之26,按24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序,是沿着第1过滤器的表面供给气流的工序。
本发明之27,按24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序,是给与可以使构成上述第2过滤器的被去除物的一部分脱离程度的外力的工序。
本发明之28,按24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序包括控制上述外力,以便使上述第2过滤器的膜厚保持一定的工序。
本发明之29,按24所述的流体中被去除物的除去方法,其特征是上述过滤器垂直方向配制的、上述外力是气泡上升力。
本发明之30,按24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序是对上述过滤器给与机械振动的工序。
本发明之31,按24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序是在上述流体中产生声波的工序。
本发明之32,按24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序是在上述流体中产生液流的工序。
本发明之33,按2所述的流体中被去除物的除去方法,其特征是上述第1过滤器是由聚烯烃系高分子构成的。
本发明之34,按2所述的流体中被去除物的除去方法,其特征是上述第1过滤器表面具有凹凸。
本发明之35,按2所述的流体中被去除物的除去方法,其特征是上述第1过滤器是二层结构,其间形成间隙,可以插入吸引用导管的过滤器。
本发明之36,按2所述的流体中被去除物的除去方法,其特征是上述第2过滤器含有从Si、SiGe、Al2O3、Si氧化膜,金属氧化物或者周期表中IIa族~VIIa族、IIb族~VIIb族的元素中选出的至少1种。
本发明之37,按2所述的流体中被去除物的除去方法,其特征是上述第2过滤器含有Si。
本发明之38,按37所述的流体中被去除物的除去方法,其特征是上述第2过滤器含有絮凝状Si。
本发明之39,按2所述的流体中被去除物的除去方法,其特征是上述第2过滤器是机械加工工序中产生的机械加工屑。
本发明之40,按39所述的流体中被去除物的除去方法,其特征是上述机械加工工序是研磨工序或者切削工序。
本发明之41,按30所述的流体中被去除物的除去方法,其特征是上述机械加工屑是切削屑。
本发明之42,按2所述的流体中被去除物的除去方法,其特征是准备上述过滤器工序是包括在含有上述被去除物的流体中添加絮凝状废弃物的工序。
本发明之43,按2所述的流体中被去除物的除去方法,其特征是上述流体含有机械加工排出废液中的微粒子。
本发明之44,按1所述的流体中被去除物的除去方法,其特征是上述流体含有CMP排出废液中的微粒子。
图的简单说明图1是说明本发明实施方案的过滤膜图。
图2是说明切削时产生的排水中的硅屑的粒径分布、形状图。
图3是说明本发明实施方案的过滤膜图。
图4是说明本发明实施方案的过滤膜图。
图5是说明形成固形物或固形物与被去除物组成的过滤器的方法图。
图6是说明在过滤装置的第1过滤膜上形成第2过滤膜的方法图。
图7是说明准备过滤膜的方法图。
图8是说明准备具有过滤膜的过滤装置的方法图。
图9是说明本发明采用的过滤装置图。
图10是说明本发明采用的过滤装置图。
图11是说明图9、图10的过滤操作图。
图12是说明图9、图10的过滤操作图。
图13是说明本发明过滤方法的系统图。
图14是说明CMP的磨粒粒径分布及过滤前和过滤后光的透过率图。
图15是说明本发明过滤方法的系统图。
图16是说明本发明过滤方法的系统图。
图17是说明将本发明的过滤方法应用到CMP装置的系统图。
图18是说明以往的过滤系统图。
图19是说明CMP装置图。
图20是说明CMP装置的系统图。
以下,参照


本发明的实施方案。
在本实施方案中,对于作为流体,使用半导体工序,特别是切削工序中的排水,在该排水中含有半导体晶片切削屑的场合加以详述。
本发明之1的特征在于过滤器,首先对于过滤器的结构、形成方法及其作用加在说明。
该过滤器,如图1A中,其制造工序的模式图所示,在具有过滤孔11的第1过滤膜10上,堆积排水中的切削屑,构成了第2过滤膜13,而形成孔小的良好的过滤器。即,在过滤器孔11的开口部及第1过滤膜10的表面上所形成的层状膜是固形物12的集合体。该固形物12分为不能通过过滤器孔11的大固形物12A和能通过过滤器孔11的小固形物12B。在图中用黑点表示的是能通过的小固形物12B。排水中的大固形物和小固形物在第1过滤膜10的过滤器孔11内及过滤器上静静地相互影响地堆积,如图3所示,形成比固形物最小粒径还小的间隙,构成更加堵孔的过滤器。另外,在此,采用的第1过滤膜10,从原理上看,可采用有机高分子系、陶瓷系中任何1种。但是,在此,采用了平均孔径0.25μm、厚度0.1mm的聚烯径系的高分子膜。另外,图1b表示了由该烯烃系构成的过滤膜表面的照片。
以下,对于该过滤器的形成方法加以说明。
首先,如图1a所示,在第1过滤膜10的上方,有混入固形物的水,在第1过滤膜10的下方,产生通过第1过滤膜10过滤的过滤水。沿箭头的方向流动水,使用过滤膜10过滤水,水自然落下或被加压后移到图的下方。从有过滤水侧吸引水。另外,第1过滤膜10可水平配置,也可垂直配置。
如上所述,通过过滤膜,将水加压、吸引的结果,水通过第1过滤膜10。此时,不能通过过滤器孔11的大固形物12A被捕获在第1过滤膜10的表面上。
通过磨削、研磨或粉碎等机械加工产生的上述固形物,其大小(粒径)在一定的范围内分布,而且各个固形物的形状不同。在此所用的si的切削屑,如图2a所示表示粒径分布、如图2b所示,表示其电子显微镜照片。这样,粒径在0.1~200μm内分布,屑的形状也是为多种多样的。
在浸渍第1过滤膜10的水中,固形物处在任意位置,然后,从大固形物到小固形物不规则地移到过滤器孔11。被任意捕获的大固形物12A构成第2过滤膜13的初级层,该层形成比过滤器孔11小的过滤器孔,通过该小的过滤器孔依次捕获由大固形物12A到小固形物12B。此时,由于固形物的形状分别不同,在固形物和固形物之间,形成各种形状的微细间隙,水将该间隙作为通路移动,最终将水过滤。这很类似于沙滩排水。
进而,对于该过滤器的作用加以说明。
