基于光催化及电解技术的串并联结合含油污水净化系统的制作方法

文档序号:11765359阅读:282来源:国知局
基于光催化及电解技术的串并联结合含油污水净化系统的制作方法与工艺

本发明属于污水处理领域,具体地说,涉及基于光催化及电解技术的串并联结合含油污水净化系统。



背景技术:

随着工业发展,石油、石油化工、钢铁、焦化、煤气发生站、机械加工等工业部门排放出大量含油污水,危害生态环境,对人类、动物和植物乃至整个生态系统都产生不良的影响。污水中的油类物质会排放在水中后会在水面形成油膜,使水中溶解氧含量降低,水体变臭,影响水中藻类光合作用和其他水生生物生长。对于水体中的生物如鱼类,油污附着在腮上会使鱼窒息死亡。若直接排放到土壤中,会影响土壤中微生物代谢,降低农产品质量,甚至使农作物死亡及污染地下水。

压舱水是为了保持船舶平衡,而专门注入的水。压舱水除了常容易带来外来物种入侵以外,还容易对环境造成直接污染。压舱水中不仅有油污等污染物质,还包含大量细菌及不同生物的卵及幼虫等,需要消毒杀菌处理来避免产生环境污染。

基于光催化及电解技术的串并联结合含油污水净化系统是基于光催化技术与电解处理废水技术对含油污水进行净化的装置。光催化空气净化技术基于半导体理论,其催化降解污染物的原理为:在光源照射下,光催化材料吸收的光子能量大于或等于其禁带宽度时,会产生空穴一电子对,当空穴一电子对移动到催化剂表面时,与吸附在催化剂表面的有害气体分子发生氧化还原反应,最终生成无毒无害的水和二氧化碳等物质。电解法处理废水的原理是使废水中有害物质通过电解过程在阳、阴两极上分别发生氧化和还原反应转化成为无害物质以实现废水净化的方法。现有的基于光催化或电解的含油污水净化装置有许多缺点,如不便移动使用,没有采用封闭外壳,易造成水体中有机物挥发产生二次污染,净化效率低,净化不彻底、工艺复杂等缺点。



技术实现要素:

本发明的目的在于克服现有技术的不足,针对上述问题,提出基于光催化及电解技术的串并联结合含油污水净化系统,采用圆筒形外壳,前后分别设有前、后盖,易于安装、拆卸及移动使用。内部有圆形且表面具有多孔结构的光催化板、环形紫外灯管、电极等结构。本发明将光催化技术与电解技术结合,可以有效净化污水中的有机物质,并可以对污水中的细菌、病毒等微生物进行灭活,对含油污水净化效果良好,效率高。

本发明的技术目的是通过以下技术方案予以实现:

基于光催化及电解技术的串并联结合含油污水净化系统,包括进水口、出水口、污水净化罐、汇集处理罐、流体管路、气体管路、排水管路、换热器、水箱和供电设施,所述污水净化罐以两两一组的方式进行排布,在每两组污水净化罐的下端连接一个汇集处理罐,含油污水从进水口进入,并沿着流体管路依次通过各汇集处理罐和污水净化装置,最终通过出水口完成净化循环,在污水净化罐的上端设置有气体管路,用于控制污水净化装置内的气压,以达到控制含油海水由流体管路顺畅的依次进入汇集处理罐和污水净化装置,在汇集处理罐的下端设置有排水管路,排水管路分别与每个汇集处理罐连通,在含油海水进入污水净化装置之前的流体管路上设置有换热器,并配备有水箱和供电设施;

在上述技术方案中,在所述进水口处设置有泵进口压力指示计;

在上述技术方案中,在所述出水口处设置有泵出口压力指示计;

在上述技术方案中,在所述流体管路上设置有流量指示计;

所述污水净化罐包括外壳、前盖、后盖、光催化板、紫外灯管和电极,

外壳为管状结构,径向截面为圆形,外壳的内层边缘设置有空夹层,空夹层内设置有线缆;

