一种葡萄糖基碳微球印迹材料的制备方法与流程

文档序号:11098422阅读:805来源:国知局
一种葡萄糖基碳微球印迹材料的制备方法与制造工艺

本发明属于水处理领域,具体涉及一种去除水体中金属离子Cu(Ⅱ)的葡萄糖基碳微球印迹材料的制备及应用。



背景技术:

生物质热解和水热过程中,都有大量的生物炭生成,这些焦炭除了具有吸附能力强、化学性质稳定、可再生能力强等优点,有的还具有发达的孔隙结构、较高的比表面积、稳定的芳香族结构和丰富的表面官能团,基于这些优点生物质炭在能源、环境和纳米材料领域有广泛的应用前景。葡萄糖在微酸性的水热条件下能发生分子间脱水反应,生成线状或枝状低聚物,进一步聚合能形成含氧量较高的炭材料,并且此炭材料表面能保持一部分羟基及羰基等官能团。水热法因其操作简单,产物较纯而成为制备炭微球的理想方法。水热法制备的炭微球表面具有大量的含氧官能团,能与金属离子相互键合进而达到去除金属离子的的目的。刘守新等以商品活性炭和葡萄糖为原料,经水热过程得到了表面和孔内载有纳米炭球的炭球一活性炭的复合材料,材料中的炭球表面富含活性官能团,并以Cr(VI)为模型物检测了复合材料对金属离子的吸附能力。通过与传统的活性炭相比可知,复合材料对Cr(VI)的单位面积和单位质量的吸附容量分别增加了94倍和3倍[无机材料学报,2009,24(6):1132-1136]。金属离子印迹技术是以金属离子为模板、分子印迹技术原理制备对模板金属离子有选择吸附性能的高分子功能材料的一种方法。功能性单体是制备印迹聚合物的重要原料。功能性单体基本上都采用多孔的有机聚合物,可以是缩聚物或加成聚合物,应用较多的是交联的烯类聚合物,无机类载体如硅胶也可以作为功能性母体材料。采用生物质碳作为功能性单体的金属离子印迹材料则比较少见。



技术实现要素:

本发明涉及一种以葡萄糖为碳源的Cu(Ⅱ)印迹材料,AlCl3作为碳微球合成过程中的催化剂和功能剂,四乙烯五胺作为Cu(Ⅱ)印迹材料的功能剂增加材料表面的氨基基团,加强Cu(Ⅱ)与碳微球之间的结合。合成的碳微球印迹材料颗粒均匀,对Cu(Ⅱ)有良好的去除效果。

本发明印迹材料的制备方法包括如下步骤:

葡萄糖和三氯化铝的混合溶液经过一定时间的水热反应得到碳微球,将此碳微球与四乙烯无胺和硫酸铜溶液混合后继续进行水热反应,得到的碳微球材料用氢氧化钠溶液和盐酸溶液洗去模板离子后低温烘干,即可得到Cu(Ⅱ)碳微球印迹材料。

所述的葡萄糖和三氯化铝的质量比范围是1:2—3:1,葡萄糖和三氯化铝水热反应的温度是160-180℃;反应时间为20-22h。

所述的四乙烯无胺的体积百分数为12.5-25%(V/V)。

所述的碳微球与四乙烯五胺的比例为50:1-200:1(g/L),四乙烯五胺与硫酸铜溶液的体积比为1:2-1:3,水热反应时间为8-10h。

所述的硫酸铜溶液的浓度为1.0g/L

所述的Cu(Ⅱ)的洗脱用氢氧化钠溶液和盐酸溶液交替洗脱。

所述的烘干温度45-60℃,烘干时间20-30h。

本发明的优点和特点:

催化剂三氯化铝的添加促进碳微球的形成,同时为碳微球表面增加了金属水合羟基,四乙烯无胺的添加增加印迹材料表面的氨基基团,增强了印迹材料对Cu(Ⅱ)的去除能力。制备方法简单,对Cu(Ⅱ)的去除效果好。本发明以葡萄糖水热合成的碳微球为功能单体,以Cu(Ⅱ)为模板合成了金属离子印迹材料,原料来源广泛,环境友好,制备工艺简单,条件易于控制。