在第1过滤膜10上形成的第2过滤膜13,一边由大固形物12A到小固形物12B随意地捕获;一边慢慢地成长,确保了水(流体)的通路,且捕集了小固形物12。这种状态如图3所示,而且第2过滤膜13只是层状地残存,固形物可如砂子一样地容易移动,所以在层的附近,通过气泡,给与流水或给与声波或超声波,或给与机械振动,进而,用橡皮刷摩擦,可将第2过滤膜13的表层上形成的堆积物简单地移动到排水侧。这样,可容易移动,且可各自分离的结构,即使是第2过滤膜13的过滤能力降低时,在第2过滤膜13上施加外力,也可简单地恢复其过滤能力。另外,造成过滤能力降低的原因主要是堵孔,将发生堵孔的第2过滤膜13表层上的固形物再次移到流体中,反复消除堵孔,可保持过滤能力。
另外,在图2a中,测定该切削屑粒径分布的装置,用于不能检测出比0.1μm小的粒子,所以未表示出比0.1μm小的切削屑的分布。但是,若观察图2b,实际上是含有比它小的粒子的。根据实验表明,过滤混入该切削屑的水时,该切削屑形成在第1过滤膜上,可捕获到0.1μm以下的切削屑。
例如若去除0.1μm以下的切削屑,一般可采用具有比该尺寸小的孔的过滤器。但是,从上述表明,在大粒径和小粒径的分布中,即使采用该尺寸的过滤器孔,也可捕获0.1μm以下的切削屑。
相反,当固形物的粒径的峰是1个0.1μm的峰,其分布在数μm的非常狭窄的范围中时过滤器立即发生堵孔。从图2a也表明,作为固形物的si的切削屑出现大粒径和小粒径的2个峰,而且在~200μm范围内分布,所以提高了过滤能力。另外,如图2b所示,用电子显微镜观察表明,固形物的形状是多种多样的。也就是粒径的峰至少有2个,且固形物的形状多种多样,就可在固形物之间形成大小和形状不同的各种间隙,构成水的通路,由此,可形成堵孔少,也可捕获0.1μm以下屑的过滤器。
可是,若固形物的分布偏移到图右或左时,也可根据其分布改变第1过滤器的孔径。例如若偏移到右边,可采用比0.25μm大的孔径。一般,若孔径变大,通过过滤膜的固形物增加若延长过滤水循环的时间,最终,几乎都可被第2过滤膜13捕获。但是,若过滤器孔径变小,可捕获小固形物的时间变短。
如上所述表明,在第1过滤膜10的表面上将具有0.1μm以下~200μm的粒径分布的固形物形成第2过滤膜13时,可除去0.1μm以下的固形物。另外,最大粒径不限于200μm,在其以上也可以。例如即使是~500μm分布的固形物也可过滤。
因此,如图4表明,在形成由固形物构成的过滤器后,不仅可过滤在排水侧的流体中含有切削屑构成的固形物的排水,而且在通过混入与固形物12种类不同的被去除物14、15的排水时,也能除去这些被去物。
对于以上的例子,在原理上加以了说明,但要按照实际使用状况的例子进行说明。
实际上,在使用时,有在同一槽内形成由固形物12(或固形物和被去除物)构成的第2过滤膜13,接着,使用该第2过滤膜13进行过滤的方法和在另一个槽内形成第2过滤器13,将该过滤器移动,进行过滤的方法。
首先,在实际的过滤工序之前,在同一槽内形成过滤膜的第1个~第4个方法,如图5及图6所示地进行实施。即,在该例中,如图5所示,采取将第1过滤膜10夹在第1贮槽70a和第2贮槽70b之间,在该第1过滤膜10表面上形成第2过滤膜13后,加入混有被去除物的流体进行过滤的方法。
首先,第1个方法是,如图5a所示,在将贮槽70区分为第1贮槽70a和第2贮槽70b的位置上安装第1过滤膜10,从导管72向第1贮槽70a中流入混有固形物12(例如si的切削屑)的流体73,使其自然落下,对于第1贮槽70a的流体加压或吸引导管74,使上述流体移到第2贮槽70b中。此时,在第1过滤膜10上捕获固形物12,形成第2过滤膜13。然后,如图5b所示,形成第2过滤膜13。然后,如图5b所示,通过导管72,将混有被去除物14、15的流体73’加入到第1贮槽70a中,直接进行过滤的方法。
另外,第2个方法是,如图5c所示,在第1贮槽70a贮存的流体73中混入固形物12和被去除物14、15,由固形物12和被去除物14、15形成第2过滤膜13。此时,可从导管72流动混有被去除物和固形物的流体73,或也可以从导管72流动混有被去除物的流体,从贮槽70的外面,向第1贮槽70a中投入固形物。而且,如图5b所示,通过导管72,将混有被去除物14、15的流体73’加入到第1贮槽70a中,直接进行过滤的方法。另外,第3及第4个方法是,如图6所示,从浸渍在含有固形物12的流体中的过滤装置35内部,通过吸引,从导管34吸引流体的方法。该方法中的第3个方法,如图6a所示,若通过导管76、在第1槽75中,流入混有固形物(例如si的切削屑)12的流体73,使装有第1过滤膜10的过滤装置35处于用上述流体73完全浸渍的状态时,通过安装在过滤装置35的导管34吸引流体。该吸引的效果,在第1过滤膜10上捕获上述固形物12,形成第2过滤膜13。而且,如图6b所示,通过导管76,将混有被去除物14、15的流体加入到第1槽75中,确认用第2过滤膜13可捕获被去除物14、15后,进行过滤。
另外,第4个方法,如图6a’所示,将固形物12和被去除物14、15,混入到贮存在第1槽75中的流体73中,用固形物12和被去除物14、15形成第2过滤膜13。此时,也可从导管76流动混有被去除物和固形物的流体73,另外,也可从导管76流动混有被去除物的流体,从第1槽75的外面投入固形物。然后,如图6b所示,通过导管76,将混有被去除物14、15的流体73’加入到第1槽75中,确认用第2过滤膜13可捕获被去除物14、15后,加入混有被去除物的流体73’,进行过滤。
对于在另外的槽中形成过滤器的第5及第6个方法,参照图7及图8加以说明。预先在另外的槽中准备含有固形物、或固形物和被去除物的过滤器,将该过滤器移到加入了混有被去除物的流体的槽中,过滤被去除物。
第5个方法,如图7a所示,是在贮槽70的第1贮槽70a中流入流体73,使其自然落下,将第1贮槽70a的流体加压或吸引导管74,将上述流体移到第2贮槽70b中。
此时,在第1过滤膜10上捕获固形物12,形成第2过滤膜13。然后,若达到规定的膜厚时,从贮槽70中取出,准备如图7b所示的过滤器的方法。然后,如图7c所示,将该2个过滤器贴合,从它们的间隙抽出导管34,构成过滤装置35。然后,如图7d所示,将该过滤装置35浸渍在另一个槽75中,吸引导管34,进行过滤。
另外,对于第1~第4个方法,如图6、图6所示,由于在排水槽内形成第2过滤器,所以在形成第2过滤器这前,不能过滤,但对于第5个方法,由于预先准备了过滤器,所以具有可立即开始过滤的优点。另外,形成第2过滤器13的场所与装有排水的槽,即使离开一定距离,也具有可简单搬运过滤器的优点。
在图7a中,也可在第1贮槽70a的流体73中,混入被去除物14、15,形成由固形物12和被去除物构成的第2过滤器。