在外壳内部沿外壳的径向平行设置有光催化板,光催化板的平面为圆形,圆形面积与外壳的截面面积相同,在光催化板上设置有圆孔,在光催化板的两侧平面上设置有光催化剂层;在光催化剂层中设置有二氧化钛光催化剂;

在外壳内部相邻的光催化板之间设置有紫外灯管,紫外灯管呈环状,沿外壳内壁设置,所述紫外灯管均与线缆相连接;

在外壳的前端设置有前盖,在外壳的后端设置有后盖,前盖与后盖具有相同的结构,在前盖平面上设置有两个进水口,在后盖平面上设置有两个出水口,进水口(出水口)的边缘设置有环形凸起,在进水口(出水口)平面中心设置有电极固定孔,在进水口(出水口)平面圆心周围设置进水孔,在前盖的进水口与后盖的出水口之间设置两个电极,电极穿过光催化板的圆形孔,电极的两端设置于电极固定孔内,在电极表面设置有复合氮化碳的二氧化钛纳米带电极材料层。

在上述技术方案中,所述光催化板的数量为四片,分别为第一光催化板、第二光催化板、第三光催化板和第四光催化板,四片光催化板将外壳内部的空间等分为五部分。

在上述技术方案中,所述的圆形孔数量为8个,8个圆形孔分布在与光催化板同圆心的圆形圆周上。

在上述技术方案中,所述的进水孔为水滴形,数量为6个,沿电极固定孔对称均匀分布。

在上述技术方案中,所述的圆形孔直径大于电极的直径。

在上述技术方案中,所述的电极长度与外壳长度相同。

在上述技术方案中,所述二氧化钛光催化剂选用二氧化钛的片状纳米晶、纳米管、纳米线、石墨烯和二氧化钛复合材料或者铂金掺杂改型的二氧化钛,将所述二氧化钛光催化剂通过下述方法在光催化板表面进行负载,例如浸渍提拉、磁控溅射、溶胶—凝胶。通过负载后,光催化板上具备较大的二氧化钛负载面积,能够提高光催化去除空气中污染物的效率,且避免光催化反应产生的二次污染对环境的影响。

上述进行二氧化钛光催化剂的制备和负载时,参考现有技术中有关不同类型二氧化钛的制备方法及其负载方法,例如

(1)片状纳米晶:

synthesisandcharacterizationoftio2nano-crystallinewithdifferentmorphologiesbylow-temperaturehydrothermalmethod;zhangxia,zhaoyan,zhangcai-bei,menghao;actaphys.-chim.sin.,2007,23(6):856-860

(2)石墨烯和二氧化钛复合材料:

preparationandphotoactivityofgraphene/tio2hybridphotocatalystsundervisiblelightirraditon;liuhui,dongxiao-nan,sunchao-chao;journalofshaannxiuniversityofscience&technolog:1000-5811(2013)01-0023-06

(3)铂金掺杂改型的二氧化钛:

photocatalyticactivityoftio2thinfilmdopedbyptwithdifferent

distribution;wang,jun-gangli,xin-jun,zheng,shao-jianhe,

ming-xingxu;actachimicasinicano.7,592~596

(4)纳米管:

researchadvancesintio2nanotubes;kongxiangrong,pengpeng,sunguixiang,zhengwenjun;actachimicasinicano.8,1439~1444

(5)纳米线:

recentprocessinmetal-dopedtitaniumoxidenanowires;dujun,shijiaguang,huangjingjing,zhangwenlong,liufei;材料导报2012年2月

(6)浸渍提拉:

浸渍提拉法制备tio2薄膜及其光催化性能的研究;南昌希,权伍荣,张敬爱,赵成男;太阳能学报vol.21.no.4

(7)磁控溅射:

afmanalysisonti02low-ethinfilmsdepositedbymagnetronsputtering;zhengzi-yao,wangzhu,lichun-ling,zhaoqing-nan;semiconductoroptoelectronicsv01.26no.5