附图说明

图1为葡萄糖基碳微球印迹材料的电镜扫描图片。

图2为实施例3中不同AlCl3的添加量制备的葡萄糖基碳微球印迹材料去除Cu(Ⅱ)的效果对比。

图3为实施例1中的葡萄糖基碳微球印迹材料不同的接触时间条件下对50ml初始浓度100mg/L的Cu(Ⅱ)的吸附效果。

具体实施方式

实施例1:

称取0.02mol/L葡萄糖和 0.01mol/L氯化铝加入盛有约40ml去离子水小烧杯中。用玻璃棒搅拌溶解后,装入有聚乙烯四氟内衬的钢反应釜密封。将反应釜放入160℃的烘箱中反应20h。反应后的产物用水洗净,称取10ml四乙烯五胺溶液和30ml浓度为1g/L硫酸铜溶液,混合后倒入盛有产物的反应釜中密封。将反应釜放入160℃的烘箱中反应10h。所得到的样品用0.01mol/L的氢氧化钠溶液和0.01mol/L盐酸连续浸泡冲洗,直到洗涤液中检测不到铜离子。最后用去离子水冲洗样品,60℃低温烘干20h得到葡萄糖基碳微球印迹材料。重复上述制备过程,区别在于二次水热时不加入硫酸铜溶液,最后得到的产品为非印迹的葡萄糖基碳微球材料。

取0.05g葡萄糖基碳微球印迹材料和非印迹的葡萄糖基碳微球材料分别加入到50ml初始浓度为100mg/L的Cu(Ⅱ)溶液中震荡24小时后过滤分离,取上清液采用铜离子电极法测定溶液残余Cu(Ⅱ)浓度,计算得到印迹材料的去除率为99%,非印迹材料的去除率只有42%。

实施例2

称取0.02mol/L葡萄糖和 0.01mol/L氯化铝加入盛有约40ml去离子水小烧杯中。用玻璃棒搅拌溶解后,装入有聚乙烯四氟内衬的钢反应釜密封。将反应釜放入180℃的烘箱中反应16h。反应后的产物用水洗净,称取12ml四乙烯五胺溶液和30ml浓度为1g/L硫酸铜溶液,混合后倒入盛有产物的反应釜中密封。将反应釜放入180℃的烘箱中反应8h。所得到的样品用0.01mol/L的氢氧化钠溶液和0.01mol/L盐酸连续浸泡冲洗,直到洗涤液中检测不到铜离子。最后用去离子水冲洗样品,50℃低温烘干24h得到葡萄糖基碳微球印迹材料。

取0.05g葡萄糖基碳微球印迹材料加入到50ml初始浓度为150mg/L的Cu(Ⅱ)溶液中震荡24小时后过滤分离,取上清液采用铜离子电极法测定溶液残余Cu(Ⅱ)浓度,计算得到印迹材料的去除率为99%。

实施例3

称取0.02mol/L葡萄糖和一定浓度的氯化铝加入盛有约40ml去离子水小烧杯中,氯化铝的浓度分别为0 mol/L,0.005 mol/L,0.01 mol/L,0.02 mol/L,0.03mol/L。用玻璃棒搅拌溶解后,装入有聚乙烯四氟内衬的钢反应釜密封。将反应釜放入160℃的烘箱中反应20h。反应后的产物用水洗净,称取10ml四乙烯五胺溶液和30ml浓度为1g/L硫酸铜溶液,混合后倒入盛有产物的反应釜中密封。将反应釜放入160℃的烘箱中反应10h。所得到的样品用0.01mol/L的氢氧化钠溶液和0.01mol/L盐酸连续浸泡冲洗,直到洗涤液中检测不到铜离子。最后用去离子水冲洗样品,50℃低温烘干24h得到葡萄糖基碳微球印迹材料。

分别称取0.05g上述AlCl3的添加量不同的时候制备的葡萄糖基碳微球印迹材料加入到50ml初始浓度为200mg/L的Cu(Ⅱ)溶液中震荡24小时后过滤分离,取上清液采用铜离子电极法测定溶液残余Cu(Ⅱ)浓度,结果如图2所示,由图可以看出,AlCl3的最佳添加浓度为0.01mol/L。

实施例4

取一系列0.05g实施例1中的葡萄糖基碳微球印迹材料加入到50ml初始浓度为100mg/L的Cu(Ⅱ)溶液中,震荡不同时间后离心过滤取上清液采用铜离子电极法测定溶液残余的Cu(Ⅱ)浓度,计算其去除率,如图3所示。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1