第6个方法,如图8所示,是将组装贴合第1过滤膜后形成的过滤装置35,予先浸渍在含有固形物12的流体中,在第1过滤膜上堆积该固形物,形成第2过滤膜的方法。在图8a中,是将只含有固形物12的流体,通过装在过滤装置35上的第1过滤膜10,在第1过滤膜10上形成第2过滤膜13,予先准备如图8b所示的过滤装置35,将该过滤装置35浸渍在如图8c的第2槽77中,过滤现有被去除物的流体的方法。
过滤装置35的结构如图9、图10中详述,采用在第1过滤膜10围住的空间内插入导管34,在该导管34上设置吸引泵(未图示出),通过导管34吸引流体,形成第2过滤膜13的方法。
如上所述,由于予先准备了形成第2过滤膜13的过滤装置35,所以可容易地搬运到离开一定距离的第2槽77,而且,具有在第2槽内没有形成第2过滤膜,就可立即开始过滤的优点。
在用固形物构成过滤器的方法、用固形物和被去除物构成过滤器的方法,或者,予先准备用上述任何1种方法形成的过滤器的方法中,第1过滤膜孔径可设定在固形物(si的切削屑)的粒径分布之间。例如若将上述孔径设定为0.25μm时,可通过0.25μm以下的固形物(si的切削屑)、被去除物(磨粒)。但是,可捕获0.25μm以上的固形物(si的切削屑)和被去除物(磨粒),在第1过滤膜10的表面上形成由固形物和/或被去除物构成的第2过滤膜13。若第2过滤膜13成长时,可依次捕获0.25μm以下,特别是0.1μm附近或比它小的固形物和被去除物。
以下,参照图9、图10,说明更优选的过滤装置35的实施例。该过滤装置35是浸渍在槽(原水槽)中,进行吸引的形式。
图9a所示的符号30是如额缘形状的框,在该框的两面贴合着过滤膜31、32。然后,在用框30、过滤膜31、32围住的空间33中,通过吸收导管34,产生用过滤膜过滤的过滤水。然后,通过密封安装在框30的导管34抽出过滤水。当然,过滤膜31、32和框30是完全密封的,以便不使排水从过滤膜外浸入上述空间。
可是,图9a的过滤膜31是薄的树脂膜,在吸引时,也有时内侧挠起,而被破裂。为此,必须将该空间尽量做小。另一方面,为了加大过滤能力,需要更多地形成该空间,其改进情况如图9b所示。在图9b中,仅表示了9个空间33,但实际上形成了很多空间。另外,实际采用的过滤膜31、32是约0.1mm厚的聚烯烃系的高分子膜,如图9b所示,将薄的过滤膜31、32连续地形成为袋状,在图中用FT表示。在该袋状的过滤器FT中,插入将与导管34一体化的框30,使上述框30和上述过滤器FT贴合。然后,通过压紧装置RG,从贴合了过滤膜31、32的框30的两侧进行压紧,并且从压紧装置的开口部OP露出过滤膜31、32。图9c是将过滤装置35作成圆筒形的。安装在导管34上的框是圆筒形的,在侧面上设置开口部OP1、OP2。由于对应于开口部OP1和开口部OP2的侧面可以卸下,所以在开口部之间设置支承过滤膜31的支承装置SUS。然后,在SUS侧面上贴合过滤膜。
进而,参照图10,详述改进了的过滤装置35。首先,相当于图9b的框30的部分,在图10b中相当于30a。
框30,如瓦楞纸板一样,2个薄板状体之间,用纵向排列的多个隔壁隔开,形成多个小室,在该薄板状体上形成多个孔HL,通过该孔HL,形成在小室内可流通水的形状。即,在0.2mm左右的薄树脂板SHT1、SHT2之间,纵向地设置多个部件SC,用树脂板SHT1、SHT2、部件SC围起来,构成空间33。该空间33的水平剖面是由长3mm、宽4mm构成的矩形,换句话说,是具有该矩形剖面的几根麦杆并列成为一体样的形状。框30a是以一定的间隔,保持两侧的过滤膜FT(FT1、FT2),所以以下称为隔板。
在构成该隔板30a的薄树脂板SHT1、SHT2的表面上开有很多直径为1mm的孔HL,在其表面上贴合过滤膜FT。因此,用过滤膜FT过滤的过滤水,通过孔HL、空间33,最后从导管34中出来。
另外,过滤膜FT贴合在隔板30a的两面SHT1、SHT2上。在该板SHT1、SHT2上含有没有形成孔HL的部分,若在其上直接贴合过滤膜FT1,由于对应于没有形成孔HL的部分的过滤膜FT1没有过滤功能,排水通不过,所以产生不能捕获被去除物的部位。为了防止该现象产生,至少要贴合2个过滤膜FT。最表面侧的过滤膜FT1是捕获被去除物的过滤膜,沿着从该过滤膜FT1,向隔板30a的表面SHT1,设置具有比过滤膜FT1孔大的过滤膜。在此处贴合1个过滤膜FT2。因此,由于在隔板30a未形成孔HL的部位也设置过滤膜FT2,所以过滤膜FT1整个面上都具有过滤功能,可在过滤膜FT1的整个面上捕获被去除物,在表内面SHT1、SHT2的整个面上形成第2过滤膜。另外,在图上也表示出过滤膜FT1、FT2成矩形状的板,但实际上如图9b所示,形成袋状的过滤膜。
以下,参照图10a、图10c及图10d,说明如何安装袋状过滤膜FT1、FT2、隔板30a及压紧装置RG。
图10a是完成图;图10c是如图10a的A-A线所示的,表示从导管34的头部在导管34的延长方向(纵向)的剖面图,图10d是如B-B线所示的,将过滤装置35水平方向断开时的剖面图。
如图10a、图10c、图10d表明,插入到袋状过滤膜FT的隔板30a,也包括过滤膜FT,用压紧装置RG夹住4个侧边。然后,扎成袋状的3个侧边,用涂敷在压紧装置RG的粘结剂AD1固定。另外,在剩余的1个侧边(袋的开口部)和压紧装置RG之间,形成空间SP,在空间33中产生的过滤水,通过空间SP,被吸入导管34中。另外,在压紧装置(金属件)RG的开口部OP上全圆周地涂敷粘结剂AD2,使其完全密封,作成从过滤器以外不能进入流体的结构。
因此,若将空间33和导管34连通,吸引导管34时,流体通过过滤膜FT的孔、隔板30a的孔HL从空间33通过,作成可从空间33,经过导管34,向外部输送过滤水的结构。
图11是概念性地表示这样形成的过滤装置35的动作。在此,若用泵等吸引导管34侧,可像没有剖面线箭头那样地流动过滤水。
首先,将过滤装置35浸渍在贮存混有固形物16的流体的槽中,通过导管34进行吸引。然后,如没有剖面线箭头那样地使流体通过。使小固形的16B通过,但大固形物16A被第1过滤膜31、32捕获,小固形物16B也慢慢地被捕获。当固形物比规定的混入率少时,就形成了第2过滤膜36。
接着,如图12所示,将形成该第2过滤膜36的过滤装置35,放置在混有被去除物的排水37中。然后通过吸引导管34,用第2过滤膜36捕获被去除物。此时,由于第2过滤膜36集合了固形物16,所以在第2过滤膜36上给与外力,可除去第2过滤膜36,或除去第2过滤膜36的表层。另外,由于作为被去除物的磨粒14、被研磨物(磨削物)15也是固体的集合,所以可施加外力,从第2过滤膜36上简单地脱离,而向排水37移动。