(8)溶胶—凝胶:

sol-gelpreparationandphotocatalyticactivitiesoftio2nanoparticles;qiandong,yanzao-xue,shimao;thechinesejournalofnonferrousmetals,no.10040609(2005)05081706

在上述技术方案中,所述的复合氮化碳的二氧化钛纳米带电极材料层的制备方法,如下所述:

称取25-30质量分的二氧化钛纳米带置于玛瑙研钵中研磨至没有明显的颗粒感,加入40-60质量分的peg2000,100-120质量分的蒸馏水,400-500质量分的无水乙醇,充分研磨至浆液粘稠,将制备好的浆液均匀的涂抹在光催化板上,将制备好的膜静置干燥12-16h后置于马弗炉中,在室温条件下以2℃/min的速度进行升温至400-600℃,在400-600℃条件下煅烧1-3h。

所述二氧化钛纳米带的制备方法,如下所述:

步骤一、锐钛矿粉末置于碱性环境下,升温至160℃至200℃,水热反应40至56h,取反应后悬浊液利用抽滤的方法进行水洗,并抽滤的方法进行酸洗,完成后干燥10-14h,在750-850℃条件下,煅烧1-3h,冷却至室温,完成tio2纳米带的制备。

步骤二、取5-10质量分的硫脲溶于蒸馏水中,加入0.1质量分的tio2纳米带后,超声并烘干,将干燥好的样品,在400-500℃的条件下煅烧2-5h,制成含氮化碳质量分数为50%-56%的tio2纳米带样品。

在上述技术方案中,在步骤一中,所述水热反应的升温温度优选为175℃至185℃,反应温度优选为46-50h,所述煅烧的温度优选为690-700℃,煅烧温度优选为1-2h。

在上述技术方案中,在步骤二中,所述煅烧温度优选为400-420℃。

与现有技术相比,本发明的有益效果是:

基于光催化及电解技术的串并联结合含油污水净化系统采用封闭式结构,净化装置外壳与前盖、后盖使光催化与电解反应发生在封闭环境内,降低了挥发性物质对环境造成二次污染的风险。

由于电极和光催化剂随着使用时间增加存在消耗及失活现象,需要定时更换,可拆卸的前盖和后盖使更换装置内部零件,清理装置内部更方便,一体式的设计使装置更易搬运与安装。

基于光催化及电解技术的串并联结合含油污水净化系统将光催化技术与电解技术相结合,提高了对含油污水的净化效率。在两块光催化板间安装紫外灯不仅提高了光催化剂受紫外光的照射面积,紫外灯还会杀死水体中的细菌,起到了消毒的作用。多个光催化板的隔断设计提高了光催化剂层与污水的接触面积,提高了污水的净化效率。

基于光催化及电解技术的串并联结合含油污水净化系统有效提高了含油污水的净化效率,为含油污水的净化提供了一种切实可行的方法,基于光催化及电解技术的串并联结合含油污水净化系统是供高效利用光能、持续高效稳定运转的多功能含油污水净化系统。

将光催化技术与电解技术结合,可以有效净化污水中的有机物质,并可以对污水中的细菌、病毒等微生物进行灭活,对含油污水净化效果良好,效率高。

附图说明

图1是本发明中污水净化罐的总体结构示意图;

图2是本发明中污水净化罐的结构示意图;

图3是本发明中污水净化罐结构俯视图;

图4是本发明中污水净化罐的结构正视图;