该除去或脱离是可通过气泡的上升力、水流、声波、超声波振动、机械振动、橡皮刷摩擦,或使用搅拌机等方法简单地实现。另外,被浸渍的过滤装置35本身,作成在排水(原水)中是可以活动的结构,可在第2过滤膜36的表面产生水流,除去第2过滤膜36和被去除物14、15。例如在图12中,可将过滤装置35的底面作为支点,如箭头Y那样地左右动作。此时,由于过滤装置本身是可以活动的,可产生水流,除去第2过滤膜36的表层。另外,在同时采用后述的气泡发生装置54时,若采用上述活动机构,可使气泡达到整个过滤面,且将去除物高效地移动到排水侧。
另外,若采用如图9c所示的圆筒形的过滤装置,可使过滤装置本身以中心线CL为轴地旋转,比图12的板状过滤器左右动作的方法减少排水的阻力。通过该旋转,可在过滤膜表面上产生水流,将第2过滤膜表层的被去除物移到排水侧,从而保持过滤能力。该旋转可连续进行,也可间歇进行。
在图12中,作为除去第2过滤膜表层的方法,采用了气泡上升的方式。在用斜线构成剖面线的箭头方向上升气泡,该气泡的上升力和气泡的破裂,对于被去除物和固形物直接给与外力,另外,通过气泡的上升力和气泡破裂产生的水流,对于被去除物和固形物给与外力。通过该外力,可使第2过滤膜36的过滤能力经常再生,保持大致一定值。
本发明的重点在于保持过滤能力。也就是,即使第2过滤膜36发生堵孔,其过滤能力下降,也可如上述气泡那样,对构成第2过滤膜36的固形物16和被去除物14、15给与外力,使构成第2过滤膜36的固形物16和被去除物14、15移到排水37侧,长期地保持过滤能力。
这可认为是给与了外力,使第2过滤膜厚度大致保持一定的缘故。另外,宛如被去除物1个个地在过滤水的入口处加上塞子,塞子由于受到外力而卸下,从卸下处浸入过滤水,另外,当塞子形成后,再一次受到外力而卸下,重复地进行,而且,通过调节气泡的大小、气泡量、碰着气泡的时间,具有可持续保持过滤能力的优点。
再者,只要能保持过滤能力,也可持续地施加外力,也可间歇地施加外力。
另外,对于所有的实施方案说,过滤膜必须完全浸渍在原水中。这是由于若第2过滤膜长时间地接触空气,膜变得干燥、剥落、崩解的缘故。另外,若过滤器即使稍微接触空气,由于过滤膜吸引空气,使过滤能力降低。
如上所述,若从本发明原理考虑,只要第2过滤膜36形成在第1过滤膜31、32上,第1过滤膜31、32也可以是片状的高分子膜,也可以是陶瓷制的,也可以是吸引型或加压型的。但是,实际采用时,第1过滤膜31、32用高分子膜,而且是吸引型的。其理由如下所述。
首先,若作成片状的陶瓷过滤器,其成本相当高,产生裂纹时会泄漏,不能进行过滤。另外,若是加压型的,必须将排水加压。例如以图13的槽50作为例子,为了加压,槽的上方不能是开放的,而必须是密封型的。若是密封型,则难以发生气泡。另一方面,采用高分子膜时,可廉价且容易地制得各种尺寸的片或袋状的过滤器。另外,由于高分子膜具有柔软性,不会发生裂纹,且在片上也容易形成凹凸。若形成凹凸,第2过滤膜可抓在高分子膜上,防止在排水中剥离。且若是吸引型,贮槽可以是开放型的。
另外,若是加压型,则难以形成第2过滤膜。在图12中,若将空间33内的压力假定为1,排水必须加到1以上的压力。因此,可认为在过滤膜上加了负荷,进而以高压固定了所捕获的被去除物,使被去除物难以移动。那么,参照图13,对于采用上述高分子膜作为过滤膜的吸引型结构的实施方案加以说明。本结构中,有3种方法形成第2过滤膜。
即,第1种方法是,将装有第1过滤膜的过滤装置53安装在原水槽50中。进而,在原水槽50内的流体中混入固形物。然后,吸引导管56,形成第2过滤膜,形成第2过滤膜后,通过导管51,将混入被去除物的排水加入到原水槽50中,开始过滤。
第2种方法是,将装有第1过滤膜的过滤装置53,安装在原水槽50中。进而,在原水槽50中的排水内混入固形物40被去除物。然后,吸引导管56,形成第2过滤膜。形成第2过滤膜后,通过导管51,供给混入被去除物的排水,开始过滤。
第3种方法是,不用原不槽50,而用另外的槽,准备在第1过滤膜上形成第2过滤膜的过滤装置,将其设置在槽50中的方法。然后,从导管51供给混入被去除物的排水,若排水完全浸渍上述过滤装置35后,开始过滤。
另外,在此,作为构成第2过滤膜的固形物,使用切削屑。
图13中的符号50,是原水槽。在该槽50的上方,作为排水供给部件,设置导管51。该导管51是混入被去除物的流体通过之处。例如若在半导体领域加以说明,是混有从切削装置、基底研磨装置、镜面抛光装置或CMP装置中流出的被去除物的排水(原水)通过之处。另外,该排水是以混入从CMP装置流出的磨粒,通过磨粒研磨或磨削的屑的排水加以说明的。
在贮存在原水槽50的原水52中,设置多个形成第2过滤膜的过滤装置53。在该过滤装置53的下方,例如设置在导管上开有小孔,如鱼缸中所使用的鼓泡装置的气泡发生装置54,调整其位置,以便正好使气泡从过滤膜的表面通过。55是吹气装置。
固定在过滤装置53上的导管56,相当于图12的导管34。在该导管56中流过用过滤装置53过滤的过滤流体,通过第1个阀58,选择性地输送到对着原水槽50侧的导管59和对着再利用(或被排水)侧的导管60。另外,在原水槽50的侧壁及底面装有第2个阀61、第3个阀62、第4个阀63及第5个阀64。另外,安装在导管65顶端的是另外设置的过滤装置66。
从导管51供给的原水52贮存在原水槽50中,通过过滤装置53进行过滤。安装在该过滤装置的过滤膜表面,通过气泡,用气泡的上升力及破裂、移动捕集在过滤膜上的被去除物,可持续地保持其过滤能力不降低。
另外,在重新安装带有第2过滤膜的过滤装置或由于休息日,长期停止或在导管56中混入比规定的混入率高的被去除物时,设计成使用阀58,通过导管59,将过滤流体循环到原水槽50中。此外,将阀58切换到导管60,使过滤流体再利用,移送到排水处理侧。
在将带有第2过滤膜的过滤装置53重新安装在原水槽50时,根据过滤膜的尺寸、吸引速度,其循环时间有所不同,但大约循环1小时。若即使第2过滤膜的一部分崩解,也能在此时间内自行修复,形成可捕获到0.1μm以下的硅屑的膜。但是,若过滤膜的尺寸小,即使是30分钟,也可以。因此,判断循环时间,可用定时器设定,经过规定的时间后,自动切换到第1个阀58。
在此,过滤装置采用图10的结构,安装过滤膜的框(压紧器具RG)的尺寸是长约100cm、宽约50cm、厚约5~10mm。
在被去除物从规定的混入率(浓度)高时,过滤流体被判断为非正常水,自动开始循环,或停泵57,停止过滤。另外,循环时,要考虑排水从槽50溢出的可能,也可停止从导管51向槽50供给流体。以下,简单地叙述这种情况。
第1种情况,是重新安装过滤装置53时。
在输送工序等中,有第2过滤膜破裂的情况,所以在开始过滤工序之前,使用该过滤装置循环过滤流体,在过滤膜上捕获被去除物进行修复。成长第2过滤膜直到可以用第2过滤膜捕获目的粒径为止(直到被去除物达到规定的第1混入率为止),然后,在达到第1规定值后,通过第1个阀58,将过滤流体移送到导管60中。
第2种情况,是因休息日、长期休假、因维修等停止过滤、再次开始过滤的情况。
由于第2过滤膜是由被去除物构成的,且处在排水中,若长时间停止过滤,恐怕有一部分膜表层损坏。循环是为了修复被损坏的膜而进行的。在实际中,由固形物构成的第2过滤膜牢固地附着在第1过滤膜上,另外,由于其表面用被去除物盖住,所以没有上述膜的损坏。但是为了慎重起见,在此还要进行循环。若过滤流体达到第1规定值时,切换第1个阀58,送到导管60中。另外,也可以在至少达到第1规定值,在开始过滤时发生气泡。
第3种情况,是在过滤流体中混入应捕获的被去除物的情况。
在第2过滤膜有一部分损坏,或过滤膜破裂时,在过滤流体中混入大量的被去除物。
在第2过滤膜有一部分损坏,且比规定的浓度(第2个规定值)高时,用第1个阀58,通过导管59循环过滤流体,停止过滤。然后,开始循环,修复第2过滤膜,在使过滤流体中的被去除物达到规定的混入率(第1规定值)时,切换第1个阀58,将过滤流体送往导管60。另外,至少在达到第1规定值,过滤开始时发生气泡。
另外,第1过滤膜破裂时,必须更换第1过滤膜或更换过滤装置53。但是,由于过滤装置53是用粘结剂AD1、AD2粘结成一体的,所以实际上只更换第1过滤膜是不可能的。因此,要更换可形成第2过滤膜的过滤装置53。此时,确认第2过滤膜能捕获规定的被去除物,在不能捕获时,要使其循环,提高过滤能力。另外,确认能捕获时,用第1阀58个切换,将过滤流体送到导管60中。
第4种情况,是原水槽50的排水水位下降,过滤膜与大气接触的情况。
在过滤膜与大气接触之前,通过设在排水中的水位传感器(图15的符号FS)停止过滤。此时,也可停止发生气泡,这是由于从配管51供给排水,担心由于气泡发生湍流,使第2过滤膜损坏的缘故。然后,在达到可以过滤的规定排水水位后,开始循环。在循环期间,检测被去除物,在过滤流体中的被去除物达到规定的混入率(第1规定值)时,切换第1个阀58,将过滤流体送到导管60中。
另外,表示过滤流体中的被去除物浓度的第1规定值与第2规定值,可以相同,也可以将第2规定值设定成与第1规定值具有一定的差。
另外,传感器67要作成对固形物和被去除物持续传感的。作为传感器,将使用受光,发光元件的光传感器,夹住过滤流体地进行配置,用受光元件接收来自发光元件的光,测定受光能对于该发光能的比例,由于恒常能测量固形物和被去除物混入过滤流体中的程度,所以可检测过滤能力的状态。作为发光元件,可考虑发光二极管和激光器。另外,传感器67可装在导管56中的途中或装在导管59的途中。
以下,对于混入从CMP装置流出的被去除物的排水是如何过滤的问题,加以说明。
图14a、b是表示含在CMP用浆液中的磨粒的粒径分布情况。该磨粒是将由si氧化物构成的层间绝缘膜进行CMP处理的,材料是由si氧化物构成的,一般称为二氧化硅。最小粒径约为0.076μm、最大粒径是0.34μm。该大粒子是多个这些粒子集合成的凝聚粒子。另外,平均粒径约为0.1448μm,在其附近0.13~0.15μm中分布,形成峰。另外,作为浆液的调节剂,一般使用KOH或NH3。PH在约10~11之间。
图14C是表示过滤CMP排水,捕获磨粒的数据。在实验中,用纯水将上述浆液的原液稀释成50倍、500倍、5000倍,作为试验液使用。该3种试验液,如以往例子说明的那样,在CMP工序中,由于用纯净水洗涤晶片,所以估计准备排水达到50~5000倍左右,分别将其加入到图13的原水槽50中,使用过滤装置53进行过滤。
若用400nm波长的光测定过滤前的试验液的光透过率时,50倍的试验液是22.5%、500倍的试验液是86.5%、5000倍的试验液是98.3%。由于磨粒含在排水中,发生光散射,随着浓度变浓,透过率变小。
另一方面,3种试验液过滤后的透光率,都是99.8%。也就是,过滤后的光透过率比过滤前的光透过率值大,所以表明能捕获磨粒。另外,稀释50倍的试验液的透过率数据,由于该值小,在图上被省略。
从以上结果表明,用具有由固形物16A、16B形成的第2过滤膜的过滤器过滤从CMP排出的被去除物时,可过滤到透过率为99.8%左右。
形成第2过滤膜的固形物,可用研磨、磨削、粉碎等机械地制作,也可从自然界获取。另外,其粒径分布,优选的是具有如图2的粒径分布。特别是粒径分布在1μm以下,具有第1峰,在20~50μm时,具有第2峰,优选的是第2峰附近的大固形物的比例比第1峰附近的小固形物的比例大。
另一方面,也可将被去除物以加工中产生的粒径分布,混入到排水中,将其过滤。另外,也可将其他微粒子混入到该排水中,调节含有被去除物和上述微粒子的总的粒径分布,以达到如图2所示的分布或接近它的分布。例如图14所示,CMP排水中的被去除物,约在0.1μm附近形成峰,为了使其在1μm以下的狭窄范围内分布在中心,也可将具有图2a的约1μm~约200μm分布的微粒子(例如切削屑)混入到CMP的排水中。因此,在由固形物构成的第2过滤器上捕获、形成的膜,有与第2过滤器相同的间隙,具有可保持被去的的捕获性及流体的透过率性的优点。
CMP用的磨粒主要有二氧化硅系、氧化铝系、氧化铈系、金刚石系,此外,还有氧化铬系、氧化铁系、氧化猛系、BaCO4系、氧化锑系、氧化锆系、氧化钲系。二氧四化硅系可用于半导体的层间绝缘膜、P-Si、SOI等平坦化、Al·玻璃盘的平坦化。氧化铝系可用于硬盘的抛光、金属全面、si氧化膜等的平坦化。另外,氧化铈可用于玻璃抛光、si氧化物的抛光、氧化铬可用于钢铁的镜面研磨。另外,氧化猛、BaCO4可用于钨布线的抛光。
进而,也有含称为氧化物胶的。该胶是将二氧化硅、氧化铝、氧化锆等金属氧化物或一部分氢氧化物构成的胶粒大小的微粒子均一地分散在水或液体中的,可用于半导体器件的层间绝缘膜和金属的平坦化,另外,对铝·盘等信息盘也有研究。
这些磨粒与图14a、b的粒径大小相同,当然它们也可作为被去除物进入排水的过滤、捕获磨粒。
以下,对于含有通过过滤得到的被去除物的浓缩水的处理加以说明。在图13中,原水槽随着时间的推移,被去除物被浓缩。在达到所希望的浓度时,停止过滤操作,使其凝聚沉淀、放置。于是,槽中的原水大致分成层状。也就是,按照从上层到下层,分布成从略微透明的流体到完全不透明的流体。使用阀门61~64将它们分别回收。