图5是本发明整体结构示意图。

图6为实施例中纯相锐钛矿tio2、纯g-c3n4和g-c3n4复合量为50%的样品的xrd谱图,1为tio2,2为tcn50,3为c3n4。

图7为实施例中纯相锐钛矿tio2纳米带和g-c3n4复合量为50%的样品的sem图。

图8为实施例中g-c3n4复合量为50%的样品的tem图。

图9为实施例中光催化材料的光降解曲线。

图10为实施例中光催化材料的瞬态光电流曲线。

其中1为外壳,2为前盖,2-1为环形凸起,2-2为进水孔,2-3为电极固定孔,2-4为进水口,3后盖,4光催化板,4-1为第一光催化板,4-2为第二光催化板,4-3为第三光催化板,4-4为第四光催化板,5紫外灯管,5-1为第一紫外灯管,5-2为第二紫外灯管,5-3为第三紫外灯管,6电极,7为泵进口压力指示计,8为流量指示计,9为泵出口压力指示计,10为换热器,11为水箱,12为供电设施,13为进水口,14为出水口,15为流体管路,16为气体管路,17为排水管路,18为污水净化罐,19为汇集处理罐。

具体实施方式

下面结合附图与具体的实施方式对本发明作进一步详细描述:

基于光催化及电解技术的串并联结合含油污水净化系统,包括进水口13、出水口14、污水净化罐18、污水净化罐19、流体管路15、气体管路16、排水管路17、换热器10、水箱11和供电设施12,所述污水净化罐以两两一组的方式进行排布,在每两组污水净化罐的下端连接一个汇集处理罐,含油污水从进水口进入,并沿着流体管路依次通过各汇集处理罐和污水净化装置,最终通过出水口完成净化循环,在污水净化罐的上端设置有气体管路,用于控制污水净化装置内的气压,以达到控制含油海水由流体管路顺畅的依次进入汇集处理罐和污水净化装置,在汇集处理罐的下端设置有排水管路,排水管路分别与每个汇集处理罐连通,在含油海水进入污水净化装置之前的流体管路上设置有换热器,并配备有水箱和供电设施;

在上述技术方案中,在所述进水口处设置有泵进口压力指示计7;

在上述技术方案中,在所述出水口处设置有泵出口压力指示计9;

在上述技术方案中,在所述流体管路上设置有流量指示计8;

基于光催化及电解技术的含油污水净化罐,包括外壳1、前盖2、后盖3、光催化板4、紫外灯管5和电极6,

外壳为管状结构,径向截面为圆形,外壳的内层边缘设置有空夹层,空夹层内设置有线缆;

在外壳的内部平行设置四片光催化板,分别为第一光催化板、第二光催化板、第三光催化板和第四光催化板,四片光催化板将外壳内部的空间等分为五部分,光催化板的平面为圆形,圆形面积与外壳的截面面积相同,在光催化板上设置有八个圆形孔,八个圆形孔分布在与光催化板同圆心的圆形圆周上,在光催化板的两侧平面上设置有光催化剂层;在光催化剂层中设置有二氧化钛光催化剂;

在外壳内部相邻的光催化板之间设置有紫外灯管,紫外灯管呈环状,沿外壳内壁设置,所述紫外灯管均与线缆相连接;

在外壳的前端设置有前盖,在外壳的后端设置有后盖,前盖与后盖具有相同的结构,在前盖平面上设置有两个进水口,在后盖平面上设置有两个出水口,进水口(出水口)的边缘设置有环形凸起,在进水口(出水口)平面中心设置有电极固定孔,在进水口(出水口)平面圆心周围设置进水孔,在前盖的进水口与后盖的出水口之间设置两个电极,电极穿过光催化板的圆形孔,电极的两端设置于电极固定孔内,在电极表面设置有复合氮化碳的二氧化钛纳米带电极材料层。

在上述技术方案中,所述的进水孔为水滴形,数量为6个,沿电极固定孔对称均匀分布。

在上述技术方案中,所述的圆形孔直径大于电极的直径。

在上述技术方案中,所述的电极长度与外壳长度相同。

实施例1:

所述的复合氮化碳的二氧化钛纳米带电极材料层在制备时:

称取25mg的二氧化钛纳米带置于玛瑙研钵中研磨至没有明显的颗粒感,加入40mg的peg2000,100ml的蒸馏水,400ml的无水乙醇,充分研磨至浆液粘稠,将制备好的浆液均匀的涂抹在光催化板上,将制备好的膜静置干燥12h后置于马弗炉中,在室温条件下以2℃/min的速度进行升温至400℃,在400℃条件下煅烧1h。

所述二氧化钛纳米带在制备时:

步骤一、锐钛矿粉末置于碱性环境下,升温至160℃,水热反应40h,取反应后悬浊液利用抽滤的方法进行水洗,并抽滤的方法进行酸洗,完成后干燥10h,在750℃条件下,煅烧1h,冷却至室温,完成tio2纳米带的制备。

步骤二、取5mg的硫脲溶于蒸馏水中,加入0.1mg的tio2纳米带后,超声并烘干,将干燥好的样品,在400℃的条件下煅烧2h,制成含氮化碳质量分数为50%的tio2纳米带样品。

含油海水模拟净化测试:

采用模拟海水混合柴油模拟含油海水,并以此作为待处理的污水水样。该污水的ph为7,cod值为900。选择设备的阳极-阳极模式,通过8个污水净化罐、4个汇集处理罐串并联相结合的方式进行含油海水处理。设备固定的持液量为80l,将120的含油海水作为循环量。通过进口的限流阀对进水流量进行就控制,流量为20l/min。开启设备电源,通过进水管进行灌泵,同时打开泵顶端放气阀,待放气阀中有液体流出,拧紧放气阀,开始对污水净化装置进行充水,待出口管有液体匀速流出时,正式启动污水净化装置。待设备启动成功后,开启变电器,将模式调制为恒流模式,同时设置电流电压至所需值,开始电解。定时从采样口中取样,检测水样中的cod值。

运行效果:在低电流40a情况下对于将大分子有机物电解成为小分子有机物效果明显,而高电压80a情况下对于将小分子有机物彻底电解的效果更加明显。通过4个小时的电解的情况下,终点的cod值为90。

实施例2:

所述的复合氮化碳的二氧化钛纳米带电极材料层在制备时:

称取28mg的二氧化钛纳米带置于玛瑙研钵中研磨至没有明显的颗粒感,加入50mg的peg2000,110ml的蒸馏水,450ml的无水乙醇,充分研磨至浆液粘稠,将制备好的浆液均匀的涂抹在光催化板上,将制备好的膜静置干燥14h后置于马弗炉中,在室温条件下以2℃/min的速度进行升温至500℃,在500℃条件下煅烧2h。

所述二氧化钛纳米带在制备时:

步骤一、锐钛矿粉末置于碱性环境下,升温至180℃,水热反应52h,取反应后悬浊液利用抽滤的方法进行水洗,并抽滤的方法进行酸洗,完成后干燥12h,在800℃条件下,煅烧2h,冷却至室温,完成tio2纳米带的制备。

步骤二、取8mg的硫脲溶于蒸馏水中,加入0.1mg的tio2纳米带后,超声并烘干,将干燥好的样品,在450℃的条件下煅烧4h,制成含氮化碳质量分数为53%的tio2纳米带样品。

含油海水模拟净化测试:

采用模拟海水混合柴油模拟含油海水,并以此作为待处理的污水水样。该污水的ph为6.8,cod值为950。选择设备的阳极-阳极模式,通过8个污水净化罐、4个汇集处理罐串并联相结合的方式进行含油海水处理。设备固定的持液量为90l,将130l的含油海水作为循环量。通过进口的限流阀对进水流量进行就控制,流量为20l/min。开启设备电源,通过进水管进行灌泵,同时打开泵顶端放气阀,待放气阀中有液体流出,拧紧放气阀,开始对污水净化装置进行充水,待出口管有液体匀速流出时,正式启动污水净化装置。待设备启动成功后,开启变电器,将模式调制为恒流模式,同时设置电流电压至所需值,开始电解。定时从采样口中取样,检测水样中的cod值。