例如,将略微透明而被去除物少的原水,打开第2个阀61,通过过滤装置66进行回收。接着,依次打开阀62、63,回收流体。最后,打开阀64,回收贮存在原水槽浓缩浆液。
若先打开阀64,由于原水的自重而流出浓缩浆液,而且上方的流体也流出,难以控制。因此,按照61、62、63、64的顺序,打开阀进行回收。
另外,在图13的中下方(用点线围住的图),图示出原水槽的原水水位检查装置80。它是在原水槽50的侧面安装L型的导管81,另外,根据原水的水位,至少安装1个导管82。该导管82的外径作成与导管81的内径一致,成为嵌合的状态。
例如,若在比阀63的安装高度稍高的位置定为原水的水位时,安装导管82,在伸向上方的导管82上安装透明视窗,可确认原水的水位。因此,可一边通过该视窗确认原水水位;一边最大限度地除去浓缩浆液以外的原水。
若该导管本身采用玻璃等透明材料制成时,不安装视窗就可确认原水水位。另外,也可予先安装该检查装置。
另一方面,在图13的左下方,图示出可最大限度地取出浓缩浆液上方水的位置。也就是,在原水槽50的内侧,如图所示,安装L型导管81。在确定的时间内,特定出被去除物量,另外,只要特定出浓缩浆液量,就可予先决定导管81的头部的高度。因此,只要在比浓缩浆液的上层高出若干高度处配置导管81和82的顶部,就可使原水自动地流到过滤装置66中,达到该高度。另外,即使误开阀63,也可在该导管81和82的顶部水位,停止原水流出。另外,在增减该浓缩浆液的水位时,可卸下导管82,调节采取原水的水位。当然,导管82可准备多个,也可根据水位安装在几段位置上。
另外,对于用凝聚沉淀法回收浓缩水的方法加以说明,但不受这些限制。例如,若原水52达到一定浓度,也可以移到其他过滤装置66(FD)中。例如CMP使用含有药品和0.1μm以下的磨粒的浆液。抛光时流动水,排出比上述浆液浓度稀的排水。但是,排出的原液随着过滤,其浓度变浓,同时产生粘性。当过滤装置和过滤间隙狭窄时,气泡难以进入过滤装置之间,使气泡不能给与固形物和被去除物以外力。而且,如图14b所示,若被去除物非常微细,过滤能力很快降低。因此,若达到规定浓度时,优选的是将该原液移到其他的过滤装置FD中。例如,如图13右下方所示,也可在过滤器FT的上层流入原水,采用以泵P真空吸引原水的过滤装置。另外,也可将该过滤装置FD安装在浓缩回收导管上,进行回收。
在此,通过过滤器FT进行过滤,吸引到高浓度的原液结块的程度。另一方面,将原液移到过滤装置FD中,可使原水槽50的原水水位下降,但从导管51供给浓度稀的原水。然后,若原水浓度变稀,原水将过滤器完全浸没时,只要再次设定开始,原水的粘度降低,气泡进入过滤装置之间,可对于固形物给与外力。
另外,作为被去除物的回收装置,也可使用过滤装置FD和66。例如,混入被去除物的原水槽50达到规定的浓度时,也可不进行凝聚沉淀,而用过滤装置66(FD)进行分离。例如,过滤硅屑时,由于被分离的硅屑与在凝聚沉淀中使用的药品不进行反应,所以硅屑的统纯度是高的,再次进行熔融,可作成晶片用的si锭块。另外,可与瓦片材料、水泥、混凝土材料等在各个领域中进行再利用。
如上所述,对于图13的系统,由原水槽50、过滤装置(浸渍·吸引)53、小型泵57构成。特别是,由于在低压下进行吸引,以使第1过滤器不堵孔,所以具有泵57可以是小型的优点。另外,以往,由于原液从泵中通过,泵内被磨损,寿命非常短。但是,本结构,由于过滤流体通过泵57,所以其寿命远远变长。因此,可使系统的规模变小、节约运行泵57的电费,进而,大幅度地减少更换泵的费用,还可降低初始成本和运转成本。
另外,过滤膜是聚烯烃系的膜,即使落下也不破裂,机械强度高,对于酸、碱等药品的耐蚀性也高。因此,可处理高浓度的原水,在带有过滤膜的状态下,也可进行凝聚沉淀。
另外,在其他槽中不能凝聚沉淀的,可利用原水槽进行凝聚沉淀,所以不需要更多的导管和泵,可成为节能型的过滤系统。
另外,过滤装置是吸引过滤,在低流速、低压力下进行过滤,所以通过形成第2过滤膜,可防止固形物或被去除物进入上述第1过滤膜的细孔中,提高过滤能力。另外,通过鼓泡等施加外力的手段,可连续地进行过滤。由于第1过滤膜破坏或变形,而在不使第2过滤膜受到破坏的范围内设定过滤速度、过滤压力,实质上,过滤速度可达到0.01~5米/Day、过滤压力可达到0.01kgf/cm2~1.03kgf/cm2(1个大气压)。
另一方面,可防止固形物或被去的向过滤膜内部附着,所以几乎不需要以往所必须的反洗涤。
以上,对于作为固形物的由si晶片产生的硅屑、作为被去除物的由CMP产生的磨粒、被研磨物(磨削物)加以说明,但本发明可在各个领域中使用。
也就是,作为固形物,也可用其他材料作成如图2a所示的粒径分布。例如也可用氧化铝、沸石、硅藻土等、陶瓷、金属材料等无机物,作成该分布,形成第2过滤膜。另外,关于峰,在图2a中有2个,但只要大粒径和小粒径的固形物基本上在~数500μm的范围内分布,就可进行过滤。进而,固形物,即使混入其他材料,也没有问题。另外,被去除物,只要实质上是固形物,就完全可以过滤。
排水对地球环境存在有某些危害,但是本发明,如实施例最初说明的,可在各种领域中使用,通过采用本发明,可大幅度地减少其危害。
特别是,存在产生具有二恶英物质的垃圾焚烧场、精制产生放射物物质的铀精制工场或发生含有有害物质的粉末工场,但可通过采用本发明,将具有有害物质的屑,最大限度地从大到小地除去。
另外,被去除物,只要是在周期表中含有2a族~7a族、2b~7b族的元素中至少1种的无机固形物,几乎都可采用本发明方法除去。
以下,参照图15,对被去除物的回收加以说明。
首先,通过导管51,混入被去除物(例如CMP的排水),开始过滤。在此,确认过滤流体的被去除物的混入率,在比所希望的混入率高时,使其进行循环,在确认比所希望的混入率低时,开始过滤。在开始过滤时,通过第1个阀58,从导管59切换到导管60。气泡发生装置54至少从此时起动。另外,符号70是检测通过导管56的过滤流体压力的压力计,符号71是流量计。
然后,连续地进行过滤,若原水槽50的排水浓度超过规定浓度时,打开阀61~64中的任何1个,使原水52,流入到过滤装置FD中。将过滤装置53,以几十个平行地配置在原水槽52中。可是,若粘度变高时,在过滤装置53中间难以浸入气泡,抑制了气泡向第2过滤膜表面的通过。因此,若排水超过规定浓度时,为了降低排水的浓度,将排水的至少一部分移到过滤装置FD中,用从导管51流出的排水,使其浓度降低。