运行效果:在低电流40a情况下对于将大分子有机物电解成为小分子有机物效果明显,而高电压80a情况下对于将小分子有机物彻底电解的效果更加明显。通过5个小时的电解的情况下,终点的cod值为97。

实施例3:

所述的复合氮化碳的二氧化钛纳米带电极材料层在制备时:

称取30mg的二氧化钛纳米带置于玛瑙研钵中研磨至没有明显的颗粒感,加入60mg的peg2000,120ml的蒸馏水,500ml的无水乙醇,充分研磨至浆液粘稠,将制备好的浆液均匀的涂抹在光催化板上,将制备好的膜静置干燥16h后置于马弗炉中,在室温条件下以2℃/min的速度进行升温至600℃,在600℃条件下煅烧3h。

所述二氧化钛纳米带在制备时:

步骤一、锐钛矿粉末置于碱性环境下,升温至200℃,水热反应56h,取反应后悬浊液利用抽滤的方法进行水洗,并抽滤的方法进行酸洗,完成后干燥14h,在850℃条件下,煅烧3h,冷却至室温,完成tio2纳米带的制备。

步骤二、取10mg的硫脲溶于蒸馏水中,加入0.1mg的tio2纳米带后,超声并烘干,将干燥好的样品,在500℃的条件下煅烧5h,制成含氮化碳质量分数为56%的tio2纳米带样品。

含油海水模拟净化测试:

采用模拟海水混合柴油模拟含油海水,并以此作为待处理的污水水样。该污水的ph为7.3,cod值为1000。选择设备的阳极-阳极模式,通过8个污水净化罐、4个汇集处理罐串并联相结合的方式进行含油海水处理。设备固定的持液量为100l,将140l的含油海水作为循环量。通过进口的限流阀对进水流量进行就控制,流量为20l/min。开启设备电源,通过进水管进行灌泵,同时打开泵顶端放气阀,待放气阀中有液体流出,拧紧放气阀,开始对污水净化装置进行充水,待出口管有液体匀速流出时,正式启动污水净化装置。待设备启动成功后,开启变电器,将模式调制为恒流模式,同时设置电流电压至所需值,开始电解。定时从采样口中取样,检测水样中的cod值。

运行效果:在低电流40a情况下对于将大分子有机物电解成为小分子有机物效果明显,而高电压80a情况下对于将小分子有机物彻底电解的效果更加明显。通过6个小时的电解的情况下,终点的cod值为103。

以上3组实施例中制备纳米带样品具有相近似的性质,以下通过光催化材料氧化性检测方法和电化学性质检测方法对其进行性质的验证。

光催化材料氧化性检测方法:

用g-c3n4/tio2复合物光催化剂,测试降解罗丹明b的效率,测试过程如下:

(1)称取0.1g罗丹明b置于10ml容量瓶中,制成10g/l罗丹明b浓溶液,再取0.5ml浓溶液稀释至500ml,制成10mg/l罗丹明b溶液。

(2)量取50ml罗丹明b溶液置于放有磁子的反应器中,开启磁搅拌器,再称取0.05g催化剂置于反应器中,用锡纸包裹反应器,使其进入暗吸附阶段。

(3)暗吸附50分钟后,取第一次样(3-4ml)标号为0号并打开氙灯。随后每10分钟取一次样,分别标号为1号、2号、3号、4号、5号、6号。6(4)将样品离心,离心机设定转数为13000转/min,设定时间为15分钟。

(5)将离心后的样品用紫外可见分光光度计测量其吸光度值。

电化学性质检测方法:

采用上文所述的镀膜方法将材料镀在fto导电玻璃上,再以下列方法进行电化学检测:

(1)在50ml的反应器(带夹层可通循环冷却水水)中加入40ml0.1mol/lna2so4溶液;

(2)用镊子将制备好的fto电极(工作电极)加好,放入溶液中,要注意,镊子不可接触溶液;

(3)将pt丝电极(对电极)和甘汞电极(参比电极)放入溶液中,并将三个电极和电化学工作站连接起来,红色夹子连对电极,白色夹子连参比电极,绿色夹子连工作电极;

(4)打开电化学工作站,进行预热;

(5)打开电脑上的软件,进行瞬态光电流的测量。

测试结果分析与说明:

图6:采用粉末x射线衍射仪对样品进行物相和结构分析。图6分别为纯tio2的谱图、纯g-c3n4的谱图和g-c3n4复合量为50%的样品谱图。由图可知,tio2在2θ为25.48°、37.08°、37.97°、38.73°、48.20°、54.05°、55.21°、62.80°、68.90°时,出现了明显的衍射峰,分别对应锐钛矿的(101)、(103)、(004)、(112)、(200)、(105)、(211)、(204)、(116)晶面,在其他位置并无杂峰,由此可以确定,样品为纯相锐钛矿。纯g-c3n4的谱图在2θ为14.12°、27.29°时,出现了明显的衍射峰,分别对应g-c3n4的(100)、(002)晶面,在其他位置并无杂峰,由此可以确定,样品为纯相g-c3n4。

在g-c3n4复合量为50%的样品谱图中,对应g-c3n4的(002)晶面处出现了较小的衍射峰,且对应锐钛矿的各个衍射峰的强度较纯相锐钛矿均有所减弱,这主要是由于g-c3n4是一种半晶物质,结晶度不高,与锐钛矿tio2复合后,影响了tio2的结晶度,这说明g-c3n4复合在锐钛矿tio2上。

在锐钛矿tio2的谱图中,衍射峰的强度都较高,且峰都比较尖锐,说明锐钛矿tio2的结晶度较好,实验设计较合理,产生样品质量较好。

图7为纯相锐钛矿tio2纳米带和g-c3n4复合量为50%的样品的sem图。由图可知,tio2纳米带的形貌控制基本成型,在放大倍数为10万倍时可以看到tio2基本呈宽度100-120nm,长度在3-10微米的带状,同时图中显示,纳米带的表面比较光滑,结晶性非常好。

在图7d中标注的部分即为成功复合在tio2纳米带上面的g-c3n4,通过比较图7b和图7d发现:两图中的tio2纳米带在形貌上有较大的区别,图7d中的纳米带表面极不光滑,并在边缘出现锯齿状的结构,从而再次验证g-c3n4成功复合在tio2纳米带上。但同时,在图7d中多了许多不规则的团状结构,这说明g-c3n4并未全部复合在tio2纳米带上,还存在许多游离的g-c3n4颗粒。造成这样结果的原因可能与制样过程中tio2纳米带与硫脲溶液在超声混合中的时间不够,tio2纳米带与硫脲混合不够均匀造成局部的硫脲浓度高而tio2纳米带颗粒浓度低,从而导致了在烧制的过程中,g-c3n4未能全部复合在tio2纳米带上。

图8为g-c3n4复合量为50%的样品的tem图,通过透射电镜可以进一步观察到tio2纳米带的形貌。在低倍透射电镜下可以看到tio2的带状结构,在图中可以发现,一些团状结构复合在纳米带的表面,同样可以证明g-c3n4已经复合在tio2纳米带上。

图8b为高倍透射电镜下的样品图,图中可以清晰的观察到晶面条纹清晰的即为tio2纳米带,呈不规则团状的即为g-c3n4,两者之间界面清晰。而且,晶格条纹的宽度大致为0.350nm,对应锐钛矿的(101)晶面,可以验证锐钛矿在形成的过程当中,是优先沿着(101)晶面方向生长的,可以再次验证通过xrd得到的结果。