该过滤装置FD分为第1槽72和第2槽73,在该2个槽72、73之间配置具有比第1个过滤膜孔粗的过滤器FT。然后,用泵等吸引导管74,将原液强制地移到第2槽73中。
通过在过滤装置FD中过滤,在过滤器FT上生成作为被去除物的结块的回收物75,将该回收物加入到容器76中,进行回收。另外,在干燥回收物时,由于飞散,所以可将容器作成密封的。
然后,在继续回收中,原水槽50的水位下降,但由于过滤装置FD的过滤流体再次回到原水槽50中,从导管51供给排水,所以使原水槽50内的原水浓度降低,又可以开始过滤。用水位传感器FS检测根据排水的水位,停泵、起动泵的时间。
进而,参照图16,对于去除CMP排水中的磨粒、被研磨物(磨削物)的过滤流体,进行再利用的方法,加以说明。
通常,将用符号80表示的CMP装置,如图20所示地配置成系统,但在图上表示了图19的CMP装置。除了该CMP装置之外的其他结构,与图13、图15相同。
符号252是设置在旋转盘250上的半导体晶片,253是浆液。另外,虽然未图示出,但也设有喷淋晶片252及旋转盘250的淋洗盘。
在该CMP装置下方的晶片洗涤机构部具有接收排水的容器BL、在容器BL的一处装有与原水槽50连接的导管51。另外,详细的情况由于在图19、图20中已说明,故在此处省略。
在排水中,除了浆液原液(主要含有稀释剂、PH调节剂及磨粒)之外,还混入由粒状的被研磨物或被磨削物、半导体晶片的构成物质组成的离子及水,通过过滤装置53,实质上,几乎将混入浆液的磨粒及被研磨物(或被磨削物)都捕获了。因此,通过导管60的流体含有除去了磨粒的浆液原液(例如作为调节剂的KOH或NH3和稀释剂)、水及离子,所以只要在导管71中安装除去上述水和离子的精制装置,就可将过滤流体进行再利用。然后,在精制的浆液原液中再次混入磨粒,进行搅拌就可作为CMP装置用的浆液,进行再利用。
另外,通过导管72,将上述过滤流体移送到另外的槽中,可将其运到精制工厂,进行委托精制。通过作成这样的系统,可将大量废弃的CMP的排水进行再利用。
以下,参照图17,说明与纯净水制造系统的关系。
首先,在工业用水槽101中贮存工业用水。将该工业用水,通过过滤器102、103,用泵P1送往过滤水槽104中。过滤器102是碳过滤器,可除去垃圾、有机物。另外,过滤器103可除去由过滤器102产生的碳。
接着,将过滤流体,通过反渗透过滤装置105,用泵P2,送往纯净水槽106。该过滤装置105是使用反渗透膜的,在此,可除去0.1μm以下的屑(垃圾)。然后,将纯净水槽106的纯净水,通过UV杀菌装置107、吸附装置108、109及降低纯净水电阻值的装置110,送往纯净水槽111。
UV杀菌装置107是如字那样的紫外线,对纯净水进行杀菌,符号108、符号109是进行离子交换,除去离子的装置。另外,符号110是在纯净水中混入二氧化碳的装置。若纯净水电阻值高,使刀片产生充电问题,所以要刻意地降低其电阻值。
然后,使用泵P3,供给纯净水作为CMP装置洗涤用。符号112是过滤器,将约0.22μm以上的屑(垃圾)再次除去。
接着,使用泵P4,将在CMP装置中产生的排水贮存在原水槽113中,用过滤装置114进行过滤。这与图9、图10中叙述的相同。然后,用与导管120连接的精制装置121精制在过滤装置114中过滤的过滤流体,将被分离的水送回到过滤水槽104中。另外,在用精制装置精制的流体中,也可混入磨粒,再次作为CMP的浆液,进行再利用。
在此,在过滤装置114中,在过滤流体中混入被去除物,将其返回到原水槽113中,进行循环。
一般,为了将除去混入在CMP的浆液中磨粒那样的0.1μm级颗粒,通常采用比该颗粒小的孔的过滤膜。但是,本发明是将与被去除物相同程度及其尺寸大的固形物进行叠层,作成第2过滤膜,将在第2过滤膜上形成的多个间隙作成流体的通路使用的,所以只要将形成第2过滤膜的过滤装置浸渍在排水中,就可去除0.1μm级的流体。因此,用形成第2过滤膜的过滤装置、泵、槽组成的系统,可实现设备费用低、运转成本也低的高精度过滤装置。
而且,第2过滤膜本身是固形物的集合体,所以可将造成堵孔原因的被去除物及固形物从第2过滤膜上脱离,实现长期保持过滤装置的过滤能力的目的。进而,通过循环,使排水内的被去除物和/或固形物作成第2过滤膜,并成长,可形成具有能捕获到规定粒径的过滤性能的第2过滤膜,另外,第2过滤膜也可自行修复。
因此,可制成比以往过滤装置大幅度地减少维修的过滤装置。
权利要求
1.一种流体中被去除物的除去方法,其特征是包括准备含有与流体中的被去除物不同的固形物的过滤器的工序和、使上述流体通过上述过滤器,除去上述流体中的被去除物的过滤工序。
2.按权利要求1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括在作为基体的第1过滤器上面堆积上述固形物,形成第2过滤器的工序。
3.按权利要求1所述的流体中被去除物的除去方法,其特征是上述固形物含有比含在流体中的被去除物粒径分布广的固形物。
4.按权利要求1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将固形物混入含有被去除物流体的工序和、使混入了上述固形物的上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器的工序。
5.按权利要求1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将比含在上述流体中的被去除物粒径大的固形物混入含有被去除物流体的工序和、使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器的工序。
6.按权利要求1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括形成含有与流体中的被去除物不同组成的固形物的过滤器的工序。
7.按权利要求1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将与上述流体中的被去除物不同组成的固形物添加到含有被去除物的流体的工序和、使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器的工序。
8.按权利要求1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将第1过滤器浸渍在含有与上述的被去除物不同的固形物的流体中,使与流体中的被去除物不同的固形物通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器的工序,而后,导入含有上述被去除物的流体,除去上述流体中的上述被去除物。