如图9所示,通过测试样品的瞬态光电流,可以直观的检测催化剂样品的光生电子效率,样品在光照条件下,会产生瞬时的光电流,光电流大,则说明催化剂样品的光生电子效率高,即催化剂的光催化效果好;光电流小,则说明催化剂样品的光生电子效率低,即催化剂的光催化效果差,图中显示出了稳定的瞬态光电流15μa。

图10:通过对比降解罗丹明b的效果来评价催化剂的光催化性能。然后,根据得到的降解曲线,通过langmuir-hinshelwood模型来解释反应动力学:

ln(c/c0)=kt

图10即样品在可见光下的光降解曲线,通过图10可以看出,在暗吸附的50min中,罗丹明b的浓度下降不是很明显,脱色率均在10%-20%之间。在420nm可见光的照射下罗丹明b的浓度下降明显。

测试装置:

在进行含油海水的净化处理时,将污水净化罐以首位相接的方式进行串连,串连的管路为流体管路15,含油污水从进水口13进入,并沿着流体管路依次通过各污水净化罐,最终通过出水口14完成净化循环,在串连的污水净化装置的上端设置有气体管路16,用于控制污水净化罐内的气压,以达到控制含油海水由流体管路顺畅的进入污水净化罐,在污水净化罐的下端设置有排水管路17,排水管路分别与每个污水净化罐连通,在含油海水进入污水净化罐之前的流体管路上设置有换热器10,并配备有水箱11和供电设施12,在进水口处设置有泵进口压力指示计7,在出水口处设置有泵出口压力指示计9,在流体管路上设置有流量指示计8。

测试方法:

采用模拟海水混合柴油模拟含油海水,并以此作为待处理的污水水样。该污水的ph为基本中性,cod值为950-1000。选择设备的阳极-阳极模式,通过8个污水净化罐、4个汇集处理罐串并联相结合的方式进行含油海水处理。设备固定的持液量为80-100l,将120-140l的含油海水作为循环量。通过进口的限流阀对进水流量进行就控制,流量为20l/min。开启设备电源,通过进水管进行灌泵,同时打开泵顶端放气阀,待放气阀中有液体流出,拧紧放气阀,开始对污水净化装置进行充水,待出口管有液体匀速流出时,正式启动污水净化装置。待设备启动成功后,开启变电器,将模式调制为恒流模式,同时设置电流电压至所需值,开始电解。定时从采样口中取样,检测水样中的cod值。

运行效果:通过长期实验的摸索,可以得出以下结论:由于油污多为大分子有机物,在电解的过程中,低电流(40a左右)情况下对于将大分子有机物电解成为小分子有机物效果明显,而高电压(80a左右)情况下对于将小分子有机物彻底电解的效果更加明显。通过5-6个小时的电解的情况下,终点的cod值一般在100左右。

基于光催化及电解技术的含油污水净化罐采用封闭式结构,净化装置外壳与前盖、后盖使光催化与电解反应发生在封闭环境内,降低了挥发性物质对环境造成二次污染的风险。

由于电极和光催化剂随着使用时间增加存在消耗及失活现象,需要定时更换,可拆卸的前盖和后盖使更换装置内部零件,清理装置内部更方便,一体式的设计使装置更易搬运与安装。

基于光催化及电解技术的含油污水净化罐将光催化技术与电解技术相结合,提高了对含油污水的净化效率。在两块光催化板间安装紫外灯不仅提高了光催化剂受紫外光的照射面积,紫外灯还会杀死水体中的细菌,起到了消毒的作用。多个光催化板的隔断设计提高了光催化剂层与污水的接触面积,提高了污水的净化效率。

基于光催化及电解技术的含油污水净化罐有效提高了含油污水的净化效率,为含油污水的净化提供了一种切实可行的方法,基于光催化及电解技术的含油污水净化罐是供高效利用光能、持续高效稳定运转的多功能含油污水净化系统。

将光催化技术与电解技术结合,可以有效净化污水中的有机物质,并可以对污水中的细菌、病毒等微生物进行灭活,对含油污水净化效果良好,效率高。

以上对本发明进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1