9.一种流体中被去除物的除去方法,其特征是将含有被去除物的流体和与被去除物不同的固形物导入具有第1过滤器的槽内,使上述流体通过第1过滤器,在上述第1过滤器表面上形成含有上述固形物的第2过滤器,除去上述流体中的被去除物。
10.按权利要求1所述的流体中被去除物的除去方法,其特征进而包括当含有上述被去除物的流体是酸性或碱性时,将中和剂混入上述流体中,中和上述流体的工序。
11.按权利要求1所述的流体中被去除物的除去方法,其特征是准备上述过滤器的工序,包括将含有上述被去除物的流体循环通过过滤器或者第1过滤器的工序。
12.按权利要求2所述的流体中被去除物的除去方法,其特征是上述过滤器或第2过滤器含有不同大小的上述固形物或者被去除物。
13.按权利要求2所述的流体中被去除物的除去方法,其特征是上述固形物或者上述被去除物含有不同大小的粒子,上述第1过滤器的孔的尺寸比最小的粒子大,比最大的粒子小。
14.按权利要求2所述的流体中被去除物的除去方法,其特征是上述固形物或者被去除物含有絮凝状的粒子,上述第1过滤器的孔的尺寸比最小的粒子大,比最大的粒子小。
15.按权利要求2所述的流体中被去除物的除去方法,其特征是上述最小的固形物或者上述被去除物的粒径是0.25μm以下、上述最大的固形物或者上述被去除物的粒径是10μm以上。
16.按权利要求2所述的流体中被去除物的除去方法,其特征是上述固形物或者上述被去除物是具有2个峰的粒径分布,上述第1过滤器的孔是2个峰间的距离。
17.按权利要求2所述的流体中被去除物的除去方法,其特征是比上述第1过滤器孔大的上述固形物或者上述被去除物的比例与比上述第1过滤器孔小的上述固形物或者上述被去除物的比例大。
18.按权利要求1所述的流体中被去除物的除去方法,其特征是上述过滤工序中,在开始除去被去除物后,使之循环规定的时间。
19.按权利要求18所述的流体中被去除物的除去方法,其特征是上述循环工序包括检测通过上述过滤器的流体中被去除物的混入程度的检测工序,在达到第1规定值以下时停止循环。
20.按权利要求19所述的流体中被去除物的除去方法,其特征是上述过滤工序包括检测通过上述过滤器的流体中被去除物的混入程度的检测工序,在达到第2规定值以上时开始循环。
21.按权利要求19所述的流体中被去除物的除去方法,其特征是上述检测工序使用光传感器,检测上述流体的光透过率。
22.按权利要求1所述的流体中被去除物的除去方法,其特征是上述过滤工序是由使用上述过滤器边吸引边过滤上述流体而构成的。
23.按权利要求22所述的流体中被去除物的除去方法,其特征是上述流体的吸引压力是0.2~0.5kg/cm2。
24.按权利要求2所述的流体中被去除物的除去方法,其特征是包括在上述过滤器的表面给与外力,以便使上述第2过滤器的构成物可以移动的工序。
25.按权利要求24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序,是间歇地给与外力的工序。
26.按权利要求24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序,是沿着第1过滤器的表面供给气流的工序。
27.按权利要求24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序,是给与可以使构成上述第2过滤器的被去除物的一部分脱离程度的外力的工序。
28.按权利要求24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序包括控制上述外力,以便使上述第2过滤器的膜厚保持一定的工序。
29.按权利要求24所述的流体中被去除物的除去方法,其特征是上述过滤器是垂直方向配制的、上述外力是气泡上升力。
30.按权利要求24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序是对上述过滤器给与机械振动的工序。
31.按权利要求24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序是在上述流体中产生声波的工序。
32.按权利要求24所述的流体中被去除物的除去方法,其特征是给与上述外力的工序是在上述流体中产生液流的工序。
33.按权利要求2所述的流体中被去除物的除去方法,其特征是上述第1过滤器是由聚烯烃系高分子构成的。
34.按权利要求2所述的流体中被去除物的除去方法,其特征是上述第1过滤器表面具有凹凸。
35.按权利要求2所述的流体中被去除物的除去方法,其特征是上述第1过滤器是二层结构,其间形成间隙,可以插入吸引用管的过滤器。
36.按权利要求2所述的流体中被去除物的除去方法,其特征是上述第2过滤器含有从Si、SiGe、Al2O3、Si氧化膜、金属氧化物或者周期表中IIa族~VIIa族、IIb族~VIIb族的元素中选出的至少1种。
37.按权利要求2所述的流体中被去除物的除去方法,其特征是上述第2过滤器含有Si。
38.按权利要求37所述的流体中被去除物的除去方法,其特征是上述第2过滤器含有絮凝状Si。
39.按权利要求2所述的流体中被去除物的除去方法,其特征是上述第2过滤器是机械加工工序中产生的机械加工屑。
40.按权利要求39所述的流体中被去除物的除去方法,其特征是上述机械加工工序是研磨工序或者切削工序。
41.按权利要求30所述的流体中被去除物的除去方法,其特征是上述机械加工屑是切削屑。
42.按权利要求2所述的流体中被去除物的除去方法,其特征是准备上述过滤器工序是包括在含有上述被去除物的流体中添加絮凝状废弃物的工序。
43.按权利要求2所述的流体中被去除物的除去方法,其特征是上述流体含有机械加工排出废液中的微粒子。
44.按权利要求1所述的流体中被去除物的除去方法,其特征是上述流体含有CMP排出废液中的微粒子。
全文摘要
将第1过滤器10收集的固形物16作为第2过滤器13使用,在防止第1过滤器10的堵孔的同时,在第2过滤膜13上用气泡等给与外力,保持过滤能力。另外,过滤流体中混入了被去除物14时,将过滤流体在储存排水的槽中再次循环,确认达到规定的混入率后,再次开始过滤。
文档编号C02F1/32GK1275417SQ0010872
公开日2000年12月6日 申请日期2000年5月26日 优先权日1999年5月27日
发明者对比地元幸, 饭沼宏文 申请人:三洋电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1